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4 1 INTRODUCTION

1 Introduction
Lecture 1

Stochastic calculus provides the mathematical theory required for probabilistic modeling of
real-world phenomena in continuous time, as they appear in various areas like mathematical
finance, engineering and physics. Let us start by briefly discussing, on a heuristic level, two
areas of applications where stochastic calculus is naturally required and which may serve us
as motivation to develop it. Of course, there is a long list of further applications of stochastic
calculus like stochastic control, stochastic filtering and optimal stopping, just to name a few.

Application 1: mathematical finance in continuous time. Let us consider a very
simple financial market consisting of a risky asset and a risk-free asset (“bank account”), which
both can be traded in continuous time. To capture the unpredictability and randomness of
future prices, the price process is modeled by a one-dimensional stochastic process (St)t∈[0,T ]
and the price evolution of the risk-free asset (Bt)t∈[0,T ] is given Bt := 1 for t ∈ [0, T ], i.e. we
assume that the interest rate is r = 0.

For simplicity we restrict trading on this financial market to self-financing trading strategies
φ = (φ0

t , φ
1
t )t∈[0,T ] of the form:

• φ1
t = f(St), for some f ∈ C(R;R), stands for the numbers of shares of risky assets hold

at time t,

• φ0
t stands for the numbers of risk-free assets held at time t, chosen such that φ =

(φ0
t , φ

1
t )t∈[0,T ] is self-financing.

Hence, the capital process (Vt(φ))t∈[0,T ] generated by trading according to φ = (φ0
t , φ

1
t )t∈[0,T ]

satisfies

Vt(φ) =

∫ t

0
φ0
s dBs +

∫ t

0
φ1
s dSs

[
≈

N−1∑
i=0

φ0
ti(Bti+1 −Bti) +

N−1∑
i=0

φ1
ti(Sti+1 − Sti)

]
=

∫ t

0
f(Ss) dSs,

for 0 ≤ t0 ≤ · · · ≤ tN ≤ T and N ∈ N.
To keep our life simple, let us choose the stochastic process (St)t∈[0,T ] with sufficiently

smooth sample paths so that classical analysis can be applied to the sample paths of the
stochastic process (St)t∈[0,T ]. In particular, this would allow us to use the fundamental theorem
of calculus, i.e.

F (ST )− F (S0) =

∫ T

0
f(Ss)S

′
s ds =

∫ T

0
f(Ss) dSs

for any function F : R → R such that F ′(x) = f(x) ∈ C(R;R), and the integral
∫ T
0 f(Ss) dSs

is well-defined.
Now, we can take, for instance, the trading strategy φ = (φ0

t , φ
1
t )t∈[0,T ] with

φ1
t := 2(St − S0), i.e. f(x) = 2(x− S0) and F (x) := (x− S0)

2,

and obtain that the corresponding capital process (Vt(φ))t∈[0,T ] satisfies

VT (φ) =

∫ T

0
2(Ss − S0) dSs = (ST − S0)

2 ≥ 0 and V0(φ) = 0,
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which is an arbitrage opportunity as soon as P(ST ̸= S0) > 0. Recall that realistic probabilistic
models for financial markets should exclude arbitrage opportunities and thus we see that we
want to model financial markets in continuous time based on stochastic processes with rather
irregular sample paths, like for instance the so-called Brownian motion, which we will define
later (Definiton 2.1). However, before that we need to find good answers to the following
questions:

• What are suitable stochastic processes to develop stochastic calculus?

• How can we define the integral
∫ T
0 f(Ss) dSs for such stochastic processes?

• How can we replace the fundamental theorem of calculus?

Application 2: probabilistic models – stochastic differential equations. In the mod-
eling of real-world dynamics, as they appear, e.g., in economics, physics, and engineering,
(ordinary) differential equations are fundamental and omnipresent mathematical objects. In
their maybe simplest form an ordinary differential equation reads as

d

dt
Xt = µ(Xt), t ∈ [0, T ],

for a fixed (Lipschitz) continuous function µ : R → R. Intuitively, this ordinary differential
equations says that the infinitesimal change of the function X with respect to time t is given
by µ(Xt), that is

Xt+h −Xt ≈ µ(Xt)h for small h > 0. (1.1)

Many real-world dynamics are subject to random perturbations like, e.g., the evolution
of stock prices, growth dynamics of populations and physical systems subject to thermal
fluctuations. In order to model such random phenomena, one wants to perturb the system (1.1)
by a random noise. For this purpose we take a Brownian motion (Bt)t∈[0,T ] and recall that
Bt+h −Bt ∼ N (0, h). Adding to the system (1.1) a random perturbation leads to

Xt+h −Xt ≈ µ(Xt)h+ σ(Xt)(Bt+h −Bt) for small h > 0 (1.2)

for a fixed (Lipschitz) continuous function σ : R → R. Naively, we would like to divide
equation (1.2) and send h→ 0, i.e.

Xt+h −Xt

h
≈ µ(Xt) + σ(Xt)

(Bt+h −Bh)

h

h→0−−−→ d

dt
Xt = µ(Xt) + σ(Xt)

d

dt
Bt.

However, the derivative d
dtBt does not exist since the sample paths of a Brownian motion

are almost surely nowhere differentiable! Instead, sending h → 0 in equation (1.2) leads to a
so-called stochastic differential equation (SDE)

dXt = µ(Xt) dt+ σ(Xt) dBt, t ∈ [0, T ],

where the symbol d represents an infinitesimal difference. This brings us to the questions:

• How can we give a mathematical meaning to stochastic differential equations?

• When does there exist a unique solution to a stochastic differential equation?
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The scope of this course is:

(i) Brownian motion and (local) martingales,

(ii) stochastic integration and Itô’s formula,

(iii) stochastic differential equations,

(iv) further topics (martingale representation, Girsanov theorem),

(v) some first application in mathematical finance.

2 Brownian motion and local martingales

In this chapter we introduce and study continuous-time stochastic processes allowing us later
to develop an associated stochastic integration theory. From previous lecture courses we might
already know (discrete-time) martingales and Brownian motion, which is the most frequently
appearing prototypical example of a continuous-time stochastic process. Throughout the
course, we always suppose:

Assumption. We work on a suitable complete probability space (Ω,F ,P) and T ∈ (0,∞].

Let us agree on the following conventions:

• [0, T ] := [0,∞) for T = ∞,

• X = Y for two random variables X,Y means X = Y a.s. (w.r.t. P).

Furthermore, let us introduce (or recall) some terminology and definitions:

• A family of Rd-valued random variables (Xt)t∈[0,T ] is called stochastic process.

• For every state of the world ω ∈ Ω, the mapping

X·(ω) : [0, T ] → Rd, t 7→ Xt(ω),

is called sample paths of (Xt)t∈[0,T ].

• We say (Xt)t∈[0,T ] is continuous (or right-continuous) process if the sample paths
of (Xt)t∈[0,T ] are almost surely continuous (or right-continuous).

• A family of σ-algebras (Ft)t∈[0,T ] ⊆ F is called filtration if Fs ⊆ Ft for s, t ∈ [0, T ]
with s ≤ t.

Given a (Ft)t∈[0,T ] be a filtration.

• A random variable τ with values in [0, T ] ∪ {∞} is called a (Ft)-stopping time if

{τ ≤ t} ∈ Ft for any t ∈ [0, T ].

• A stochastic process (Xt)t∈[0,T ] is called (Ft)-adapted (or adapted) if Xt is Ft-
measurable.
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2.1 Brownian motion
Lecture 2

Let us start by recalling the definition of a Brownian motion.

Definition 2.1. A real-valued stochastic process B = (Bt)t∈[0,T ] is called a (standard one-
dimensional) Brownian motion if:

(i) B0 = 0 a.s.

(ii) B has independent increments, i.e., for all n ∈ N and 0 ≤ t0 < t1 < · · · < tn ≤ T ,

Bt0 −B0, Bt1 −Bt0 , . . . , Btn −Btn−1 are independent random variables.

(iii) The increments of B are stationary and normally distributed, i.e.,

Bt −Bs ∼ N (0, |t− s|), s, t ∈ [0, T ].

(iv) B has almost surely continuous sample paths, i.e., the map t 7→ Bt(ω) is continuous for
almost all ω ∈ Ω.

Remark 2.2. Note that there are various equivalent ways to define what it means for a stochas-
tic process to be a “Brownian motion”. A construction of a Brownian motion and the study of
its property is part of the lecture course “Wahrscheinlichkeitstheorie I”. The first construction
of a Brownian motion (Bt)t∈[0,T ] on a suitable probability space (Ω,F ,P) was provided by
Norbert Wiener in 1923. In his honor, Brownian motion is also called Wiener process. A
Brownian motion can be considered as a “functional version” of the normal distribution and
can be constructed as a scaling limit of a normalized random walk, as stated by Donsker’s
theorem.

Let (Xt)t∈[0,T ] be a stochastic process, e.g. a Brownian motion. As we know, every
stochastic process (Xt)t∈[0,T ] generates a filtration (FX

t )t∈[0,T ] by setting

FX
t := σ(Xs : s ≤ t) := σ(X−1

s (A) : A ∈ B(Rd), s ∈ [0, t]), t ∈ [0, T ],

where B(R) denotes the Borel σ-algebra on R. The filtration (FX
t )t∈[0,T ] is called natural

filtration of (Xt)t∈[0,T ].
In case of a Brownian motion (Bt)t∈[0,T ] and its natural filtration of (FB

t )t∈[0,T ], it follows,
thanks to its independent increments, that the future increments are independent of the past
natural filtration. More precisely, we have:
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Fact. A Brownian motion (Bt)t∈[0,T ] has the (simple) Markov property. In particular, we
know that

Bt −Bs is independent of FB
s ,

for all s, t ∈ [0, T ] with s < t.

The Markov property is proven in the lecture course “Wahrscheinlichkeitstheorie I”

While the natural filtration of a stochastic process (Xt)t∈[0,T ] is certainly a natural choice,
it sometimes lacks some desirable regularity properties.

Example 2.3. For A ∈ F \ {∅,Ω} we define the stochastic process (Xt)t∈[0,2] by

Xt(ω) :=

{
(t− 1)1{t>1} if ω ∈ A

(1− t)1{t>1} if ω ∈ Ac
, t ∈ [0, 2].

In this case (Xt)t∈[0,2] is a continuous stochastic process and its natural filtration (FX
t )t∈[0,2]

is given by

FX
t =

{
{∅,Ω} if t ∈ [0, 1]

{∅, A,Ac,Ω} if t ∈ (1, 2]
.

However, the hitting time τ := inf{t ∈ [0, 2] : Xt < 0}∧ 2 is not a stopping time with respect
to (FX

t )t∈[0,2] since
{τ ≤ 1} = {τ = 1} = Ac /∈ FX

1 .

To ensure that hitting times are always stopping times as well as for other purposes, one
often works in probability theory under the assumption that the underlying filtration satisfies
the so-called “usual conditions”. Let us denote the P-null sets by

N := {A ∈ F : P(A) = 0}.

Definition 2.4. The filtration (Ft)t∈[0,T ] satisfies the usual conditions if

• F0 contains all P-null sets N (“completeness”),

• Ft = Ft+ :=
⋂
s>tFs for t ∈ [0, T ) (“right-continuity”).

For instance, the completeness implies especially that any modification of an adapted
stochastic processes is again adapted. In case a filtration is generated by a Brownian motion,
the completeness already implies right-continuity. However, in general, this implication is not
true.

Proposition 2.5. Let (Bt)t∈[0,T ] be a Brownian motion. The completed natural filtration
(Ft)t∈[0,T ] of a Brownian motion (Bt)t∈[0,T ], defined by

Ft := σ
(
FB
t , N

)
= σ

(
{B−1

s (A) : A ∈ B(R), s ∈ [0, t]}, N
)
, for t ∈ [0, T ],

is right-continuous, i.e. Ft = Ft+ for t ∈ [0, T ).
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Proof. Since Ft ⊆ Ft+ :=
⋂
s>tFs is obvious, it is sufficient to show that Ft+ ⊆ Ft for every

t ∈ [0, T ). This means, we want to show that:

A ∈ Ft+ ⇒ A ∈ Ft.

For this purpose, we first show, for d ∈ N, 0 ⩽ t1 < t2 < · · · < td with t1, . . . , td ∈ [0, T ],
t ∈ [0, T ) and any continuous and bounded f : Rd → R, that

E[f(Bt1 , . . . , Btd)|Ft+] is Ft-measurable. (2.1)

Let k ∈ {1, . . . , d − 1} be such that tk ⩽ t < tk+1. For n ∈ N sufficiently large such that
t+ 1

n < tk+1, we have

E
[
f(Bt1 , . . . , Btd)|Ft+1/n

]
= E

[
f(Bt1 , . . . , Btk , Bt+ 1

n
+ (Btk+1

−Bt+ 1
n
), . . . , Bt+ 1

n
+ (Btd −Bt+ 1

n
))
∣∣Ft+1/n

]
=

∫
Rd−k

f(Bt1 , . . . , Btk , Bt+ 1
n
+ x1, . . . , Bt+ 1

n
+ xd−k) pn(x1, . . . , xd−k) dx1 · · · dxd−k

where pn denotes the probability density of (Btk+1
−Bt+ 1

n
, . . . , Btd −Bt+ 1

n
). By the properties

of the normal probability density, the normal distribution densities (pn)n∈N converge pointwise
to the density p of (Btk+1

−Bt, . . . , Btd −Bt) and there is some integrable function dominating
all pn. Together with (a.s.) continuity of B and f we conclude that E[f(Bt1 , . . . , Btd)|Ft+1/n]
converges almost surely to∫

Rd−k

f(Bt1 , . . . , Btk , Bt + x1, . . . , Bt + xd−k)p(x1, . . . , xd−k) dx1 · · · dxd−k

for n→ ∞ and this limit is Ft-measurable. On the other hand (E[f(Bt1 , . . . , Btd)|Ft+1/n])n∈N
is a backward martingale and thus converges almost surely to E[f(Bt1 , . . . , Btd)|Ft+] by the
convergence theorem for backwards martingales (Theorem A.17). Since N ⊆ Ft, this implies
(2.1).

By dominated convergence theorem, (2.1) generalizes to all bounded measurable func-
tions f and especially we can replace f(Bt1 , . . . , Btd) with indicator functions 1A for A ∈
σ(Bt1 , . . . , Btd). By a standard argument using Dynkin systems, we conclude that E[1A|Ft+]
is Ft-measurable for all A ∈ FB

T := σ(Bt, t ∈ [0, T ]) and thus for all A ∈ σ(FB
T , N ). Therefore,

for any A ∈ Ft+ we have that 1A = E[1A|Ft+] is Ft-measurable, i.e. A ∈ Ft.

Luckily, the simple Markov property still holds for the completed natural filtration of a
Brownian motion.

Lemma 2.6. Let (Bt)t∈[0,T ] be a Brownian motion and let (Ft)t∈[0,T ] be its completed nat-
ural filtration. Then, for every s, t ∈ [0, T ] with s < t, the Brownian increment Bt − Bs is
independent of Fs.
Proof. To prove that Bt −Bs is independent of Fs, we need to show that

E[1E(Bt −Bs)1F ] = E[1E(Bt −Bs)]E[1F ] for all E ∈ B(R), F ∈ Fs.

By the definition of Ft := σ(FB
t , N ), for every F ∈ Fs there exists a set F ′ ∈ FB

s such that
the symmetric difference F \ F ′ ∪ F ′ \ F ∈ N . Hence, we see that

E[1E(Bt −Bs)1F ] = E[1E(Bt −Bs)1F ′ ]

= E[1E(Bt −Bs)]E[1F ′ ] = E[1E(Bt −Bs)]E[1F ]

since Bt −Bs is independent of FB
s .
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(i) The completed natural filtration (Ft)t∈[0,T ] of a Brownian motion (Bt)t∈[0,T ] is often
called Brownian standard filtration.

(ii) Alternatively, one can modify the natural filtration (FB
t∈[0,T ]) of a Brownian motion

(Bt)t∈[0,T ] to a right-continuous filtration (F+
t )t∈[0,T ) by setting

F+
t :=

⋂
s>t

FB
s for t ∈ [0, T ).

One still can verify that the Brownian increment Bt − Bs is independent of F+
s , for

every s, t ∈ [0, T ) with s < t. The difference between (FB
t )t∈[0,T ) and (F+

t )t∈[0,T ) are
essentially the P-null sets by Blumenthal’s 0− 1 law.

2.2 Martingales

While the Brownian motion is a fundamental stochastic process in stochastic calculus, a
more general class of continuous-time stochastic processes are so-called martingales and their
variants. They often serve as models for fair or unfair games.

Suppose our underlying probability space (Ω,F ,P) is equipped with a filtration (Ft)t∈[0,T ].

Definition 2.7. Let (Xt)t∈[0,T ] be a real-valued (Ft)-adapted stochastic process such that
E[|Xt|] <∞ for all t ∈ [0, T ]. (Xt)t∈[0,T ] is called a

• (Ft)-martingale if E[Xt|Fs] = Xs,

• (Ft)-sub-martingale if E[Xt|Fs] ≥ Xs,

• (Ft)-super-martingale if E[Xt|Fs] ≤ Xs,

for all s, t ∈ [0, T ] with s ≤ t.

Remark. We will often drop the prefix (Ft) in ”(Ft)-martingale” and just say “martingale” if
the involved filtration is obvious from the context or it is just the associated natural filtration.
The same applies to sub- and super-martingales.

Example 2.8. Let (Bt)t∈[0,T ] be a Brownian motion and (Ft)t∈[0,T ] its complete natural
filtration. The following processes are (Ft)-martingales:

• (X1
t )t∈[0,T ], defined by X1

t := Bt,

• (X2
t )t∈[0,T ], defined by X2

t := B2
t − t,

• (X3
t )t∈[0,T ], defined by X3

t := exp(σBt − σ2

2 t) for all σ > 0.

It is a good exercise to check this yourself.
Lecture 3

The first thing we would like to investigate is how martingales behave with respect to
stopping times.
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Definition 2.9. Let (Ft)t∈[0,T ] be a filtration. A random variable τ with values in [0, T ]∪{∞}
is called a (Ft)-stopping time if

{τ ≤ t} ∈ Ft for any t ∈ [0, T ].

Let τ be a stopping time. The σ-algebra of τ-past is defined as

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for any t ∈ [0, T ]

}
.

Remark. For every stopping time τ , the σ-algebra of the τ -past Fτ is indeed a σ-algebra
and τ is an Fτ -measurable random variable. Furthermore, if (Xt)t∈[0,T ] is a right-continuous
(Ft)-adapted process, then Xτ is an Fτ -measurable random variable. (Please check yourself!)

Based on the notion of stopping times, we arrive at an equivalent characterization of
martingales.

Theorem 2.10. Let (Ft)t∈[0,T ] be a filtration and let (Xt)t∈[0,T ] be a right-continuous (Ft)-
adapted process. Then, the following statements are equivalent:

(i) (Xt)t∈[0,T ] is an (Ft)-martingale.

(ii) For all bounded (Ft)-stopping times τ , we have Xτ ∈ L1 and E[Xτ ] = E[X0].

(iii) (Optional sampling) For all bounded (Ft)-stopping times σ, τ with σ ⩽ τ , we have
Xτ ∈ L1 and E[Xτ |Fσ] = Xσ.

(iv) (Optional stopping) For all (Ft)-stopping times τ , the stopped process (Xτ
t )t∈[0,T ] :=

(Xτ∧t)t∈[0,T ] is an (Ft)-martingale.

Proof. (i) ⇒ (ii): Let T ′ ∈ (0, T ] such that τ ⩽ T ′ and define the stopping times

τn :=
2n∑
k=1

sn,k1(sn,k−1,sn,k](τ) for sn,k := T ′ k

2n
.

In particular, τn(ω) ↓ τ(ω) for almost all ω ∈ Ω. Consider the discrete-time martingale

(Xsn,k
)2

n

k=0 w.r.t. (Fsn,k
)2

n

k=0.

The discrete-time optional sampling theorem (Theorem A.13) yields Xτn ∈ L1 and

Xτn = E[XT ′ |Fτn ] for all n ∈ N.

Note that (Xτn)n∈N is uniformly integrable (Please check yourself, cf. problem sheets.).
Since (Xt)t∈[0,T ] is right-continuous, we have

Xτn → Xτ as n→ ∞ P-a.s. =⇒ Xτn
P→ Xτ as n→ ∞.

Together with the uniform integrability, this implies Xτn
L1

→ Xτ . Therefore,

E[Xτ ] = lim
n→∞

E[Xτn ]

= lim
n→∞

E
[
E[XT ′ |Fτn ]

]
= E[XT ′ ]

= E[X0].
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(ii) ⇒ (iii) By the definition of conditional expectation, we need to show that

E
[
Xσ1A

]
= E

[
Xτ1A

]
∀A ∈ Fσ.

For this purpose, we take A ∈ Fσ and consider

σ̃(ω) :=

{
σ(ω), ω ∈ A,

τ(ω), ω ∈ Ac.

Note that σ̃ is a bounded stopping time, since

{σ̃ ⩽ t} = ({σ ⩽ t} ∩A︸ ︷︷ ︸
∈Ft

) ∪ ( {τ ⩽ t} ∩Ac︸ ︷︷ ︸
∈Ft since Ac∈Fσ⊆Fτ

) ∈ Ft for every t ∈ [0, T ].

Applying (ii) to σ̃ and τ yields

E
[
Xτ (1A + 1Ac)

]
= E[X0] = E[Xσ̃] = E

[
Xσ1A

]
+ E

[
Xτ1Ac

]
.

Hence,
E
[
Xσ1A

]
= E

[
Xτ1A

]
∀A ∈ Fσ.

(iii) ⇒ (iv) Let τ be a stopping time. Since τ ∧ t is a bounded stopping time, we have
Xτ∧t ∈ L1 and Xτ∧t is Fτ∧t ⊆ Ft-measurable. Finally for any A ∈ Fs, s ⩽ t (iii) yields

E[Xτ∧t1A] = E[Xτ∧t 1A1{s≤τ}︸ ︷︷ ︸
Fτ∧s-mb.

] + E[Xτ∧t 1A1{s>τ}︸ ︷︷ ︸
τ⩽s⩽t

]

= E
[
E[Xτ∧t|Fτ∧s]1A1{s≤τ}

]
+ E[Xτ∧s1A1{s>τ}]

= E
[
Xτ∧s1A

]
.

(iv) ⇒ (i) To verify Xt ∈ L1, measurability and E[Xt|Fs] = Xs choose τ = t.

A very handy property of martingales is that, roughly speaking, the running maximum of
a martingale can be controlled by its terminal value in a probabilistic manner. This is the
content of Doob’s martingale inequalities. We will need this inequalities later for the construct
of a stochastic integral with respect to a Brownian motion.

Proposition 2.11. Let (Xt)t∈[0,T ] be a right-continuous martingale or a right-continuous
non-negative sub-martingale and T <∞.

(i) Doob’s maximal inequality holds p ≥ 1 and for all λ > 0:

P
(

sup
0⩽t⩽T

|Xt| ⩾ λ
)
⩽

1

λp
E[|XT |p].

(ii) For p > 1 and supposing XT ∈ Lp, we have Doob’s Lp-inequality

E
[

sup
0⩽t⩽T

|Xt|p
]
⩽

( p

p− 1

)p
E[|XT |p].

Proof. The proof follows by approximating the right-continuous stochastic process (Xt)t∈[0,T ]
by discretizing the time interval [0, T ] and applying the discrete-time version of Doob’s max-
imal and Lp-inequality, which you can find in Proposition A.16.
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When one develops classical integration like Riemann or Lebesgue-Stieltjes integration,
one usually relies (in a more or less direct manner) on the concept of bounded variation.

Definition 2.12. A partition Π of [0, T ] is a family of disjoint intervals J = (sJ , tJ ] which
cover [0, T ]. The mesh size of Π is given by

|Π| := sup
J∈Π

|tJ − sJ |.

A sequence of partitions (Πn)n∈N of [0, T ] is called a zero-sequence of partitions if |Πn| → 0
as n → ∞, Πn ⊆ Πn+1 (meaning that each interval J ∈ Πn is a finite union of intervals in
Πn+1) and {J : J ∈ Πn s.t. J ⊆ [0, t]} is finite for each t ∈ (0, T ] and n ∈ N.

Let (Xt)t∈[0,T ] be a right-continuous stochastic process. The variation process
(|X|t)t∈[0,T ] of (Xt)t∈[0,T ] is defined by

|X|t := sup
Π

∑
J∈Π

|∆J∩[0,t]X|, t ∈ [0, T ], writing∆(u,v]∩[0,t]X := Xt∧u −Xv∧t,

where the supremum is taken over all partitions Π of [0, T ] into intervals of the form J = (sJ , tJ ]
such that Π ∩ [0, t] is composed of finitely many intervals for any t ∈ (0, T ].

Remark 2.13. Let us briefly discuss the variation of a deterministic function g : [0, T ] → R and
the associated Lebesgue-Stieltjes integration, both without giving proofs. Suppose g : [0, T ] →
R is continuous and of finite variation, that is

|g|t := sup
Π

∑
J∈Π

|∆J∩[0,t]g| = lim
n→∞

∑
J∈Πn

|∆J∩[0,t]g| <∞, t ∈ [0, T ],

where the limit holds along any zero-sequence of partitions (Πn)n∈N. (Note that the equality
in the previous equation actually needs to be proven.) Now it can be shown that the function g
is of finite variation if and only if g can be decomposed into a difference of two non-negative
and non-decreasing functions g↑, g↓ : [0, T ] → [0,∞), i.e.

g(t) = g↑(t)− g↓(t) for t ∈ [0, T ].

In this case, we can identify g↑ and g↓ with the two measures µg↑ and µg↓ by setting

µg↑((s, t]) := g↑(t)− g↑(s) and µg↓((s, t]) := g↓(t)− g↓(s), for (s, t] ⊆ [0, T ].

If we now want to define the integral
∫ T
0 f(s) dg(s) for a continuous function f : [0, T ] → R,

we can simply define∫ T

0
f(s) dg(s) :=

∫ T

0
f(s) dµg↑(s)−

∫ T

0
f(s) dµg↓(s),

where
∫ T
0 f(s) dµg↑(s) and

∫ T
0 f(s) dµg↓(s) can be understood as Lebesgue-Stieltjes integrals

(or as Riemann integrals).

Unfortunately, classical integration theories do not apply to martingales (and thus to a
Brownian motion).
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Lemma 2.14. Let (Xt)t∈[0,T ] be a continuous martingale of locally finite variation, i.e., |X|t <
∞ P-a.s. for all t ∈ [0, T ]. Then,

P({ω ∈ Ω : Xt(ω) = X0(ω) for t ∈ [0, T ]}) = 1.

Proof. Please see the problem sheets.

As an immediate consequence of Lemma 2.14, we know there are no non-trivial martingales
(Xt)t∈[0,T ] of locally finite variation. In particular, a Brownian motion (Bt)t∈[0,T ] cannot be
of finite variation as Bt ∼ N (0, t). Simulating three sample paths of a Brownian motion leads
to a figure like the following one.

When we numerically approximate the corresponding variation process of the three above
sample paths of a Brownian motion, we see that, indeed, the variation processes directly
explode to infinite if the mesh size of the partitions goes to zero, that is, as expected, we have
|B|t = ∞ for every t ∈ (0, T ].

Lecture 4
To replace (in a wider sense) the variation processes (|X|t)t∈[0,T ] for a martingale

(Xt)t∈[0,T ], we shall consider instead the sum of square increments∑
J∈Πn

(∆J∩[0,t]X)2

along a zero-sequence of partitions (Πn)n∈N.

Proposition 2.15. Let X = (Xt)t∈[0,T ] be a continuous and bounded (i.e. |Xt(ω)| ⩽ C for
some C > 0, all t ∈ [0, T ] and a.e. ω ∈ Ω) martingale. Then, there exists a continuous
stochastic process ⟨X⟩ = (⟨X⟩t)t∈[0,T ], given by

⟨X⟩t := lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2, uniformly on [0,T] in L2,

for any zero-sequence of partitions (Πn)n∈N, with the following properties:
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(i) ⟨X⟩0 = 0 and ⟨X⟩ is non-decreasing, and

(ii) (X2
t − ⟨X⟩t)t∈[0,T ] is a martingale.

The stochastic process ⟨X⟩ = (⟨X⟩t)t∈[0,T ] is called quadratic variation of X = (Xt)t∈[0,T ].

Later we will see that the quadratic variation process ⟨X⟩ is uniquely determined by the
properties (i) and (ii) of Proposition 2.15, that is any process satisfying (i) and (ii) coincides
with the quadratic variation process.

Proof. Without loss of generality we may assume X0 = 0 (If X0 ̸= 0, just consider the process
X̃t := Xt −X0.) and T <∞. For a zero-sequence of partitions (Πn)n∈N, we define

Ant :=
∑
J∈Πn

(∆J∩[0,t]X)2, for t ∈ [0, T ], n ∈ N.

Step 1: Show that Nn := X2 −An is a martingale for all n ∈ N.
Using a telescoping sum argument, we have

X2
t =

∑
J∈Πn

(X2
tJ∧t −X2

sJ∧t)

=
∑
J∈Πn

(
2XsJ∧t(XtJ∧t −XsJ∧t) + (XtJ∧t −XsJ∧t)

2
)

= 2
∑
J∈Πn

XsJ∧t(∆J∩[0,t]X) +Ant .

Therefore, Nn
t = 2

∑
J∈Πn

XsJ∧t(∆J∩[0,t]X) is a martingale, since

E[Nn
t −Nn

s |Fs] = 2
∑

J∈Πn:tJ⩾s

E
[
XsJ (XtJ∧t −X(sJ∨s)∧t)|Fs

]
= 2

∑
J∈Πn:tJ⩾s

E
[
XsJ E[XtJ∧t −X(sJ∨s)∧t|FsJ∨s]︸ ︷︷ ︸

=0 as X is a martingale

|Fs
]
= 0,

for all s, t ∈ [0, T ] with s < t.
Step 2: Show that limm→∞ supn⩾m E

[
sup0⩽t⩽T |Nm

t −Nn
t |2

]
= 0 for T > 0.

W.l.o.g. let T be a partition point of Πm and abbreviate Jn := {J ∈ Πn : J ⊆ [0, T ]}. For
n,m ∈ N with n ⩾ m, Doob’s Lp-inequality (Proposition 2.11) and the martingale property
of X yield

E
[

sup
0⩽t⩽T

|Nm
t −Nn

t |2
]
⩽ 4E[|Nm

T −Nn
T |2]

= 16E
[( ∑

J∈Jm

∑
J⊇K∈Jn

(XsJ −XsK )∆KX
)2]

= 16E
[ ∑
J∈Jm

∑
J⊇K∈Jn

(XsJ −XsK )
2(∆KX)2

]
⩽ 16E

[
sup
J∈Jm

sup
J⊇K∈Jn

(XsJ −XsK )
4
]1/2

E
[( ∑

K∈Jn

(∆KX)2
)2]1/2

(2.2)
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with the Cauchy-Schwarz inequality in the last step. Now we treat these two terms in (2.2)
separately.

The first term converges to 0 as |Jm| → 0 for m→ ∞ due to continuity and boundedness
of X and the dominated convergence theorem:

lim
m→∞

E
[
sup
J∈Jm

sup
J⊇K∈Jn

(XsJ −XsK )
4
]1/2

= E
[

lim
m→∞

sup
J∈Jm

sup
J⊇K∈Jn

(XsJ −XsK )
4
]1/2

= 0.

Let X be bounded by C > 0. Then the second term can be estimated by

E
[( ∑

K∈Jn

(∆KX)2
)2]

= E
[ ∑
K∈Jn

(∆KX)4
]
+ 2E

[ ∑
J∈Jn

(∆JX)2
∑

K∈Jn:sK⩾tJ

(∆KX)2
]

⩽ 4C2E
[ ∑
K∈Jn

(∆KX)2
]
+ 2E

[ ∑
J∈Jn

(∆JX)2E
[ ∑
K∈Jn:sK⩾tJ

(∆KX)2
∣∣∣FtJ ]].

Since the martingale property of X implies

E
[
(∆KX)2

∣∣∣FtJ ] = E
[
X2
tK

− 2XsKXtK +X2
sK

|FtJ
]

= E
[
X2
tK

−X2
sK

|FtJ
]
,

we conclude

E
[( ∑

K∈Jn

(∆KX)2
)2]

⩽ 4C2
∑
K∈Jn

(
E[X2

tK
]− E[X2

sK
]
)

︸ ︷︷ ︸
=E[X2

T ]

+2E
[ ∑
J∈Jn

(∆JX)2E[X2
T −X2

tJ
|FtJ ]

]

⩽ 4C2E[X2
T ] + 4C2E

[ ∑
J∈Jn

(∆JX)2
]

= 8C2E[X2
T ]. (2.3)

Therefore, the second term in (2.2) is bounded and we have completed Step 2.
Step 3: Existence of ⟨X⟩ and conclude its properties.
Due to Step 2 there is a process N = limn→∞Nn uniformly on [0, T ] in L2. Hence, there

exists a sub-sequence (Nnk)k∈N such that Nnk → N uniformly on [0, T ], almost surely, as
k → ∞. Hence, N is continuous as it is a uniform limit of continuous stochastic processes
(Nnk)k∈N.

Next we need to verify that N is a martingale. To show that E[Nt|Fs] = Ns for s, t ∈ [0, T ]
with s < t, it is sufficient to show that

E[(Nt −Ns)1A] = 0 for all A ∈ Fs,

by the definition of conditional expectation. Indeed, using Fatou’s lemma, the martingale
properties of the stochastic processes (Nnk)k∈N and the uniform convergence of (Nnk)k∈N to
N , we have

|E[(Nt −Ns)1A]| = |E[(Nt −Nnk
t )1A] + E[(Nnk

t −Nnk
s )1A]− E[(Ns −Nnk

s )1A]

≤ |E[(Nt −Nnk
t )1A]|+ |E[(Ns −Nnk

s )1A]|
≤ E[|Nt −Nnk

t |1A] + E[|Ns −Nnk
s |1A]

→ 0 as k → ∞.
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We now define
⟨X⟩ := X2 −N.

Then, ⟨X⟩ inherits continuity and adaptedness from X2 and N , ⟨X⟩0 = 0 and N = X2−⟨X⟩
is martingale. Moreover, Ant → ⟨X⟩t uniformly on [0, T ] in L2. Hence,

⟨X⟩t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2

uniformly on [0, T ] in L2.
Finally, to verify that ⟨X⟩ is non-decreasing, for s, t ∈ [0, T ] with s < t we observe that

⟨X⟩t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2

= lim
n→∞

∑
J∈Πn

(∆J∩[0,s]X)2 + lim
n→∞

∑
J∈Πn

(∆J∩[s,t]X)2

⩾ ⟨X⟩s,

where ∆J∩[s,t]X := X(tJ∨s)∧t −X(sJ∨s)∧t for J = (sJ , tJ ].

The quadratic variation process of a martingale plays a central role in the construction of
stochastic integration. However, before coming to stochastic integration, we need to introduce
so-called local martingales.

2.3 Local martingales

While martingales, like the Brownian motion, are a good starting point to develop a stochastic
integration theory, it turns out that this class of stochastic processes is still not large enough.
As we will see later, the stochastic integral with respect to a martingale might not be a
martingale anymore. Therefore, we need to extend the class of martingales a bit further.

Let (Ft)t∈[0,T ] be a filtration satisfying the usual conditions, that is, (Ft)t∈[0,T ] right-
continuous and complete.

Definition 2.16. An (Ft)-adapted process (Xt)t∈[0,T ] is called local martingale if there is
an increasing sequence (τn)n∈N of (Ft)-stopping times with τn ↑ T P-a.s. and (Xn

t )t∈[0,T ] :=
(Xt∧τn − X0)t∈[0,T ] is an (Ft)-martingale for every n ∈ N. The sequence (τn)n∈N is called
localizing sequence for (Xt)t∈[0,T ]. Local sub-martingales and local super-martingales
are defined analogously.

Note that there are really local martingales which are not martingales.

Example 2.17. Let (Bt)t∈[0,∞) be a Brownian motion and T−1 := inf{t ≥ 0 : Bt = −1}.
The stochastic process

Xt :=

{
B t

1−t
∧T−1

for 0 ≤ t < 1

−1 for t = 1
, t ∈ [0, 1],
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is a continuous local martingale but not a martingale. Indeed, (Xt)t∈[0,1] is not a martingale
since

E[Xt] =

{
0 for 0 ≤ t < 1

−1 for t = 1

as the stopped process (Bt∧T−1)t∈[0,∞) is a martingale. However, using the localizing sequence
(τn)n∈N given by

τn := inf{t ∈ [0, 1] : Xt = n} ∧ 1, n ∈ N,

(Xt)t∈[0,1] is a local martingale with localizing sequence (τn)n∈N. The proof is based on the
dominated convergence theorem:

E[X1∧τn ] = E
[
lim
k→∞

X k
k+1

∧τn

]
= lim

k→∞
E
[
X k

k+1
∧τn

]
= 0.

The same arguments work for the conditional expectation in order to prove the martingale
property of (Xt∧τn)t∈[0,1].

The next proposition summarizes some important properties of continuous local martin-
gales:

Proposition 2.18. Let X = (Xt)t∈[0,T ] be a continuous local martingale with respect to
(Ft)t∈[0,T ].

(i) For any (Ft)-stopping time τ the process Y := X·∧τ is a local martingale.

(ii) If |X| ⩽ B for some constant B > 0, then X is a martingale.

(iii) If X = (Xt)t∈[0,T ] is non-negative with E[X0] <∞, then X is a super-martingale.

Proof. W.l.o.g we assume X0 = 0. Let (τn)n be a localizing sequence for X.
(i) We have

Y·∧τn = (X·∧τ )·∧τn = X·∧(τ∧τn) = (X·∧τn)·∧τ

Since X·∧τn is a martingale, (X·∧τn)·∧τ is a martingale by optional stopping.
(ii) Integrability of (Xt)t∈[0,T ] follows from boundedness. For all n ∈ N and s, t ∈ [0, T ]

with s < t, we have E[Xt∧τn |Fs] = Xs∧τn . Then, the dominated convergence theorem implies

E[Xt1A] = E
[
lim
n→∞

Xt∧τn1A
]
= lim

n→∞
E
[
Xt∧τn1A

]
= lim

n→∞
E
[
Xs∧τn1A

]
= E

[
Xs1A

]
,

for all A ∈ Fs.
(iii) See problem sheets.

Lemma 2.19. Let (Xt)t∈[0,T ] be a continuous local martingale with finite variation, i.e., |X|t <
∞ P-a.s. for all t ∈ [0, T ], and X0 = 0. Then Xt = 0 for all t ∈ [0, T ] P-a.s.

Proof. The proof is left as an exercise: Use a suitable localizing sequence for (Xt)t∈[0,T ] and
Lemma 2.14.

Lecture 5
In the next theorem we generalize the proposition (Proposition 2.15) regarding the

quadratic variation of continuous martingales to the more general class of continuous local
martingales.



2.3 Local martingales 19

Theorem 2.20. Let X = (Xt)t∈[0,T ] be a continuous local martingale. Then there exists a
unique continuous process ⟨X⟩ = (⟨X⟩t)t∈[0,T ] with the following properties

(i) ⟨X⟩0 = 0 and ⟨X⟩ is non-decreasing and

(ii) (X2
t − ⟨X⟩t)t∈[0,T ] is a continuous local martingale.

Furthermore, (⟨X⟩t)t∈[0,T ] satisfies

⟨X⟩t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2 in probability for any t ∈ [0, T ],

where the limit is taken along any zero-sequence of partitions (Πn)n∈N.

Proof. Existence and claimed properties: Apply Proposition 2.15 together with localizing se-
quence (τn)n∈N, defined by

τn := inf{t ∈ [0, T ] : |Xt| ≥ n} ∧ T, n ∈ N,

cf. Problem sheet 2.
Uniqueness: W.l.o.g. we may assume X0 = 0. Let Y, Z be continuous processes satisfying

(i) and (ii). Then
Y − Z = (X2 − Z)− (X2 − Y )

is a local martingale with (Y − Z)0 = 0 and of locally finite variation

|Y − Z|t ⩽ Yt + Zt <∞ P-a.s.

since Y and Z are non-decreasing. Therefore, Lemma 2.19 yields (Y −Z)t = 0 for all t ∈ [0, T ],
P-a.s.

Thanks to Theorem 2.20, we can make the following definition.

Definition 2.21. Let X = (Xt)t∈[0,T ] be a continuous local martingale. The process ⟨X⟩ =
(⟨X⟩t)t∈[0,T ], given by

⟨X⟩t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2 in probability for any t ∈ [0, T ],

where the limit is taken along any zero-sequence of partitions (Πn)n∈N, is called quadratic
variation of (Xt)t∈[0,T ].

Remark 2.22. Let (Xt)t∈[0,T ] be a continuous local martingale with quadratic variation
(⟨X⟩t)t∈[0,T ]. If τ is an a.s. finite stopping time, then the stopped process Xτ := (Xt∧τ )t∈[0,T ]
has the quadratic variation ⟨Xτ ⟩t = ⟨X⟩t∧τ for t ∈ [0, T ]. Indeed, (⟨X⟩t∧τ )t∈[0,T ] satisfies (i)
and

(
(X2

t∧τ − ⟨X⟩)t∧τ
)
t∈[0,T ] is a local martingale thanks to optional stopping. Hence, by the

uniqueness results of Theorem 2.20 , we get ⟨Xτ ⟩t = ⟨X⟩t∧τ for t ∈ [0, T ].

Since a Brownian motion (Bt)t∈[0,T ] is a martingale, we can apply the results about
quadratic variation to it.
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Corollary 2.23. Let (Bt)t∈[0,T ] be a Brownian motion. Then, (⟨B⟩t)t∈[0,T ] satisfies

⟨B⟩t = t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]B)2 in probability for any t ∈ [0, T ],

where the limit is taken along any zero-sequence of partitions (Πn)n∈N.

Proof. We know that (Bt)t∈[0,T ] and (B2
t − t)t∈[0,T ] are continuous martingales, see Exam-

ple 2.8, and the map f : [0, T ] → [0, T ], t 7→ f(t) := t, is non-decreasing with f(0) = 0. Hence,
by Theorem 2.20 the quadratic variation of a Brownian motion is given by ⟨B⟩t = t and fulfills

⟨B⟩t = t = lim
n→∞

∑
J∈Πn

(∆J∩[0,t]B)2 in probability for any t ∈ [0, T ],

where the limit is taken along any zero-sequence of partitions (Πn)n∈N.

Let us illustrate Corollary 2.23 numerically. Simulating again three sample paths of a
Brownian motion (Bt)t∈[0,T ], we obtain the following figure:

When we numerically approximate the corresponding quadratic variation processes of the
three illustrated sample paths of a Brownian motion, we see that,∑

J∈Πn

(∆J∩[0,t]B)2 → t, t ∈ [0, T ],

if the mesh size of the partitions Πn goes to zero, as numerically represented in the following
figures.
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3 Stochastic Itô integration

In this chapter we shall develop stochastic integration with respect to a Brownian motion
(Bt)t∈[0,T ] and, in particular, introduce integrals of the form∫ T

0
f(t) dBt,

for a suitable class of stochastic processes (ft)t∈[0,T ]. The presented stochastic integration
theory was introduced by Kiyosi Itô in the 1940’s. Recall that classical Lebesgue-Stieltjes
integration does not apply to a Brownian motion (Bt)t∈[0,T ] as its sample paths are not of
finite variation, cf. Remark 2.13 and Lemma 2.14.

Let (Ω,F ,P) be a complete probability space with a Brownian motion B = (Bt)t∈[0,T ] and
(Ft)t∈[0,T ] the associated Brownian standard filtration, i.e. Ft = σ(FB

t , N ), t ∈ [0, T ], where
FB
t = σ(Bs, s ∈ [0, t]) and N = {A ∈ F : P(A) = 0}. Recall that the filtration (Ft)t∈[0,T ]

satisfies the usual conditions thanks to Proposition 2.5. Furthermore, we fix T ∈ (0,∞).

3.1 Construction of the Itô integral

As a first step in the construction of a stochastic integral with respect to a Brownian motion,
we define the stochastic integral for “simple” integrands.

Definition 3.1.

(i) The set H 2
0 of simple functions is defined as

H 2
0 :=

{
f : Ω× [0, T ] → R :

f(ω, s) =
∑n−1

i=0 ai(ω)1(ti,ti+1](s),

ai is a Fti-mb. r.v., E[a2i ] <∞, for
0 = t0 < t1 < · · · < tn = T and 0 ⩽ i ⩽ n− 1, n ∈ N

}
.

(ii) The stochastic integral of a simple function f =
∑n−1

i=0 ai1(ti,ti+1] ∈ H 2
0 is given by

I(f) :=

n−1∑
i=0

ai(Bti+1 −Bti) :=

∫ T

0
f(·, s) dBs.

We consider the space H 2
0 as a subspace of L2(Ω× [0, T ],P⊗ λ) with the norm

∥f∥H 2 := ∥f∥L2(P⊗λ) := E
[ ∫ T

0
f2(·, s) ds

]1/2
for f ∈ L2(Ω× [0, T ],P⊗ λ).

On this space of simple functions, the integral operator I : H 2
0 → L2(Ω,P) turns out to be an

isometry.

Lemma 3.2 (Itô’s isometry - simple version). For f ∈ H 2
0 we have

∥f∥H 2 = ∥I(f)∥L2 .
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Proof. Let f =
∑n−1

i=0 ai1(ti,ti+1] ∈ H2
0. Then

∥f∥2H 2 = E
[ ∫ T

0
f2(·, s) ds

]
=

n−1∑
i=0

E[a2i ](ti+1 − ti).

On the other hand by the independent and stationary increments of (Bt)t∈[0,T ] and ai being
Fti-measurable, we obtain

∥I(f)∥2L2 = E
[
I(f)2

]
= E

[( n−1∑
i=0

ai(Bti+1 −Bti)
)2]

= E
[ n−1∑
i,j=0

aiaj(Bti+1 −Bti)(Btj+1 −Btj )
]

=
n−1∑
i=0

E[a2iE[(Bti+1 −Bti)
2|Fti ]

]
+ 2

n−1∑
i,j=0,i<j

E
[
aiaj(Bti+1 −Bti)E[(Btj+1 −Btj )|Ftj

]]

=

n−1∑
i=0

E[a2i ]E
[
(Bti+1 −Bti)

2
]

=
n−1∑
i=0

E[a2i ](ti+1 − ti)

since E[(Btj+1 −Btj )|Ftj
]
= 0 and E

[
(Bti+1 −Bti)

2
]
= ti+1 − ti.

Remark. In Lemma 3.2 we actually have shown that

E
[ ∫ T

0
f2(·, s) d⟨B⟩s

]
= E

[( ∫ T

0
f(·, s) dBs

)2] for f ∈ H 2
0

since ⟨B⟩s = s for s ∈ [0, T ]. Replacing the Brownian motion (Bt)t∈[0,T ] with a continuous
martingale (Mt)t∈[0,T ] would lead to

E
[ ∫ T

0
f2(·, s) d⟨M⟩s

]
= E

[( ∫ T

0
f(·, s) dMs

)2]
assuming E

[ ∫ T
0 f2(·, s) d⟨M⟩s

]
<∞ and supt∈[0,T ] E[M2

t ] <∞.

As a next step we want to extend the (continuous) integral operator to a wider class of
integrands.

Definition 3.3.

• f : Ω× [0, T ] → R is called measurable if f is (F ⊗ B([0, T ]),B(R))-measurable.

• f : Ω× [0, T ] → R is adapted if f(·, t) is Ft-measurable for all t ∈ [0, T ].

• The set of all adapted functions in L2(Ω× [0, T ],P⊗ λ) is given by

H 2 :=
{
f : Ω× [0, T ] → R : f is measurable, adapted and E

[ ∫ T

0
f(·, s)2 ds

]
<∞

}
.
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Remark 3.4. To be precise, H 2 is also considered as a subspace of L2(Ω × [0, T ],P ⊗ λ)
and thus is defined as the set of equivalence classes of all measurable and adapted processes
f satisfying E

[ ∫ T
0 f(·, s)2 ds

]
< ∞. The other way around, each equivalence class in H 2

contains an adapted and measurable representative. Lecture 6

Proposition 3.5. For every f ∈ H 2 there exists a sequence (fn)n∈N ⊆ H 2
0 such that

∥fn − f∥H 2 → 0 as n→ ∞.

Proof. Step 1: W.l.o.g. we may assume that f is bounded.
Set fn := −n ∨ (f ∧ n) for n ∈ N and the dominated convergence theorem yields

∥fn − f∥H 2 → 0 as n→ ∞.

Note that fn is bounded, measurable and adapted for every n ∈ N.
Step 2: There is a sequence (fn)n∈N of bounded, measurable, adapted and continuous (but

not necessarily simple) functions with

∥fn − f∥H 2 → 0 as n→ ∞.

For t ∈ [0, T ] and n ∈ N we define

fn(·, t) := n

∫ t

(t−1/n)+

f(·, s) ds,

where x+ := 0 ∨ x. Then, fn is bounded, measurable, adapted and continuous (but not
necessarily simple) for n ∈ N. For ω ∈ Ω set

A :=
{
(ω, t) ∈ Ω× [0, T ] : lim

n→∞
fn(ω, t) ̸= f(ω, t)

}
,

Aω :=
{
t ∈ [0, T ] : (ω, t) ∈ A

}
.

By the fundamental theorem of calculus, we have for ω ∈ Ω that λ(Aω) = 0. Hence, P⊗λ(A) =
0. Dominated convergence implies ∥fn − f∥H 2 → 0.

Step 3: We have

lim
h↓0

E
[ ∫ T

0

∣∣f(·, t)− f(·, (t− h)+)
∣∣2 dt] = 0.

Indeed, we have with the sequence (fn)n∈N from Step 2 and with the triangular inequality
that

E
[ ∫ T

0

∣∣f(·, t)− f(·, (t− h)+)
∣∣2 dt]1/2

⩽ ∥f − fn∥H 2 + E
[ ∫ T

0

∣∣fn(·, (t− h)+)− f(·, (t− h)+)
∣∣2 dt]1/2

+ E
[ ∫ T

0

∣∣fn(·, t)− fn(·, (t− h)+)
∣∣2 dt]1/2

⩽ 2 ∥f − fn∥H 2︸ ︷︷ ︸
→0, n→∞

+
√
h|fn(·, 0)− f(·, 0)|︸ ︷︷ ︸

→0, h↓0

+E
[ ∫ T

0

∣∣fn(·, t)− fn(·, (t− h)+)
∣∣2 dt]1/2︸ ︷︷ ︸

→0, h↓0, by dom. conv., cont. of fn

→ 0 as h ↓ 0 and n→ ∞,
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where we used Step 2 in the last line.
Step 4: There exists (fn)n∈N ⊆ H 2

0 such that ∥fn − f∥H 2 → 0 as n→ ∞.
Due to Step 1 and 2, it is sufficient to show the claim for f being continuous and bounded.

For n ∈ N we introduce

φn : R →
{ j

2n
: j ∈ Z

}
, u 7→

∑
j∈Z

j − 1

2n
1( j−1

2n
, j
2n

](u),

(as discretization of the time interval) and, for n ∈ N, s ∈ [0, 1], we introduce

fn,s(ω, t) := f(ω, (s+ φn(t− s))+) for ω ∈ Ω, t ∈ [0, T ].

By construction −2−n ≤ s+ φn(t− s) ≤ T and fn,s ∈ H 2
0 for every s ∈ [0, 1]. Moreover, we

obtain

E
[ ∫ T

0

∫ 1

0
|fn,s(·, t)− f(·, t)|2 ds dt

]
= E

[ ∫ T

0

∫ 1

0
|f(·, (s+ φn(t− s))+)− f(·, t)|2 ds dt

]
=

∑
j∈Z

E
[ ∫ T

0

∫[
t− j

2n
,t− j−1

2n
)∩[0,1]

|f(·, s+ j−1
2n )− f(·, t)|2 dsdt

]
⩽ (2n + 1)2−n

∫
(0,1]

E
[ ∫ T

0
|f(·, t− 2−nh)− f(·, t)|2 dt︸ ︷︷ ︸

→0,n→∞ (by Step 3)

]
dh

→ 0 as n→ ∞,

using the substitution s+ j−1
2n = t−2−nh and Fubini’s theorem. Therefore, there is a sequence

(nk)k∈N ⊆ N such that (ω, s, t) 7→ fn,s(ω, t) converges to f(ω, t) for P ⊗ λ ⊗ λ-a.e. (ω, s, t) ∈
Ω× [0, 1]× [0, T ]. Fubini’s theorem implies that there is some s0 ∈ [0, 1] such that

fnk,s0(ω, t) → f(ω, t) for P⊗ λ-a.e. (ω, t) ∈ Ω× [0, T ].

Finally, the dominated convergence theorem yields ∥fnk,s0 − f∥H2 → 0 for k → ∞.

Since H 2
0 ⊆ H 2 is dense (by Proposition 3.5) and I : H 2

0 → L2 is a continuous operator
(by Lemma 3.2), we can continuously extend the stochastic integral I from H 2

0 to H 2: For
f ∈ H 2 we can define

I : H 2 → L2, via I(f) := lim
n→∞

I(fn)

where the convergence of I(fn) takes place in L2 for any sequence (fn)n∈N ⊆ H 2
0 such that

∥fn − f∥H 2 → 0 as n→ ∞.

Theorem 3.6 (Itô’s isometry). For any f ∈ H 2 we have ∥f∥H 2 = ∥I(f)∥L2 .

Proof. Let (fn)n∈N ⊆ H 2
0 be such that ∥f−fn∥H 2 → 0 as n→ ∞. Then ∥I(f)−I(fn)∥L2 → 0

as n→ ∞. Therefore, by the simple version of Itô’s isometry (by Lemma 3.2) we get

∥f∥H 2 = lim
n→∞

∥fn∥H 2 = lim
n→∞

∥I(fn)∥L2 = ∥I(f)∥L2 .
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Based on the integral operator I on the time interval [0, T ], we now want to study the
corresponding integral process by integrating up to time t ∈ [0, T ]. Note for f ∈ H 2 we also
have f1[0,t] ∈ H 2.

Theorem 3.7. For any f ∈ H 2 there is a continuous martingale X = (Xt)t∈[0,T ] with respect
to (Ft)t∈[0,T ] such that for all t ∈ [0, T ]:

Xt = I(f1[0,t]) P-a.s.

Proof. Step 1: The simple case.
Let (fn)n∈N ⊆ H 2

0 with ∥f − fn∥H 2 → 0 as n→ ∞, and

fn =

mn−1∑
i=0

ani 1(tni ,tni+1]
, n ∈ N.

Define
Xn
t := I(fn1[0,t]), t ∈ [0, T ].

Then, for t ∈ (tnk , t
n
k+1] with k ∈ {0, . . . ,mn − 1} we see that

Xn
t = ank(Bt −Btnk ) +

k−1∑
i=0

ani (Btni+1
−Btni ).

Hence, for any n ∈ N, (Xn
t )t∈[0,T ] is a continuous martingale (check yourself!) and, for all

n,m ∈ N, n ⩾ m, ε > 0, Doob’s maximal inequality and Itô isometry (Lemma 3.2) yield

P
(

sup
0⩽t⩽T

|Xn
t −Xm

t | ⩾ ε
)
⩽ ε−2E

[
|Xn

T −Xm
T |2

]
= ε−2∥fn − fm∥2H 2 .

Step 2: Show that there is a subsequence (Xnk)k∈N such that Xnk converges uniformly on
[0, T ] to a continuous process X for P-a.e. ω ∈ Ω.

Choose (nk)k∈N such that

sup
n⩾nk

∥fn − fnk
∥2H 2 ⩽ 2−3k.

Then, for all k ∈ N:

P
(

sup
0⩽t⩽T

|Xnk+1

t −Xnk
t | ⩾ 2−k

)
⩽ 22k∥fnk+1

− fnk
∥2H 2 ⩽ 2−k.

By Borel-Cantelli’s lemma there is an event Ω0 ∈ F with P(Ω0) = 1 and there is a random
variable C > 0 such that

sup
0⩽t⩽T

|Xnk+1

t −Xnk
t | ⩽ 2−k for all k ⩾ C on Ω0.

Therefore, for all ω ∈ Ω0 we have that (Xnk(ω))k∈N is a Cauchy sequence in (C([0, T ]), ∥·∥∞).
Consequently, there is a continuous limit (Xt)t∈[0,T ]. On Ωc0 we set X ≡ 0.

Step 3: Show that (Xt)t∈[0,T ] is a (Ft)-martingale.
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Since (Xnk)k∈N are adapted stochastic processes and (Ft)t∈[0,T ] is complete, (Xt)t∈[0,T ] is
adapted. For t ∈ [0, T ] we observe that

E
[
|Xt −Xnk

t |2
]
≤ lim inf

l→∞
E
[
|Xnl

t −Xnk
t |2

]
(Fatou’s lemma)

= lim
l→∞

∥fnl
− fnk

∥2H 2 (Itô isometry)

=∥f − fnk
∥2H 2 → 0 as k → ∞

and, in particular, E[|Xt|2] <∞ for t ∈ [0, T ]. For 0 ⩽ s ⩽ t, A ∈ Fs and k ∈ N we have∣∣E[(Xt −Xs)1A]
∣∣ ⩽ ∣∣E[(Xt −Xnk

t )1A]
∣∣+ ∣∣E[(Xnk

t −Xnk
s )1A]︸ ︷︷ ︸

=0 since Xnk is mart.

∣∣+ ∣∣E[(Xnk
s −Xs)1A]

∣∣
≤ E

[
|Xt −Xnk

t |2
]1/2

+ E
[
|Xnk

s −Xs|2
]1/2 (Jensen’s ineq.)

⩽ 2∥f − fnk
∥H 2 → 0 as k → ∞,

that is E[Xt|Fs] = Xs.
Step 4: Show that for t ∈ [0, T ] we have Xt = I(f1[0,t]) a.s.
For k ∈ N we have Xnk

t = I(fnk
1[0,t]) and

fnk
1[0,t]

H2

→ f1[0,t] and Xnk
t

L2

→ Xt.

Therefore, Itô isometry reveals

Xt = lim
k→∞

Xnk
t = lim

k→∞
I(fnk

1[0,t]) = I(f1[0,t]), a.s.

Due to the continuity, the process (Xt)t∈[0,T ], with Xt = I(f1[0,t]), is not only adapted,
but also (F ⊗ B([0, T ]))-measurable.

Definition 3.8. For any f ∈ H 2 the Itô integral (or the integral process) is defined by∫ t

0
f(·, s) dBs := Xt = I(f1[0,t]), P-a.s., t ∈ [0, T ],

where (Xt)t∈[0,T ] is defined as in Theorem 3.7.

Remark 3.9. The stochastic integral
∫ t
0 f(·, s) dBs is a linear operator on H 2 since it is a

linear operator on H 2
0 .

Another useful property of Itô integrals is that they preserve equality in the following
sense:

Proposition 3.10. Let f ∈ H 2 and ν be a stopping time satisfying f1[0,ν] = 0. The integral
process X = (Xt)t∈[0,T ], with Xt =

∫ t
0 f(·, s) dBs, then fulfills X1[0,ν] = 0. In particular, for

two functions f, g ∈ H 2 with f1[0,ν] = g1[0,ν] the integral processes coincide on [0, ν].
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Proof. [The following proof is left as an exercise for your self-study.] First, consider f ∈ H 2
0

and let X denote the integral process of f . We show X1[0,ν] = Y 1[0,ν] where Y denotes the
integral process of f1[0,ν]. Note that by linearity of the integral it suffices to consider

f = a1(r,s] for 0 ≤ r < s ≤ T and a an Fr-measurable r.v. with E[a2] <∞.

We discretize the stopping time ν as follows:

si,n := r + (s− r)
i

2n
, i = 0, 1, . . . , 2n,

νn :=

2n−1∑
i=0

si+1,n1(si,n,si+1,n](ν).

Then,

f1[0,νn] = f − f1[νn,T ]

= f − f

2n−1∑
i=0

1(si,n,si+1,n](ν)1(si+1,n,T ] ∈ H 2
0

and

Y n
t :=

∫ t

0
f(·, s)1[0,νn](u) dBu = a(Bs∧νn∧t −Br∧νn∧t).

Since B is continuous, it follows Yt = lim
n→∞

Y n
t = a(Bs∧ν∧t − Br∧ν∧t). On the other hand, it

holds Xt = a(Bs∧t −Br∧t) which implies

X1[0,ν] = Y 1[0,ν]. (3.1)

Now, let f ∈ H 2 and (fn)n∈N ⊆ H 2
0 such that ∥fn − f∥H 2 → 0 as n→ ∞ with fn1[0,ν] = 0,

n ∈ N. If Xn denotes the integral process of fn and Y n the integral process of fn1[0,ν], it then
holds

X1[0,ν] = lim
n→∞

Xn
1[0,ν]

(3.1)
= lim

n→∞
Y n

1[0,ν] = 0. (3.2)

This proves the first claim. Further, let f, g ∈ H 2 with f1[0,ν] = g1[0,ν] and note that
f − g ∈ H 2 with (f − g)1[0,ν] = 0. We apply (3.2) to f − g and conclude∫ ·

0
f dBs1[0,ν] =

∫ ·

0
g dBs1[0,ν],

i.e., the integral processes coincide on 1[0,ν]. Lecture 7

3.2 Extension of Itô integration via localization

So far we defined the stochastic integrals with respect to a Brownian motion for integrands in
the space H 2. Ideally, we would like to construct the stochastic integral∫ t

0
g(Bs) dBs, t ∈ [0, T ],
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for any continuous function g : R → R. However, choosing for instance g(x) = ex
2/2, we see

that g(Bs) /∈ H 2 since

E[g(Bt)2] =
∫
R
g(y)2

1√
2πt

exp
(
− y2

2t

)
dy

=

∫
R

1√
2πt

exp
(
(1− 1

2t)y
2
)
dy = ∞

if t ≥ 1/2. To ensure that g(Bs) is always an admissible integrand, we extend the space H 2

in the following definition.

Definition 3.11. For a fixed T ∈ (0,∞) we introduce

H 2
loc :=

{
f : Ω× [0, T ] → R : f is measurable, adapted and

∫ T

0
f2(·, s) ds <∞P-a.s.

}
.

A increasing sequence (νn)n∈N of [0, T ]-valued stopping times is called localizing sequence
for f ∈ H 2

loc if f1[0,νn] ∈ H 2 for all n ∈ N and

P
( ∞⋃
n=1

{νn = T}
)
= 1.

Remark 3.12.

• H 2 ⊆ H 2
loc

• For any continuous g : R → R we have f(ω, t) = g(Bt(ω)) ∈ H2
loc since B is a.s. pathwise

bounded on [0, T ].

Proposition 3.13. For every f ∈ H 2
loc there is a localizing sequence (νn)n∈N.

Proof. For f ∈ H 2
loc we define

νn := inf
{
t ∈ [0, T ] :

∫ t

0
f2(·, s) ds ⩾ n

}
∧ T, n ∈ N,

Note, the sequence (νn)n∈N is increasing and [0, T ]-valued.
Step 1: νn is a stopping time for every n ∈ N.
Notice that νn is the hitting time of the stochastic process (

∫ t
0 f

2(·, s) ds)t∈[0,T ] hitting
the set [0,∞). Hence, to show that νn is a stopping time, it is sufficient to verify that
t 7→

∫ t
0 f

2(·, s) ds is adapted and continuous since we know that hitting times of adapted and
continuous stochastic processes are stopping times.

For f ∈ H 2
0 we can directly see that t 7→

∫ t
0 f

2(·, s) ds is adapted and continuous and,
thus, it is true for f ∈ H 2 (by the uniform convergence of the associated integrals). Moreover,
t 7→

∫ t
0 f

2(·, s) ds is adapted and continuous for f ∈ H 2
loc as fm(·, t) → f(·, t) as m → ∞ for

all t ∈ [0, T ], where fm := −m ∨ (f ∧m) ∈ H 2.
Step 2: νn is a localizing sequence for f .
For all n ∈ N, we have by the continuity of t 7→

∫ t
0 f

2(·, s) ds that

∥f1[0,νn]∥
2
H 2 = E

[ ∫ νn

0
f2(·, s) ds

]
⩽ n,
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that is f1[0,νn] ∈ H 2. Moreover,

⋃
n⩾1

{νn = T} =
{∫ T

0
f2(·, s) ds <∞

}
which has probability one.

Definition 3.14. Let f ∈ H 2
loc and (νn)n∈N be a localizing sequence for f . The Itô integral

process (
∫ t
0 f(·, s) dBs)t∈[0,T ] is defined as the continuous process X = (Xt)t∈[0,T ] such that∫ t

0
f(·, s) dBs := Xt = lim

n→∞

∫ t

0
f(·, s)1[0,νn](s) dBs P-a.s. for all t ∈ [0, T ],

where we recall that f1[0,νn] ∈ H 2.

We have to prove that the integral process (
∫ t
0 f(·, s) dBs)t∈[0,T ] is well-defined and has a

continuous modification. Note first that Proposition 3.10 implies(∫ ·

0
f(·, s)1[0,νn](s) dBs

)
1[0,νm] =

(∫ ·

0
f(·, s)1[0,νm](s) dBs

)
1[0,νm] for n ⩾ m.

Theorem 3.15. For f ∈ H 2
loc there exists a continuous local martingale (Xt)t∈[0,T ] such that

for any localizing sequence (νn)n∈N of f it holds:∫ t

0
f(·, s)1[0,νn](s) dBs → Xt as n→ ∞ P-a.s.,

for t ∈ [0, T ]. In particular, (Xt)t∈[0,T ] does not depend on the choice of the localizing sequence
(νn)n∈N and the Itô integral process (

∫ t
0 f(·, s) dBs)t∈[0,T ] is well-defined.

Proof. Let f ∈ H 2
loc and (νn)n∈N be a localizing sequence for f . For n ∈ N we define

Xn
t :=

∫ t

0
f(·, s)1[0,νn](s) dBs, t ∈ [0, T ].

Step 1: Existence of a continuous limit (Xt)t∈[0,T ].
Let N(ω) := min{n ∈ N : νn(ω) = T}. Note N <∞ P-a.s. Define

Ω0 :=
{
ω ∈ Ω : t 7→ Xn

t (ω) is continuous ∀n ∈ N
}

satisfying P(Ω0) = 1. Set Ω1 := Ω0 ∩ {N <∞} and

Xt(ω) :=

{
X
N(ω)
t (ω), ω ∈ Ω1,

0, ω /∈ Ω1,
t ∈ [0, T ].

Then, X is continuous and Xt = limn→∞Xn
t P-a.s. for all t ∈ [0, T ].

Step 2: Independence of the localizing sequence.
Let (ν̃n)n∈N be another localizing sequence and write X̃n

· :=
∫ ·
0 f(·, s)1[0,ν̃n](s) dBs. Setting

τn := νn ∧ ν̃n for n ∈ N, we have by Proposition 3.10:

Xn
1[0,τm] = X̃n

1[0,τm] for all n ⩾ m.
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Therefore, limn→∞Xn = limn→∞ X̃n on [0, τm] for any m. It remains to note that τm ↑ T .
Step 3: (Xt)t∈[0,T ] is a local martingale.
It is sufficient to find a localizing sequence of stopping times. For this purpose, we introduce

stopping times

σn := inf

{
t ∈ [0, T ] :

∫ t

0
f2(·, s) ds ≥ n

}
∧ T for n ∈ N.

Note that (σn)n∈N is a localizing sequence for (Xt)t∈[0,T ]. Indeed σn → T as n → ∞ since∫ T
0 f2(·, s) ds <∞ and

Xt∧σn =

∫ t

0
f(·, s)1[0,σn] dBs, t ∈ [0, T ],

is a martingale since f(·, s)1[0,σn] ∈ H 2, see Theorem 3.7.

We briefly generalize Proposition 3.10 regarding the persistence of identity of stochastic
integrals.

Theorem 3.16 (Persistence of identity). Let f, g ∈ H 2
loc and ν be a stopping time such that

f1[0,ν] = g1[0,ν]. Then∫ t

0
f(·, s) dBs1[0,ν] =

∫ t

0
g(·, s) dBs1[0,ν], P− a.s.,

for t ∈ [0, T ].

Proof. For n ∈ N define the stopping time

τn = inf

{
t ∈ [0, T ] :

∫ t

0
f2(·, s) ds ⩾ n or

∫ t

0
g2(·, s) ds ⩾ n

}
∧ T

and set
Xn :=

∫ ·

0
f(·, s)1[0,τn](s)dBs and Y n :=

∫ ·

0
g(·, s)1[0,τn](s)dBs.

Then Proposition 3.10 implies that for all n ∈ N

Xn
1[0,ν] = Y n

1[0,ν].

By Theorem 3.15, we conclude the assertion of the theorem.

Coming back to the discussion of the beginning of the subsection, we want to investigate
the Riemann sum approximation of the stochastic integral with integrands of the form f(Bt) ∈
H 2
loc. Note that we have to use the left end point of the time intervals for the approximation

of f(Bt).

Theorem 3.17 (Riemann sum approximation). If f : R → R is a continuous function and
ti :=

i
nT , 0 ⩽ i ⩽ n, then for n→ ∞ we have

n∑
i=1

f(Bti−1)
(
Bti −Bti−1

)
→

∫ T

0
f(Bs) dBs in probability.
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Proof. Step 1: Localization.
For m ∈ N we set

τm := inf
{
t ∈ [0, T ] : |Bt| ⩾ m

}
∧ T.

Then τm is a stopping time and (τm)m∈N is a localizing sequence for f(B) because continuity
of f yields |f(B·∧τm)| ⩽ sup|x|⩽m |f(x)| <∞, that is f(B) ∈ H 2

loc.
For all m ∈ N there is a continuous function fm with compact support and fm|[−m,m] =

f |[−m,m]. Hence, we have

f(B) = fm(B) on {τm = T} and fm(B) ∈ H 2.

Step 2: Let m ∈ N be fixed. For φn(ω, s) :=
∑n

i=1 fm(Bti−1(ω))1(ti−1,ti](s) ∈ H 2
0 , n ∈ N,

we show φn → fm(B) in H 2 as n→ ∞.
We observe that

E
[ ∫ T

0

(
φn(·, s)− fm(Bs)

)2
ds

]
=

n∑
i=1

E
[ ∫ ti

ti−1

(
fm(Bti−1)− fm(Bs)︸ ︷︷ ︸

⩽supr∈[ti−1,ti]
|fm(Bti−1 )−fm(Br)|

)2
ds

]

⩽
T

n

n∑
i=1

E
[

sup
s∈[ti−1,ti]

|fm(Bti−1)− fm(Bs)|2
]
.

For h > 0 we introduce the modulus of continuity of fm:

µfm(h) := sup
{
|fm(x)− fm(y)| : x, y ∈ Rwith |x− y| ⩽ h

}
. (3.3)

Since fm is uniformly continuous, we have µfm(h) → 0 for h→ 0. Hence, we get

E
[ ∫ T

0

(
φn(·, s)− fm(Bs)

)2
ds

]
⩽
T

n

n∑
i=1

E[µfm( sup
s∈[ti−1,ti]

|Bs −Bti−1 |)2]

⩽ TE[µfm( sup
s∈[ti−1,ti], i=1,...,n

|Bs −Bti−1 |︸ ︷︷ ︸
→0, n→∞

)2] → 0, n→ ∞,

by dominated convergence (µfm is bounded) and B is pathwise uniformly continuous on [0, T ].
In particular, we have

n∑
i=1

fm(Bti−1)
(
Bti −Bti−1

)
→

∫ T

0
fm(Bs) dBs in L2 as n→ ∞.

Step 3: For all ε > 0 and

An,ε :=
{∣∣∣ n∑

i=1

f(Bti−1)(Bti −Bti−1)−
∫ T

0
f(Bs) dBs

∣∣∣ ⩾ ε
}

we show P(An,ε) → 0 for n→ ∞. [Keep in mind that the (ti)
n
i=0 depend on n.]

On the set {τm = T} Theorem 3.16 yields∫ T

0
f(Bs) dBs =

∫ T

0
fm(Bs) dBs.
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Hence, we have

P(An,ε) = P
(
An,ε ∩ {τm < T}

)
+ P

(
An,ε ∩ {τm = T}

)
⩽ P

(
τm < T

)︸ ︷︷ ︸
→0,m→∞ (Step 1)

+P
(
An,ε ∩ {τm = T}

)︸ ︷︷ ︸
→0, n→∞ (Step 2).

→ 0 as n→ ∞,

which completes the proof.
Lecture 8

3.3 Itô formula for Brownian motion

As discussed in the Introduction, we expect that a stochastic integral might not satisfy the
classical fundamental theorem of calculus. However, we still have a very much related funda-
mental theorem for the stochastic Itô integral available: the Itô formula.

Theorem 3.18 (Itô formula). For any twice continuously differentiable function f : R → R
we have

f(Bt) = f(0) +

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) ds, t ∈ [0, T ], P-a.s.

Remark 3.19.

(i) Note the second integral which does not appear in the usual fundamental theorem of
calculus. Thanks to the continuity of f and its derivatives and our extension of the
integral domain to H 2

loc both integrals are well-defined.

(ii) Since the first integral has mean zero, the second integral captures all information about
the drift of (f(Bt))t∈[0,T ]. On the other hand we will see that the first integral is most
informative for the local variability of (f(Bt))t∈[0,T ]. Hence, we could understand Itô’s
formula as a decomposition of f(Bt) into a “noise term” and a “signal”.

(iii) Theorem 3.18 presents the simplest version of Itô’s formula which we will generalize
successively later.

Proof. W.l.o.g. we show Itô’s formula for a fixed t ∈ [0, T ]. Indeed, then Itô’s formula holds
for all t ∈ [0, T ] ∩Q, P-a.s and, by continuity, also holds for all t ∈ [0, T ].

Step 1: Decomposition of f(Bt)− f(0).
Fix t ⩾ 0 and set ti := i

n t for i = 0, . . . , n. Using a telescoping sum argument and a second
order Taylor expansion at Bti−1 yields

f(Bt)− f(0) =

n∑
i=1

(
f(Bti)− f(Bti−1)

)
=

n∑
i=1

f ′(Bti−1)(Bti −Bti−1)︸ ︷︷ ︸
=:An

+
1

2

n∑
i=1

f ′′(Bti−1)(Bti −Bti−1)
2

︸ ︷︷ ︸
=:Bn

+

n∑
i=1

r(Bti−1 , Bti)︸ ︷︷ ︸
=:Cn

,
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where r(·, ·) is the reminder of the Taylor expansion given by

r(x, y) :=

∫ y

x
(y − u)(f ′′(u)− f ′′(x)) du

= (y − x)2
∫ 1

0
(1− t)

(
f ′′(x+ t(y − x))− f ′′(x)

)
dt

using the substitution u = x+ t(y − x) in the second equality.
Let us assume in the next steps (Step 2 to 4), that f has compact support. In this case

we have
|r(x, y)| ⩽ |y − x|2|h(x, y)|

for some continuous, bounded function h : R2 → R with h(x, x) = 0 for x ∈ R with compact
support.

We will now consider the terms An, Bn and Cn separately and prove the convergence of
An and Bn to the terms in Itô’s formula and the convergence of Cn to 0 in probability. This
implies that for all t ∈ R+ there is a subsequence (nk)k∈N ⊆ N such that

(Ank
)k∈N, (Bnk

)k∈N, (Cnk
)k∈N

converge jointly with probability one.
Step 2: Show that An

P→
∫ t
0 f

′(Bs) dBs as n→ ∞.
Due to continuity of f , Theorem 3.17 yields the convergence.
Step 3: Show that Bn

P→ 1
2

∫ t
0 f

′′(Bs) ds as n→ ∞.
Recall our assumption that f has compact support. We write Bn as

Bn =
1

2

n∑
i=1

f ′′(Bti−1)(ti − ti−1) +
1

2

n∑
i=1

f ′′(Bti−1)
(
(Bti −Bti−1)

2 − (ti − ti−1)
)

=: Bn,1 +Bn,2.

Since f ′′ and Bt are (a.s.) continuous, we have

Bn,1 →
1

2

∫ t

0
f ′′(Bs) ds as n→ ∞, P-a.s.

Moreover, since Bn,2 has mean 0 and by independence of Brownian increments, we have

E
[
(Bn,2)

2
]
=

1

4

n∑
i,j=1

E
[
f ′′(Bti−1)

(
(Bti −Bti−1)

2 − (ti − ti−1)
)

× f ′′(Btj−1)
(
(Btj −Btj−1)

2 − (tj − tj−1)
)]

=
1

4

n∑
i=1

E
[
f ′′(Bti−1)

2
(
(Bti −Bti−1)

2 − (ti − ti−1)
)2]

⩽
1

4
∥f ′′∥2∞

n∑
i=1

E
[
(Bti −Bti−1)

2 − (ti − ti−1)
)2]

=
1

2
∥f ′′∥2∞

n∑
i=1

(ti − ti−1)
2 → 0 for n→ ∞.
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where we note for the last line that E
[
(Bti −Bti−1)

4] = 3(ti − ti−1)
2, i.e. we have

E
[
(Bti −Bti−1)

2 − 2(Bti −Bti−1)
2(ti − ti−1) + (ti − ti−1)

2
]

= 3(ti − ti−1)
2 − 2(ti − ti−1)

2 + (ti − ti−1)
2

= 2(ti − ti−1)
2.

Therefore, Bn,2 → 0 in L2 and thus in probability, too.
Step 4: Show that Cn

P→ 0 as n→ ∞.
Since h is uniformly continuous, for all ε > 0 there is a δ > 0 such that

∀x, y ∈ R with |x− y| ⩽ δ : |h(x, y)| = |h(x, y)− h(x, x)| ⩽ ε.

Using Tschebychev’s inequality, we obtain

E
[
h(Bti−1 , Bti)

2
]
= E

[
h(Bti−1 , Bti)

2
1{|Bti−Bti−1 |⩽δ}

]
+ E

[
h(Bti−1 , Bti)

2
1{|Bti−Bti−1 |>δ}

]
⩽ ε2P(|Bti −Bti−1 | ⩽ δ) + ∥h∥2∞P(|Bti −Bti−1 | > δ)

⩽ ε2 + ∥h∥2∞
E[(Bti −Bti−1)

2]

δ2

= ε2 + ∥h∥2∞
ti − ti−1

δ2

= ε2 + ∥h∥2∞
t

δ2n
.

Moreover, if f has compact support, then the Cauchy-Schwarz inequality yields

E[|Cn|] ⩽ E
[ n∑
i=1

|Bti −Bti−1 |2|h(Bti−1 , Bti)|
]

⩽
n∑
i=1

E
[
(Bti −Bti−1)

4
]1/2E[h(Bti−1 , Bti)

2]1/2

=
√
3

n∑
i=1

(ti − ti−1)E[h(Bti−1 , Bti)
2]1/2.

Therefore,

E[|Cn|] ⩽
√
3

n∑
i=1

(ti − ti−1)
(
ε2 + ∥h∥2∞

t

δ2n

)1/2
→

√
3tε as n→ ∞.

Since ε > 0 was arbitrary, we have Cn → 0 in L1 and thus in probability.
Step 5: Localization.
Set

τm := inf
{
t ∈ [0, T ] : |Bt| ⩾ m

}
∧ T, m ∈ N.

Then τm is a stopping time and Ω =
⋃
m⩾1{τm = T}. For all m ∈ N there is some fm ∈ C2(R)

with compact support and f |[−m,m] = fm|[−m,m]. Then Itô’s formula is true for fm. Due to
Theorem 3.16 the claim is true on {τm = T} (since we have fm(Bt) = f(Bt) on this event)
and thus P-a.s. on Ω.
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Example 3.20. Let us take for example f(x) = x2

2 . Then, Itô’s formula yields

1

2
B2
t = f(Bt)− f(0)

=

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) ds

=

∫ t

0
Bs dBs +

t

2
.

In particular, 1
2(B

2
t − t) =

∫ t
0 Bs dBs is a martingale, cf. problem sheets.

In order to take functions into account which depend on Bt and on t, we need the following
generalization of Theorem 3.18. We denote by C1,2([0, T ]×R) the space of continuous functions
f : [0, T ]×R ∋ (t, x) 7→ f(t, x) ∈ R such that f(t, x) is continuously differentiable in t ∈ (0, T )
and twice continuously differentiable in x ∈ R.

Theorem 3.21 (Itô formula, space-time version). For any f ∈ C1,2([0, T ]× R) we have

f(t, Bt) = f(0, 0) +

∫ t

0

∂f

∂t
(s,Bs) ds+

∫ t

0

∂f

∂x
(s,Bs) dBs +

1

2

∫ t

0

∂2f

∂x2
(s,Bs) ds,

for t ∈ [0, T ], P-a.s.

Sketch of the proof. We generalize the proof of Theorem 3.18 using the following (first and
second) Taylor expansion for the telescoping sum

f(t, Bt)− f(0, 0) =

n∑
i=1

f(ti, Bti)− f(ti−1, Bti−1)

=

n∑
i=1

(
f(ti, Bti)− f(ti−1, Bti)

)
+

n∑
i=1

(
f(ti−1, Bti)− f(ti−1, Bti−1)

)
=

n∑
i=1

∂f

∂t
(ti−1, Bti)(ti − ti−1)

+
n∑
i=1

∂f

∂x
(ti−1, Bti−1)(Bti −Bti−1) +

1

2

n∑
i=1

∂2f

∂x2
(ti−1, Bti−1)(Bti −Bti−1)

2

+
n∑
i=1

r(ti−1, ti, Bti−1 , Bti)

with

r(s, t, x, y) =

∫ t

s

(∂f
∂t

(r, y)− ∂f

∂t
(s, y)

)
dr +

∫ y

x
(y − u)

(∂2f
∂x2

(s, u)− ∂2f

∂x2
(s, x)

)
du.

If f has compact support, we have

|r(s, t, x, y)| ⩽ |t− s||k(s, t, y)|+ |y − x|2|h(s, x, y)|,

where h and k are uniformly continuous, bounded functions on R2
+ ×R and R+ ×R2, respec-

tively, which are 0 if s = t and x = y, respectively. The rest of the proof is analogous to the
proof of Itô formula without time dependency (Theorem 3.18).
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4 Itô processes
Lecture 9

So far, we considered stochastic integration and Itô’s formula only with respect to a Brownian
motion. The purpose of this chapter is to generalize Itô’s theory to a larger class of stochastic
processes as feasible integrators. As before, let (Ω,F ,P) be a complete probability space,
(Bt)t∈[0,T ] be a Brownian motion with its completed filtration (Ft)t∈[0,T ] and T ∈ (0,∞).

Definition 4.1. A stochastic processX = (Xt)t∈[0,T ] is called Itô process if there is a (P-a.s.)
representation

Xt = X0 +

∫ t

0
a(·, s) ds+

∫ t

0
b(·, s) dBs, for t ∈ [0, T ],

where X0 ∈ R and a, b : Ω × [0, T ] → R are adapted, measurable processes satisfying the
integrability conditions

P
(∫ T

0
|a(ω, s)|ds <∞

)
= 1 and P

(∫ T

0
|b(ω, s)|2 ds <∞

)
= 1.

Note that b ∈ H 2
loc and thus the stochastic integral in the representation of X is well-

defined.

Remark. Let a : Ω × [0, T ] → R be an adapted, measurable process satisfying
P(
∫ T
0 |a(ω, s)|ds < ∞) = 1, as it is assumed in the definition of Itô processes. Then, the

stochastic process (
∫ t
0 a(·, s) ds)t∈[0,T ] is a continuous, adapted process of finite variation.

Furthermore, the representation of an Itô process is unique in the sense that the repre-
senting functions a and b are uniquely determined for the Itô process X, which is the content
of the next lemma.

Lemma 4.2. Let X = (Xt)t∈[0,T ] be an Itô process with representations

Xt = X0 +

∫ t

0
a(·, s) ds+

∫ t

0
b(·, s) dBs = X̃0 +

∫ t

0
ã(·, s) ds+

∫ t

0
b̃(·, s) dBs

for t ∈ [0, T ] and X0 = X̃0. Then, we have a = ã and b = b̃, P⊗ λ-a.s.

Proof. See problem sheets.

4.1 Itô’s integration for Itô processes

The quadratic variation plays a central role in Itô’s integration theory, for instance, in Itô’s
formula for a Brownian motion we used it to treat the second order term in the Taylor ex-
pansion. Therefore, we start by extending the notation of quadratic variation to Itô processes
and calculate it.

Proposition 4.3. For any Itô process X = (Xt)t∈[0,T ] with representation

Xt = X0 +

∫ t

0
a(·, s) ds+

∫ t

0
b(·, s) dBs, t ∈ [0, T ],
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the quadratic variation of X is given by

⟨X⟩t := lim
n→∞

∑
J∈Πn

(∆J∩[0,t]X)2 =

∫ t

0
b2(·, s) ds, t ∈ [0, T ],

where the limit is taken in probability.

Proof. We decompose X =M +A with

Mt :=

∫ t

0
b(·, s) dBs and At := X0 +

∫ t

0
a(·, s) ds.

Note that M is a local martingale and A has finite variation.
Step 1: We show ⟨M⟩ =

∫ ·
0 b

2(·, s) ds.
Take a localizing sequence (τn)n∈N such that M·∧τn is a martingale and

∫ t∧τn
0 b2(·, s) ds is

uniformly bounded in t. Since
∫ ·
0 b

2(·, s) ds starts in 0 and is increasing, it suffices to verify
that (

M2
t∧τn −

∫ t∧τn

0
b2(·, s) ds

)
t∈[0,T ]

is a martingale, see Theorem 2.20. To that end, we need to show the martingale property (the
rest is easy to see), i.e. for 0 ⩽ s < t ≤ T we need to show

0
!
=E

[
M2
t∧τn −M2

s∧τn −
∫ t∧τn

s∧τn
b2(·, s) ds

∣∣∣Fs]
=E

[
(Mt∧τn −Ms∧τn)

2 −
∫ t∧τn

s∧τn
b2(·, s) ds

∣∣∣Fs],
using that M·∧τn is a martingale in last equality. For any A ∈ Fs we have

(Mt∧τn −Ms∧τn)1A = (Mt∧τn −Ms)1A1{τn⩾s}

=

∫ T

0
1A1{τn⩾s}1(s,t](r)︸ ︷︷ ︸

∈H2
0

b(·, r)1[0,τn](r)

︸ ︷︷ ︸
∈H2

dBr.

Therefore, Itô’s isometry implies

E
[
(Mt∧τn −Ms∧τn)

2
1A

]
= E

[( ∫ T

0
1A1(s∧τn,t∧τn](r)b(·, r) dBr

)2]
= E

[ ∫ T

0

(
1A1(s∧τn,t∧τn](r)b(·, r)

)2
dr

]
= E

[
1A

∫ t∧τn

s∧τn
b2(·, r) dr

]
.

Step 2: We deduce ⟨X⟩ =
∫ ·
0 b

2(·, s) ds.
Let t > 0 and (Πn)n∈N be a zero-sequence of partitions. W.l.o.g. t is a partitioning point

in Π1 and Jn = {J ∈ Πn : J ⊆ [0, t]}. Then it is sufficient to show that

lim
n→∞

∑
J∈Jn

(∆JX)2 =

∫ t

0
b2(·, s) ds in probability.



38 4 ITÔ PROCESSES

We decompose∑
J∈Jn

(∆JX)2 =
∑
J∈Jn

(∆JM)2 +
∑
J∈Jn

(∆JA)
2 + 2

∑
J∈Jn

(∆JM)(∆JA).

By Step 1 we know that

lim
n→∞

∑
J∈Jn

(∆JM)2 =

∫ t

0
b2(·, s) ds

in probability. Moreover,∑
J∈Jn

(∆JA)
2 ⩽ sup

J∈Jn
|∆JA|

∑
J∈Jn

|∆JA| ⩽ sup
J∈Jn

|∆JA| |A|t → 0 P-a.s.

since A is of finite variation and continuous and |Πn| → 0. The Cauchy-Schwarz inequality
yields finally ∑

J∈Jn

(∆JM)(∆JA) ⩽
( ∑
J∈Jn

(∆JM)2︸ ︷︷ ︸
P→⟨M⟩t

)1/2( ∑
J∈Jn

(∆JA)
2

︸ ︷︷ ︸
→0P-a.s.

)1/2 P→ 0.

To extend Itô integration with respect to a Brownian motion to the class of Itô processes,
let us do a heuristic calculation. Let f : Ω × [0, T ] → R be a continuous, adapted, bounded
function. Considering a Riemann sum approximation as in Theorem 3.17, we heuristically
arrive at

n∑
i=1

f(·, ti−1)(Xti −Xti−1)

=
n∑
i=1

f(·, ti−1)
(∫ ti

ti−1

a(·, s) ds+
∫ ti

ti−1

b(·, s) dBs
)

=

∫ t

0

n∑
i=1

f(·, ti−1)a(·, s)1(ti−1,ti](s)︸ ︷︷ ︸
→f(·,s)a(·,s)

ds+

∫ t

0

n∑
i=1

f(·, ti−1)b(·, s)1(ti−1,ti](s)︸ ︷︷ ︸
→f(·,s)b(·,s)

dBs

for 0 = t0 < t1 < · · · < tn = t. This leads us to the following natural definition:

Definition 4.4. Let X = (Xt)t∈[0,T ] be an Itô process with representation Xt = X0 +∫ t
0 a(·, s) ds+

∫ t
0 b(·, s) dBs for t ∈ [0, T ]. We write L(X) for all adapted, measurable functions

f : Ω× [0, T ] → R satisfying∫ T

0
|f(·, s)a(·, s)|ds <∞ and

∫ T

0
|f(·, s)b(·, s)|2 ds <∞ P-a.s.

For f ∈ L(X) we define the stochastic Itô integral by∫ t

0
f(·, s) dXs :=

∫ t

0
f(·, s)a(·, s) ds+

∫ t

0
f(·, s)b(·, s) dBs, t ∈ [0, T ].

Note that the stochastic Itô integral is well-defined as the f(·, s)b(·, s) ∈ H 2
loc and the

representation of the Itô process X is unique (see Lemma 4.2).
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Lemma 4.5. Let X = (Xt)t∈[0,T ] be an Itô process with representation Xt = X0+
∫ t
0 b(·, s) dBs

for t ∈ [0, T ], that is a = 0, and f ∈ L(X).

(i) The integral process (
∫ t
0 f(·, s) dXs)t∈[0,T ] is a continuous local martingale.

(ii) If E
[ ∫ T

0 f2(·, s)b2(·, s) ds
]
<∞, then Itô isometry holds true:

E
[(∫ t

0
f(·, s) dXs

)2]
= E

[ ∫ t

0
f2(·, s) d⟨X⟩s

]
, t ∈ [0, T ].

Remark 4.6. Since (⟨X⟩t)t∈[0,T ] is a non-decreasing process,
∫ t
0 f

2(·, s) d⟨X⟩s is just a Lebesgue-
Stieltjes integral and by the associativity of Lebesgue-Stieltjes integration we have∫ t

0
f2(·, s) d⟨X⟩s =

∫ t

0
f2(·, s)b2(·, s) ds, t ∈ [0, T ].

Proof. (i) For f ∈ L(X) we know that f(·, s)b(·, s) ∈ H 2
loc by the definition of L(X). Hence,

(
∫ t
0 f(·, s) dXs)t∈[0,T ] is a continuous local martingale by Theorem 3.15.

(ii) If E
[ ∫ T

0 f2(·, s)b2(·, s) ds
]
< ∞, we can apply Itô isometry (Theorem 3.6) for H 2

leading to

E
[(∫ t

0
f(·, s) dXs

)2]
= E

[(∫ T

0
f(·, s)b(·, s)1[0,t] dBs

)2]
= E

[ ∫ T

0
f2(·, s)b2(·, s)1[0,t] ds

]
= E

[ ∫ t

0
f2(·, s) d⟨X⟩s

]
,

where we used Proposition 4.3 and the associativity of Riemann integration.

4.2 Itô’s formula for Itô processes
Lecture 10

In this subchapter we want to derive an Itô formula for Itô processes. The derivation is
based on the same ideas as in the simpler case of an Itô formula for a Brownian motion, cf.
Theorem 3.18.

Let f : R2 → R be a twice continuously differentiable function (i.e. f ∈ C2(R2)) and X,Y
be two Itô processes with representations

Xt = X0 +

∫ t

0
a(·, s) ds+

∫ t

0
b(·, s) dBs and Yt = Y0 +

∫ t

0
α(·, s) ds+

∫ t

0
β(·, s) dBs,

for t ∈ [0, T ]. For a moment, we assume that
∫ T
0

(
|a(·, s)| + |α(·, s)|

)
ds and

∫ T
0

(
b2(·, s) +

β2(·, s)
)
ds are bounded (Using a localization argument, the general situation can always be

reduced to this case.). As in the proof of Theorem 3.18, relying on a telescoping sum argument
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and a (multi-dimensional) Taylor expansion, ti := t in , i = 0, . . . , n, we obtain

f(Xt, Yt)− f(X0, Y0)

=

n∑
i=1

(
f(Xti , Yti)− f(Xti−1 , Yti−1)

)
=

n∑
i=1

fx(Xti−1 , Yti−1)(Xti −Xti−1) +

n∑
i=1

fy(Xti−1 , Yti−1)(Yti − Yti−1)

+
1

2

n∑
i=1

fxx(Xti−1 , Yti−1)(Xti −Xti−1)
2 +

1

2

n∑
i=1

fyy(Xti−1 , Yti−1)(Yti − Yti−1)
2

+

n∑
i=1

fxy(Xti−1 , Yti−1)(Xti −Xti−1)(Yti − Yti−1) +

n∑
i=1

r(Xti−1 , Xti , Yti−1 , Yti)

=: A1
n +A2

n +B1
n +B2

n + Cn +Rn, (4.1)

with |r(x, y)| ⩽ |y − x|2|h(x, y)| for some bounded, continuous function h : R4 → R with
h(x, x) = 0 for all x, y ∈ R2, and

fx :=
∂

∂x
f, fy :=

∂

∂y
f, fxx :=

∂2

∂x2
f, fyy :=

∂2

∂y2
f, and fxy :=

∂2

∂x∂y
f.

In the following we will investigate the convergence of the five terms A1
n, A

2
n, B

1
n, B

2
n, Cn and

Rn.
First we observe that Itô’s isometry yields

A1
n =

∫ t

0

n∑
i=1

fx(Xti−1 , Yti−1)a(·, s)1(ti−1,ti](s) ds︸ ︷︷ ︸
→

∫ t
0 fx(Xs,Ys)a(·,s) dsP-a.s. (dom. conv.)

+

∫ t

0

n∑
i=1

fx(Xti−1 , Yti−1)b(·, s)1(ti−1,ti](s)︸ ︷︷ ︸
→fx(Xs,Ys)b(·,s) in L2(Ω×[0,t])⊇H2

dBs

→
∫ t

0
fx(Xs, Ys)a(·, s) ds+

∫ t

0
fx(Xs, Ys)b(·, s) dBs as n→ ∞

=

∫ t

0
fx(Xs, Ys) dXs,

and the analogous convergence for A2
n. Secondly, we expect the terms B1

n, B2
n to converge in

the following manner:

B1
n → 1

2

∫ t

0
fxx(Xs, Ys) d⟨X⟩s as n→ ∞.

Note that the latter integral is well-defined in the Lebesgue-Stieltjes sense because (⟨X⟩t)t∈[0,T ]
is non-decreasing. Indeed, we have:

Lemma 4.7. Let g ∈ C(R2), (Zt)t∈[0,T ] be a continuous, adapted R2-valued stochastic process
and (Xt)t∈[0,T ] be an Itô process. For any t ∈ [0, T ] and ti := t in , i = 0, . . . , n, we have

n∑
i=1

g(Zti−1)(Xti −Xti−1)
2 P−→

∫ t

0
g(Zs) d⟨X⟩s for n→ ∞.
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Proof. Step 1: Assume g is bounded. We show that it is sufficient to assume that (Xt)t∈[0,T ]
is a local martingale.

Since (Xt)t∈[0,T ] is an Itô process, it can be decomposed into a local martingale (Mt)t∈[0,T ]
and a stochastic process (At)t∈[0,T ] of finite variation, that is

Xt =Mt +At, t ∈ [0, T ],

where Mt :=
∫ t
0 b(·, s) dBs and At := X0 +

∫ t
0 a(·, s) ds. By Proposition 4.3 we observe that

⟨X⟩t = ⟨M⟩t, t ∈ [0, T ],

Furthermore, we get

n∑
i=1

g(Zti−1)(Xti −Xti−1)
2 =

n∑
i=1

g(Zti−1)(Mti −Mti−1)
2 +

n∑
i=1

g(Zti−1)(Ati −Ati−1)
2

+ 2

n∑
i=1

g(Zti−1)(Mti −Mti−1)(Ati −Ati−1)

and, since (At)t∈[0,T ] is of finite variation, we get
n∑
i=1

g(Zti−1)(Ati −Ati−1)
2 → 0 and 2

n∑
i=1

g(Zti−1)(Mti −Mti−1)(Ati −Ati−1) → 0,

as n→ ∞. Hence,

lim
n→∞

n∑
i=1

g(Zti−1)(Xti −Xti−1)
2 = lim

n→∞

n∑
i=1

g(Zti−1)(Mti −Mti−1)
2

if the limit exists.
Step 2: Assume first that X is a bounded martingale with bounded quadratic variation ⟨X⟩

and that g is bounded.
We have by dominated convergence∫ t

0
g(Zs) d⟨X⟩s =

∫ t

0
lim
n→∞

n∑
i=1

g(Zti−1)1(ti−1,ti](s) d⟨X⟩s

= lim
n→∞

n∑
i=1

g(Zti−1)
(
⟨X⟩ti − ⟨X⟩ti−1

)
.

Moreover,

E
[( n∑

i=1

g(Zti−1)(Xti −Xti−1)
2 −

n∑
i=1

g(Zti−1)
(
⟨X⟩ti − ⟨X⟩ti−1

))2]
= E

[( n∑
i=1

g(Zti−1)
(
(Xti −Xti−1)

2 − (⟨X⟩ti − ⟨X⟩ti−1)
))2]

=

n∑
i,j=1

E
[(
g(Zti−1)

(
(Xti −Xti−1)

2 − (⟨X⟩ti − ⟨X⟩ti−1)
))

×
(
g(Ztj−1)

(
(Xtj −Xtj−1)

2 − (⟨X⟩tj − ⟨X⟩tj−1)
))]

.
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Since X and X2 − ⟨X⟩ are martingales, we have

E
[
(Xtj −Xtj−1)

2− (⟨X⟩tj −⟨X⟩tj−1)|Ftj−1

]
= E

[
(X2

tj −X
2
tj−1

)− (⟨X⟩tj −⟨X⟩tj−1)|Ftj−1

]
= 0.

Using (a + b)2 ⩽ 2a2 + 2b2 and the Cauchy-Schwarz inequality and C > 0 such that
supt∈[0,T ] |Xt| ≤ C, we thus obtain

E
[( n∑

i=1

g(Zti−1)(Xti −Xti−1)
2 −

n∑
i=1

g(Zti−1)
(
⟨X⟩ti − ⟨X⟩ti−1

))2]
=

n∑
i=1

E
[
g2(Zti−1)

(
(Xti −Xti−1)

2 − (⟨X⟩ti − ⟨X⟩ti−1)
)2]

≤ 2∥g∥2∞
(
E
[ n∑
i=1

(Xti −Xti−1)
4
]
+ E

[ n∑
i=1

(⟨X⟩ti − ⟨X⟩ti−1)
2
])

≤ 2∥g∥2∞
(
E
[
µX(1/n)

2
n∑
i=1

(Xti −Xti−1)
2

︸ ︷︷ ︸
→0, n→∞

]
+ E

[
µ⟨X⟩(1/n)

n∑
i=1

|⟨X⟩ti − ⟨X⟩ti−1 |︸ ︷︷ ︸
=µ⟨X⟩(1/n)⟨X⟩t→0, n→∞

])

≤ 2∥g∥2∞
(
E
[
µX(1/n)

4︸ ︷︷ ︸
→0, n→∞

]1/2
E
[( n∑

i=1

(Xti −Xti−1)
2
)2]1/2

︸ ︷︷ ︸
⩽
√
6CE[X2

t ]
1/2 as in (2.3)

+ E
[
µ⟨X⟩(1/n)

n∑
i=1

|⟨X⟩ti − ⟨X⟩ti−1 |︸ ︷︷ ︸
=µ⟨X⟩(1/n)⟨X⟩t→0, n→∞

])

→ 0

as n → ∞, recalling the modulus of continuity µ from (3.3) restricted to the time interval
[0, t] and using dominated convergence.

Step 3: Localization.
In the general case let

τm := inf
{
t ∈ [0, T ] : |Xt| ⩾ m or |⟨X⟩t| ⩾ m or |Zt| ≥ m

}
∧ T

and define Xm := (Xt∧τm)t∈[0,T ] and Zm := (Zt∧τm)t∈[0,T ], which coincides with X and Z on
{τm = T}, respectively. Then, by Step 1 we can assume that Xm is a (bounded) martingale
and by Step 2 we have

n∑
i=1

g(Zmti−1
)(Xm

ti −Xm
ti−1

)2
L2

−→
∫ t

0
g(Zms ) d⟨Xm⟩s

where we can replace g by some bounded continuous function gm with gm(x) = g(x) for all
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x ∈ R with |x| ⩽ m. Then for any ε > 0 we have

P
(∣∣∣ n∑

i=1

g(Zmti−1
)(Xti −Xti−1)

2 −
∫ t

0
g(Zs) d⟨X⟩s

∣∣∣ ⩾ ε
)

⩽ P
({∣∣∣ n∑

i=1

g(Zti−1)(Xti −Xti−1)
2 −

∫ t

0
g(Zs) d⟨X⟩s

∣∣∣ ⩾ ε
}
∩ {τm = T}

)
+ P(τm < T )

⩽ P
({∣∣∣ n∑

i=1

g(Zmti−1
)(Xm

ti −Xm
ti−1

)2 −
∫ t

0
g(Zms ) d⟨Xm⟩s

∣∣∣ ⩾ ε
})

+ P(τm < T )

→ 0

as n,m→ ∞.

Finally, we have to treat the term Cn, which was given by
n∑
i=1

fxy(Xti−1 , Yti−1)(Xti −Xti−1)(Yti − Yti−1).

Since ab = 1
4

(
(a+ b)2 − (a− b)2

)
, we can rewrite Cn as

1

4

n∑
i=1

fxy(Xti−1 , Yti−1)
((

(X + Y )ti − (X + Y )ti−1

)2 − (
(X − Y )ti − (X − Y )ti−1

)2)
.

Since X + Y and X − Y are again Itô processes, both terms can be treated as in Lemma 4.7.
Therefore, we arrive at the Itô formula for Itô processes.

Theorem 4.8 (Itô’s formula for Itô processes). Let f ∈ C2(R2) and X,Y be two Itô processes
with representations

Xt = X0 +

∫ t

0
a(·, s) ds+

∫ t

0
b(·, s) dBs and Yt = Y0 +

∫ t

0
α(·, s) ds+

∫ t

0
β(·, s) dBs,

for t ∈ [0, T ], P-a.s. Then, we have P-a.s for t ∈ [0, T ] that

f(Xt, Yt) = f(X0, Y0) +

∫ t

0
fx(Xs, Ys) dXs +

∫ t

0
fy(Xs, Ys) dYs

+
1

2

∫ t

0
fxx(Xs, Ys) d⟨X⟩s +

1

2

∫ t

0
fyy(Xs, Ys) d⟨Y ⟩s

+

∫ t

0
fxy(Xs, Ys) d⟨X,Y ⟩s,

where
⟨X,Y ⟩t :=

1

4

(
⟨X + Y ⟩t − ⟨X − Y ⟩t

)
, t ∈ [0, T ], ´

is the co-variation process.

Sketch of the proof. We have all ingredients together to prove the Itô formula for Itô processes
analogously to Theorem 3.18. Recall the decomposition (4.1) of f(Xt, Yt)−f(X0, Y0) and apply
the convergence results for the terms A1, A2, B1, B1 and C. The remainder can be treated as
in Theorem 3.18.
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5 Stochastic differential equations
Lecture 11

Many continuous-time evolution in the real world can be modeled by stochastic differential
equations. A stochastic differential equation (SDE) is a differential equation of the form

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, t ∈ [0, T ], X0 = x0, (5.1)

which is a short writing for the integral equation

Xt = x0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs, t ∈ [0, T ].

where µ : [0, T ]×R → R is the so-called drift function and σ : [0, T ]×R → R is the so-called
volatility or diffusion function and x0 ∈ R is the initial value. A stochastic process
X = (Xt)t∈[0,T ] is called solution of the SDE (5.1) if X ∈ H2

loc is a continuous process
satisfying (5.1). Stochastic differential equations are the stochastic counterpart to the initial
value problems from the theory of ordinary differential equations.

5.1 Linear SDEs

Before we study some general conditions to ensure existence and uniqueness of solutions of
stochastic differential equations, we want to investigate the case of linear SDEs, that is, we
assume that the coefficient functions µ and σ are affine functions in the space variable. Let
us start with two examples of linear SDE.

Example 5.1. (i) Geometric Brownian motion: Consider the SDE

dXt = µXt dt+ σXt dBt, t ∈ [0, T ], X0 = x0 > 0 (5.2)

with drift coefficient µ ∈ R and volatility parameter σ > 0.
In order to find the solution (Xt)t∈[0,T ], we make the ansatz Xt = f(t, Bt) for a suitable

function f : [0, T ] × R → R, which we shall determine in the following. We have to find
conditions on f such that (5.2) is satisfied. Itô’s formula yields

dXt = ft(t, Bt) dt+ fx(t, Bt) dBt +
1

2
fxx(t, Bt) dt

=
(
ft(t, Bt) +

1

2
fxx(t, Bt)

)
dt+ fx(t, Bt) dBt

!
= µXt dt+ σXt dBt

= µf(t, Bt) dt+ σf(t, Bt) dBt.

Since the coefficients of an Itô process are a.s. uniquely determined, matching the coefficients
of the two representations yields

µf = ft +
1

2
fxx and σf = fx.

The second equation implies
f(t, x) = exp

(
σx+ g(t)

)



5.1 Linear SDEs 45

for some regular g : [0, T ] → R. Therefore,

g′f +
σ2

2
f = µf

which is equivalent (as f > 0) to

g′(t) = µ− σ2

2
.

Therefore, g is an affine function of the form g(t) = (µ− σ2

2 )t+ g0 for some g0 ∈ R and thus

Xt = f(t, Bt) = exp
(
σBt +

(
µ− σ2

2

)
t+ g0

)
= x0 exp

(
σBt +

(
µ− σ2

2

)
t
)
, t ∈ [0, T ],

with g0 = log x0. (Xt)t∈[0,T ] is called geometric Brownian motion. In financial mathe-
matics (5.2) is also referred to as Black-Scholes model for the dynamics of price evolutions on
financial markets with trend µ and volatility σ.

(ii) Ornstein-Uhlenbeck process: Consider the SDE

dXt = −αXt dt+ σ dBt, t ∈ [0, T ], X0 = x0,

with a drift parameter α, σ > 0 and x0 ∈ R. This SDE can also be explicitly solved. The
solution (Xt)t∈[0,T ] is given by

Xt = e−αtx0 + σ

∫ t

0
e−α(t−s) dBs, t ∈ [0, T ],

and is called Ornstein-Uhlenbeck processes, cf. problem sheets.
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In general, a linear stochastic differential equations is of the form

dXt = (α(t)Xt + β(t)) dt+ (φ(t)Xt + ϑ(t)) dBt, t ∈ [0, T ], X0 = x0, (5.3)

where α, β, φ, ϑ ∈ H 2 and x0 ∈ R. It turns out that linear SDEs always possess an explicit
solution.

Proposition 5.2. A solution (Xt)t∈[0,T ] of the linear SDE (5.3) is given by

Xt := x0 exp(Yt) +

∫ t

0
exp(Yt − Ys)(β(s)− ϑ(s)φ(s)) ds+

∫ t

0
exp(Yt − Ys)ϑ(s) dBs,

for t ∈ [0, T ], where

Yt :=

∫ t

0
φ(s) dBs +

∫ t

0

(
α(s)− 1

2
φ2(s)

)
ds.

Proof. Setting Ht := exp(Yt) and Zt := x0 +
∫ t
0 H

−1
s (β(s) − ϑ(s)φ(s)) ds +

∫ t
0 H

−1
s ϑ(s) dBs,

we observe that
Xt = HtZt, t ∈ [0, T ].

Using Itô’s formula for Itô processes (Theorem 4.8) and ⟨Y ⟩s =
∫ s
0 φ

2(r) dr, we get

Ht := exp(Yt) = 1 +

∫ t

0
exp(Ys) dYs +

1

2

∫ t

0
exp(Ys) d⟨Y ⟩s

= 1 +

∫ t

0
φ(s)Hs dBs +

∫ t

0
α(s)Hs ds.

Using again Itô’s formula for Itô processes (or directly the product rule), we arrive at

Xt = HtZt = x0 +

∫ t

0
Hs dZs +

∫ t

0
Zs dHs + ⟨H,Z⟩t

= x0 +

∫ t

0
(β(s)− ϑ(s)φ(s)) ds+

∫ t

0
ϑ(s) dBs

+

∫ t

0
Zs(Hsφ(s)) dBs +

∫ t

0
Zs(Hsα(s)) ds+

∫ t

0
ϑ(s)φ(s) ds

= x0 +

∫ t

0
(α(s)Xs + β(s)) ds+

∫ t

0
(φ(s)Xs + ϑ(s)) dBs

as ⟨H,Z⟩t =
∫ t
0 ϑ(s)φ(s) ds.

5.2 SDEs with Lipschitz continuous coefficients

Most stochastic differential equations are actually not explicitly solvable. However, the as-
sumption that the coefficients µ and σ are (uniformly) Lipschitz continuous, ensures that there
always exists a unique solution to the associated SDEs. To calculate these solutions requires
then numerical methods.
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Theorem 5.3 (Existence and uniqueness of solution of SDEs). Let µ, σ : [0, T ] × R → R be
two measurable functions satisfying for some constant C > 0

|µ(t, x)− µ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ⩽ C|x− y|2, t ∈ [0, T ], x, y ∈ R,
|µ(t, x)|2 + |σ(t, x)|2 ⩽ C(1 + |x|2), t ∈ [0, T ], x ∈ R,

and let x0 ∈ R. Then, we have:

(i) There exists a solution (Xt)t∈[0,T ] to stochastic differential equation

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, t ∈ [0, T ], X0 = x0. (5.4)

(ii) Every solution (Xt)t∈[0,T ] of (5.4) is uniformly bounded in L2, i.e.,

sup
t∈[0,T ]

E
[
|Xt|2

]
<∞.

(iii) The solution (Xt)t∈[0,T ] of (5.4) is pathwise unique, i.e., if there is another solution
(Yt)t∈[0,T ] of (5.4), we have P(∀t ∈ [0, T ] : Xt = Yt) = 1.

Remark 5.4.

(i) The Lipschitz condition in x on µ and σ is also imposed in the classical Picard-Lindelöf
theorem which guarantees the existence of a unique solution of (deterministic) initial
value problems. Indeed, our existence proof is based on a Picard iteration.

(ii) The second condition on µ and σ is a growth condition which is essential to guarantee a
global solution: Let σ = 0 and µ(t, x) = 1

β−1x
β for β > 1, x ⩾ 0. Then the differential

equation

dXt =
1

β − 1
Xβ
t dt, X0 = 1,

is solved by
Xt = (1− t)−1/(β−1).

Indeed: d
dtXt =

1
β−1(1− t)−1/(β−1)−1 = 1

β−1(1− t)−β/(β−1) = 1
β−1X

β
t . The solution has

no extension to [0, T ] for any T > 1.

In order to prove uniqueness of a solution we apply a classical auxiliary result:

Lemma 5.5 (Grönwall’s lemma). For T ∈ (0,∞) let g : [0, T ] → R be a bounded and measur-
able function. If there are constants A,B ∈ R such that

g(t) ⩽ A+B

∫ t

0
g(s) ds for all t ∈ [0, T ],

then g(t) ⩽ AeBt for all t ∈ [0, T ].

Proof. The proof can be found in the Appendix A.5.
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Proof of Theorem 5.3 (uniqueness). Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be two solutions to the
SDE (5.4). Then

Xt − Yt =

∫ t

0

(
µ(s,Xs)− µ(s, Ys)

)
ds+

∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)
dBs, t ∈ [0, T ].

Since (a + b)2 ⩽ 2a2 + 2b2, we have due to the Jensen’s inequality, Itô’s isometry and the
Lipschitz condition:

E[|Xt − Yt|2] ⩽ 2E
[( ∫ t

0

(
µ(s,Xs)− µ(s, Ys)

)
ds

)2]
+ 2E

[( ∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)
dBs

)2]
⩽ 2tE

[ ∫ t

0

(
µ(s,Xs)− µ(s, Ys)

)2
ds

]
+ 2E

[ ∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)2
ds

]
⩽ 2(t+ 1)CE

[ ∫ t

0
|Xs − Ys|2 ds

]
.

Defining g(t) := E[|Xt − Yt|2], t ∈ [0, T ], the previous bound reads as

g(t) ⩽ 2(T + 1)C

∫ t

0
g(s) ds.

Since (Xt)t∈[0,T ] and (Yt)t∈[0,T ] are uniformly bounded in L2, we can apply Grönwall’s lemma,
which implies that 0 ⩽ g(t) ⩽ 0. Therefore, P(Xt = Yt) = 1 for all t ∈ [0, T ] and by continuity
of (Xt)t∈[0,T ] and (Yt)t∈[0,T ] we conclude P(∀t ∈ [0, T ] : Xt = Yt) = 1.

Lecture 12
The proof of the existence of a solution to the SDE (5.1) relies on a Picard iteration: We

define a map

F : H 2([0, T ]) → H 2([0, T ])

X 7→ F (X) :=
(
x0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

)
t∈[0,T ]

such that a solution of the SDE (5.4) is a fixed point of F . Moreover, we define the sequence

X(n+1) := F (X(n)) and X(0) := (x0)t∈[0,T ].

We will show that (X(n))n∈N converges to a solution of (5.1) a.s. and in L2. First, we have to
verify that the iteration is well-defined.

Lemma 5.6. Grant the assumptions of Theorem 5.3. Then:

(i) For any X ∈ H 2([0, T ]) we have σ(·, X) ∈ H 2([0, T ]) and µ(·, X) ∈ L2(Ω× [0, T ]).

(ii) If X ∈ H 2([0, T ]) is uniformly bounded in L2, then F (X) ∈ H 2([0, T ]) is uniformly
bounded in L2.

Proof. (i) The growth condition on σ implies

E
[ ∫ T

0
σ2(s,Xs) ds

]
⩽ CE

[ ∫ T

0
(1 + |Xs|2) ds

]
= CT + C∥X∥2L2(Ω×[0,T ])
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and analogously for µ(·, X).
(ii) Let B > 0 be such that supt∈[0,T ] E[|Xt|2] ⩽ B. The Jensen’s inequality, Itô’s isometry

and the growth condition yield

E[|F (X)t|2] = E
[(
x0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs

)2]
⩽ 3x20 + 3E

[( ∫ t

0
µ(s,Xs) ds

)2]
+ 3E

[( ∫ t

0
σ(s,Xs) dBs

)2]
⩽ 3x20 + 3tE

[ ∫ t

0
µ2(s,Xs) ds

]
+ 3E

[ ∫ t

0
σ2(s,Xs) ds

]
⩽ 3x20 + 3C(t+ 1)E

[ ∫ t

0
(1 + |Xs|2) ds

]
⩽ 3x20 + 3C(T + 1)

∫ t

0
(1 + E[|Xs|2]) ds

⩽ 3x20 + 3C(1 +B)(T + 1)T

for all t ∈ [0, T ].

In particular, all sequence elements X(n) = F (X(n−1)), for n ∈ N, are uniformly bounded
in L2. Moreover, we require the following a priori estimate:

Lemma 5.7. Grant the assumptions of Theorem 5.3. Then there is some D > 0 such that

E
[
sup
0⩽s⩽t

∣∣X(n+1)
s −X(n)

s

∣∣2] ⩽ D

∫ t

0
E
[
|X(n)

s −X(n−1)
s |2

]
ds, t ∈ [0, T ],

for n ∈ N.

Proof. For n ∈ N and t ∈ [0, T ] we have

X(n+1)
s −X(n)

s =

∫ s

0

(
µ(r,X(n)

r )− µ(r,X(n−1)
r ) dr +

∫ s

0

(
σ(r,X(n)

r )− σ(r,X(n−1)
r ) dBr.

Therefore, the Cauchy-Schwarz inequality, Doob’s inequality and Itô’s isometry imply

E
[
sup
0⩽s⩽t

∣∣X(n+1)
s −X(n)

s

∣∣2] ⩽ 2E
[
sup
0⩽s⩽t

(∫ s

0

(
µ(r,X(n)

r )− µ(r,X(n−1)
r )

)
dr

)2]
+ 2E

[
sup
0⩽s⩽t

(∫ s

0

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)
dBr

)2]
⩽ 2E

[
sup
0⩽s⩽t

s

∫ s

0

(
µ(r,X(n)

r )− µ(r,X(n−1)
r )

)2
dr

]
+ 8E

[( ∫ t

0

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)
dBr

)2]
⩽ 2tE

[ ∫ t

0

(
µ(r,X(n)

r )− µ(r,X(n−1)
r )

)2
dr

]
+ 8E

[( ∫ t

0

(
σ(r,X(n)

r )− σ(r,X(n−1)
r )

)2
dr

]
⩽ C(2T + 8)︸ ︷︷ ︸

=:D

E
[ ∫ t

0
|X(n)

r −X(n−1)
r |2 dr

]
,
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where we used the Lipschitz condition in the last estimate.

Now we have all ingredients to prove the existence of a solution to (5.4).

Proof of Theorem 5.3 (Existence). Step 1: Almost sure convergence of (X(n))n∈N to a contin-
uous limit X.

For n ∈ N0 and t ∈ [0, T ] define

gn(t) := E
[
sup
0⩽s⩽t

|X(n+1)
s −X(n)

s |2
]
.

Lemma 5.7 yields

gn(t) ⩽ D

∫ t

0
gn−1(s) ds, n ∈ N.

For M := sup0⩽t⩽T g0(t) <∞ (Lemma 5.6) we have

g1(t) ⩽ D

∫ t

0
g0(s) ds ⩽MDt,

g2(t) ⩽ D

∫ t

0
g1(s) ds ⩽M

D2t2

2
,

and by induction we conclude

gn(t) ⩽M
(Dt)n

n!
.

Therefore, Markov’s inequality implies

P
(

sup
0⩽s⩽t

|X(n+1)
s −X(n)

s | ⩾ 2−n
)
⩽ 22nE

[
sup
0⩽s⩽t

|X(n+1)
s −X(n)

s |2
]

⩽M
(4Dt)n

n!
.

For An := {sup0⩽s⩽t |X
(n+1)
s −X

(n)
s | ⩾ 2−n} we obtain

∑
n⩾0 P(An) ⩽ Me4Dt < ∞. By the

Borel-Cantelli lemma,
A := lim sup

n→∞
An =

⋂
n⩾0

⋃
m⩾n

Am

satisfies P(A) = 0. Hence,
1 = P(Ac) = P

( ⋃
n⩾0

⋂
m⩾n

Acm

)
that means for P-a.e. ω ∈ Ω there is some n(ω) ∈ N such that

∀m ⩾ n(ω) : sup
0⩽s⩽t

|X(m+1)
s (ω)−X(m)

s (ω)| < 2−m.

For P-a.e. ω ∈ Ω we conclude that (X
(n)
s (ω))n∈N is a Cauchy sequence uniformly in t ∈ [0, T ]

since

sup
0⩽s⩽t

|X(k)
s (ω)−X(l)

s (ω)| ⩽
k−1∑
m=l

sup
0⩽s⩽t

|X(m+1)
s (ω)−X(m)

s (ω)|

⩽
∑
m⩾l

2−m = 2−l+1 for all k > l ≥ n(ω).
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Let X(ω) denote the continuous limit on Ac and set X(ω) = 0 for ω ∈ A.
Step 2: L2-convergence and L2-boundedness of the limit.
Step 1 and Fatou’s lemma imply

E
[

sup
0⩽t⩽T

|Xt −X
(n)
t |2

]1/2
= E

[
lim
m→∞

sup
0⩽t⩽T

|X(m)
t −X

(n)
t |2

]1/2
⩽ lim inf

m→∞
E
[

sup
0⩽t⩽T

|X(m)
t −X

(n)
t |2

]1/2
⩽ lim inf

m→∞

m−1∑
k=n

E
[

sup
0⩽t⩽T

|X(k+1)
t −X

(k)
t |2

]1/2
⩽

∞∑
k=n

(
M

(Dt)k

k!

)1/2

→ 0 for n→ ∞.

This shows the L2-convergence and together with Lemma 5.6 also

sup
t∈[0,T ]

E[|Xt|2] ⩽ sup
t∈[0,T ]

(
2E[|Xt −X

(n)
t |2] + 2E[|X(n)

t |2]
)
<∞.

Step 3: Show that X solves the SDE.
For the Lipschitz condition and Step 2 imply

E
[ ∫ T

0

∣∣σ(s,Xs)− σ(s,X(n)
s )

∣∣2 ds] ⩽ CE
[ ∫ T

0
|Xs −X(n)

s |2 ds
]

⩽ CTE
[

sup
0⩽t⩽T

|Xt −X
(n)
t |2

]
→ 0 as n→ ∞.

Analogously, we have

E
[ ∫ T

0

∣∣µ(s,Xs)− µ(s,X(n)
s )

∣∣2 ds] → 0.

Therefore, σ(·, X) ∈ H 2 and µ(·, X) ∈ L2(Ω× [0, T ]) and∫ ·

0
σ(s,X(n)

s ) dBs →
∫ ·

0
σ(s,Xs) dBs,∫ ·

0
µ(s,X(n)

s ) ds→
∫ ·

0
µ(s,Xs) ds

in L2 and a.s. for a subsequence. Now taking limits on both sides of the Picard iteration, we
get

X
(n+1)
t = F (X

(n)
t ) = x0 +

∫ t

0
µ(s,X(n)

s ) ds+

∫ t

0
σ(s,X(n)

s ) dBs

↓ ↓

Xt x0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs.

So for any t ∈ [0, T ] we have Xt = x0+
∫ t
0 µ(s,Xs) ds+

∫ t
0 σ(s,Xs) dBs a.s. and thus the SDE

is satisfied almost surely for all t ∈ [0, T ] ∩ Q. By continuity, X then solves (5.1) on [0, T ]
with probability one.
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6 Martingale representation
Lecture 13

As before, we work on a complete probability space (Ω,F ,P) with a Brownian motion B =
(Bt)t∈[0,T ] and we consider the Brownian standard filtration (Ft)t∈[0,T ], i.e. Ft = σ(FB

t ∪ N )

with FB
t := σ(Bs, s ⩽ t) and N := {A ⊆ Ω : ∃B ∈ F , P(B) = 0 : A ⊆ B}. We assume

T ∈ (0,∞).

6.1 Martingale representation theorem

The aim of this chapter is to prove that all L2-martingales with respect to the Brownian
standard filtration (Ft)t∈[0,T ] can be represented by a stochastic integral process. To this
end, we show first that every FT -measurable random variable in L2 can be represented by a
stochastic integral.

To obtain these results, we will study Fourier transform type functionals and thus we need
C-valued stochastic processes X = (Xt)t∈[0,T ]. Their (stochastic) integrals are defined by∫ t

0
Xs ds :=

∫ t

0
Re Xs ds+ i

∫ t

0
ImXs ds,∫ t

0
Xs dBs :=

∫ t

0
Re Xs dBs + i

∫ t

0
ImXs dBs,

for t ∈ [0, T ], and especially Itô’s formula still applies to C-valued integral processes.
Our starting point is the functional

exp
(
iuBT +

u2

2
T
)

for u ∈ R.

Itô’s formula yields

exp
(
iuBT +

u2

2
T
)

= 1 +

∫ T

0
iu exp(iuBs + u2s/2) dBs +

1

2

∫ T

0
(iu)2 exp(iuBs + u2s/2) ds

+

∫ T

0

u2

2
exp(iuBs + u2s/2) ds

= 1 +

∫ T

0
iu exp(iuBs + u2s/2)︸ ︷︷ ︸

=:φ(s)∈H 2

dBs.

So, we have a representation of exp(iuBs) as a stochastic integral of the form

exp(iuBT ) = exp(−u
2

2
T ) +

∫ T

0
iu exp(iuBs + u2(s− T )/2) dBs

= E
[
exp(iuBT )

]
+

∫ T

0
iu exp(iuBs + u2(s− T )/2) dBs.

Using this calculation and the product rule, we arrive at the following lemma.



6.1 Martingale representation theorem 53

Lemma 6.1. Let n ∈ N, 0 = t0 < t1 < · · · < tn = T and u1, . . . , un ∈ R. Then there exists
some φ ∈ H 2 such that

n∏
j=1

exp
(
iuj(Btj −Btj−1) +

u2j
2
(tj − tj−1)

)
= 1 +

∫ T

0
φ(s) dBs.

Proof. See problem sheets.

Therefore, we have integral representations for random variables in the class

S := span
{ n∏
j=1

exp
(
iuj(Btj −Btj−1)

)
: n ∈ N, u1, . . . , un ∈ R, 0 = t0 < t1 < . . . tn = T

}
.

By proving that S is dense in L2(Ω,FT ,P), we obtain the following representation result for
FT -measurable random variables:

Proposition 6.2 (H 2-representation). Let X ∈ L2(Ω,F ,P) be FT -measurable. Then, there
exists some φ ∈ H 2 with

X = E[X] +

∫ T

0
φ(s) dBs.

If φ,ψ ∈ H 2 satisfy

X = E[X] +

∫ T

0
φ(s) dBs = E[X] +

∫ T

0
ψ(s) dBs,

then φ = ψ, P⊗ λ-a.s.

Proof. Uniqueness: Since φ− ψ ∈ H 2, we have by Itô’s isometry

0 = E
[( ∫ T

0
(φ(s)− ψ(s)) dBs

)2]
= E

[ ∫ T

0
(φ(s)− ψ(s))2 ds

]
.

Therefore, φ = ψ, P⊗ λ-a.s.
Existence: Step 1: Finite-dimensional approximation.

Define

D :=

{
f(Bt1 −Bt0 , . . . , Btn −Btn−1) :

f : Rn → R bounded measurable,
n ∈ N, 0 = t0 < t1 < . . . tn = T

}

=

{
g(Bt1 , . . . , Btn) :

g : Rn → R bounded measurable,
n ∈ N, 0 = t0 < t1 < . . . tn = T

}

where the equality follows by taking g(x1, . . . , xn) := f(x1, x2 − x1, . . . , xn − xn−1). Set

C := {A ∈ FB
T : 1A ∈ D},

where D denotes the closure of D with respect to L2(Ω,FT ,P). Then C is a Dynkin system
containing FB

t for all t ∈ [0, T ]. Therefore,

C = σ(FB
t , t ∈ [0, T ]) = FB

T ,
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implying that D is dense in L2(Ω,FB
T ,P). Moreover, for all X ∈ L2(Ω,FT ,P) there is some

Y ∈ L2(Ω,FB
T ,P) such that P(X ̸= Y ) = 0. Hence, D is dense in L2(Ω,FT ,P).

Step 2: Prove that Sn is dense in Dn where

Dn := Dt1,...,tn :=
{
f(Bt1 −Bt0 , . . . , Btn −Btn−1) ∈ L2(Ω,FT ,P) : f : Rn → C measurable

}
,

Sn := St1,...,tn := span
{ n∏
j=1

exp
(
iuj(Btj −Btj−1)

)
: u1, . . . , un ∈ R

}
,

for fixed n ∈ N, 0 = t0 < t1 < . . . tn = T .
Note that Dn is a closed linear subspace of L2(Ω,FT ,P) containing Sn. First, we show

that

S ⊥
n ∩ Dn = {0}, i.e. ∀X ∈ Dn with E[XZ] = 0 for all Z ∈ Sn we have X = 0. (6.1)

Denoting the density of (Bt1 − Bt0 , . . . , Btn − Btn−1) by p : Rn → (0,∞), we have for any
X ∈ S ⊥

n ∩Dn with X = f(Bt1 −Bt0 , . . . , Btn −Btn−1) and Zu =
∏n
j=1 exp

(
iuj(Btj −Btj−1)

)
,

u ∈ Rn, that

0 = E[XZu] =
∫
Rn

f(x)p(x)ei⟨u,x⟩ dx for all u ∈ Rn.

Hence, the Fourier transform F [fp] of fp is everywhere 0. This implies fp = 0 and since
p > 0, we obtain f = 0. This gives (6.1).

Because S ⊥
n is the orthogonal complement of Sn, there is a unique decomposition for any

f ∈ Dn

f = g + h, g ∈ Sn, h ∈ S ⊥
n .

Then (6.1) implies h = 0, i.e. f = g ∈ Sn. So indeed, Sn is dense in Dn.
Step 3: Representation for all X ∈ L2(Ω,FT ,P).
By Step 2, S =

⋃
n∈N,0=t0<t1<...tn=T St1,...,tn is dense in D =

⋃
n∈N,0=t0<t1<...tn=T Dt1,...,tn .

Let (Xn)n∈N ⊆ S be an approximating sequence withXn → X in L2 as n→ ∞. In particular,
E[Xn] → E[X]. By Lemma 6.1 there are φn ∈ H 2 such that

Xn = E[Xn] +

∫ T

0
φn(s) dBs.

In view of

∥Xn −Xm∥2L2 =
(
E[Xn]− E[Xm]

)2
+ E

[( ∫ T

0
(φn − φm)(s) dBs

)2]
︸ ︷︷ ︸

=E[
∫ T
0 (φn−φm)2(s) ds]

,

(φn)n∈N is a Cauchy sequence in H 2 because (Xn)n∈N is a Cauchy sequence in L2. Therefore
φn converges to some φ ∈ H 2 and we obtain

X = lim
n→∞

Xn = lim
n→∞

(
E[Xn] +

∫ T

0
φn(s) dBs

)
= E[X] +

∫ T

0
φ(s) dBs

by Itô’s isometry.
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Based on the previous representation theorem (Proposition 6.2), it is straightforward to
deduce the martingale representation theorem.

Theorem 6.3 (Martingale representation theorem). Let (Xt)t∈[0,T ] be an (Ft)-martingale with
E[X2

T ] <∞. Then, there exists some φ ∈ H 2 such that

Xt = E[X0] +

∫ t

0
φ(s) dBs, t ∈ [0, T ].

This representation is P⊗ λ-a.s. unique.

Proof. Proposition 6.2 applied to XT gives some a.s. unique φ ∈ H 2 such that

XT = E[XT ] +

∫ T

0
φ(s) dBs.

It remains to take the conditional expectation with respect to Ft on both sides taking into
account that φ ∈ H 2.

6.2 Time-changes and Lévy’s characterization of Brownian motion
Lecture 14

The martingale representation theorem allows to characterize the Brownian motion as a special
continuous local martingale. To that end, we first show that every local martingale with respect
to the Brownian standard filtration can be time-changed to be a Brownian motions.

Theorem 6.4 (Time-change representation). Let φ ∈ H 2
loc for all T > 0 and X :=∫ ·

0 φ(s) dBs. Assume that t 7→
∫ t
0 φ

2(s) ds is a.s. strictly increasing with
∫∞
0 φ2(s) ds = ∞

P-a.s. Then (Xτt)t∈[0,∞) is a Brownian motion where

τt := inf
{
u ∈ [0,∞) :

∫ u

0
φ2(s) ds ⩾ t

}
.

Proof. Step 1: Prove for all 0 ⩽ s ⩽ t <∞ that

E
[
exp(iu(Xτt −Xτs))

∣∣Fτs] = exp
(
− u2(t− s)

2

)
.

Set

Zt := exp(Yt) with Yt := iu

∫ t

0
φ(s) dBs +

u2

2

∫ t

0
φ2(s) ds.

Since Y is an C-valued Itô process, Itô’s formula yields

Zt = 1 +

∫ t

0
Zs dYs +

1

2

∫ t

0
Zs d⟨Y ⟩s

= 1 + iu

∫ t

0
Zsφ(s) dBs +

u2

2

∫ t

0
Zsφ

2(s) ds+
1

2

∫ t

0
Zs(iuφ(s))

2 ds

= 1 + iu

∫ t

0
Zsφ(s) dBs.
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Hence, Z is a C-valued continuous local martingale by the definition of the stochastic integral
C-valued integrands. Hence, (Zτt)t∈[0,T ] is a (Fτt)-local martingale, see problem sheets, and,
since |Zτt | ⩽ exp(u

2

2 t), it is even a proper martingale. Therefore,

E
[
exp

(
iu(Xτt −Xτs

)
+
u2

2
(t− s)

)
|Fτs

]
= 1.

Step 2: Conclusion.
By Step 1 we have

E
[
exp

(
iu(Xτt −Xτs)

)]
= exp

(
− u2

2
(t− s)

)
,

which means that Xτt −Xτs ∼ N (0, t− s). Since for all A ∈ Fτs , using again Step 1 we have

E
[
exp

(
iu(Xτt −Xτs))1A

]
= exp

(
− u2

2
(t− s)

)
P(A),

we can conclude independence of Xτt −Xτs and Fτs .

We now combine the two main results from above to obtain Lévy’s characterization of
Brownian motion:

Theorem 6.5 (Lévy’s characterization of Brownian motion). The following statements are
equivalent:

(i) (Bt)t∈[0,∞) is a Brownian motion.

(ii) (Bt)t∈[0,∞) is a continuous local martingale with respect to the Brownian standard filtra-
tion (Ft)t∈[0,∞) and satisfies B0 = 0 and ⟨B⟩t = t for t ∈ [0,∞).

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (i) Since E[⟨B⟩t] = t < ∞ for all t ∈ [0,∞), B is a continuous martingale, cf.

Exercises. Then the martingale representation theorem implies that there is some φ ∈ H 2

such that

Bt =

∫ t

0
φ(s) dB̃s, t ∈ [0,∞),

from some Brownian motion B̃ with respect to (Ft)t∈[0,∞). Therefore,

t = ⟨B⟩t =
∫ t

0
φ2(s) ds.

Then the time-change representation (Theorem 6.4) is given by τt = t, which shows that
Bτt = Bt is a Brownian motion.

7 Girsanov’s theorem

In this chapter we study what happens with local martingales (with respect to the probabil-
ity measure P) if we consider a different equivalent probability measure Q on the underlying
measurable space (Ω,F). Changing the probability measure is a common technique in math-
ematical finance and statistics.
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Let Q and P be two equivalent probability measures on (Ω,F), that is

∀A ∈ F : P(A) = 0 ⇔ Q(A) = 0.

By the Radon-Nikodym theorem (Theorem A.20) there exists a strictly positive Radon-
Nikodym density

LT :=
dQ

dP
on (Ω,F),

that is
EQ[1A] = E[1ALT ] for all A ∈ F .

If LT ∈ L1(Ω,F ,P), we can define a martingale (Lt)t∈[0,T ] by setting

Lt := E[LT |Ft], t ∈ [0, T ],

which is often called density process of Q with respect to P. Conversely, we may assume:

Assumption 7.1. The stochastic process (Lt)t∈[0,T ] satisfies:

• (Lt)t∈[0,T ] is a continuous P-martingale,

• Lt > 0 for all t ∈ [0, T ] P-a.s. and L0 = 1.

If a stochastic process (Lt)t∈[0,T ] satisfies Assumption 7.1, we define the associated proba-
bility measure Q by

Q(A) = EQ[1A] = E[1ALT ] for all A ∈ F ,

Note that Q is equivalent to the probability measure P and the Radon-Nikodym density is
dQ
dP = LT .

Based on density processes, we first investigate how (local) martingales behave under a
change of measure.

Proposition 7.2. Let (Lt)t∈[0,T ] be as in Assumption 7.1 with associated probability measure Q
and (Xt)t∈[0,T ] be an adapted, continuous stochastic process. Then, the following conditions
are equivalent:

(i) (LtXt)t∈[0,T ] is a (local) P-martingale.

(ii) (Xt)t∈[0,T ] is a (local) Q-martingale.

Proof. “⇒” We want to show: If (LtXt)t∈[0,T ] is a P-martingale, then (Xt)t∈[0,T ] is a Q-
martingale.

Notice, that (Xt)t∈[0,T ] is adapted and Q-integrable as

EQ[|Xt|] = E[LT |Xt|] = E[E[LT |Xt| |Ft]] = E[Lt|Xt|] = E[|LtXt|] <∞

because (Lt)t∈[0,T ] and (LtXt)t∈[0,T ] are P-martingales.
In order to prove that EQ[Xt|Fs] = Xs for s, t ∈ [0, T ] with s ≤ t, it is by definition

sufficient to check
EQ[1A(Xt −Xs)] = 0 for all A ∈ Fs.
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Indeed, we have that

EQ[1A(Xt −Xs)] = E[LT1A(Xt −Xs)]

= E[E[LT1AXt|Ft]− E[LT1AXs|Fs]]
= E[Lt1AXt − Ls1AXs]

= E[1A(LtXt − LsXs)]

= 0,

because (Lt)t∈[0,T ] and (LtXt)t∈[0,T ] are P-martingales.
“⇐” The converse direction follows by the same arguments.
The statement for local martingales can be obtained by applying a localization argument.

The fundamental theorem regarding change of measures is the so-called Girsanov’s theo-
rem, which is here presented in case of Brownian motion.

Theorem 7.3 (Girsanov’s theorem). If L = (Lt)t∈[0,T ] where

Lt = exp

(∫ t

0
Xs dBs −

1

2

∫ t

0
X2
s ds

)
, t ∈ [0, T ],

is a martingale on (Ω,FT ,P) with respect to the Brownian standard filtration (Ft)t∈[0,T ], then

B̃t := Bt −
∫ t

0
Xs ds, t ∈ [0, T ],

defines a Brownian motion B̃ = (B̃t)t∈[0,T ] with respect to (Ω,FT , (Ft)t∈[0,T ], Q) where dQ
dP :=

LT .

Proof. By Lévy’s characterization of Brownian motion (Theorem 6.5) we need to show that
(B̃t)t∈[0,T ] is a local Q-martingale with ⟨B̃⟩t = t for t ∈ [0, T ].

Step 1: (B̃t)t∈[0,T ] is a Q-martingale.
By Proposition 7.2 we need to show that (B̃tLt)t∈[0,T ] is a continuous local P-martingale.

The product formula yields

B̃tLt = B̃0L0 +

∫ t

0
B̃s dLs +

∫ t

0
Ls dB̃s + ⟨B̃, L⟩t

= 0 +

∫ t

0
B̃sLsXs dBs +

∫ t

0
Ls dBs −

∫ t

0
LsXs ds+

∫ t

0
1 · LsXs ds

=

∫ t

0

(
B̃sXs + 1

)
Ls dBs,

which is indeed a continuous local martingale with respect to P.
Step 2: (B̃t)t∈[0,T ] is a continuous local Q-martingale.
Let ((B̃L)t∧τn),t∈[0,T ] be a P-martingale for some suitable localizing stopping times τn → T .

By Step 1 and Proposition 7.2 the process (B̃t∧τn)t∈[0,T ] is a continuous Q-martingale with
respect to (Ft)t∈[0,T ] and thus (B̃t)t∈[0,T ] is a continuous local Q-martingale.
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Step 3: (B̃t)t∈[0,T ] has quadratic variation ⟨B̃⟩t = t, t ∈ [0, T ], under Q.
To this end, we show that (B̃2

t − t)t∈[0,T ] is a continuous local martingale under Q. Due
to Proposition 7.2, it suffices to verify that(

(B̃2
t − t)Lt

)
t∈[0,T ]

is a continuous local P-martingale. Under P we have

⟨B̃⟩t =
〈
B −

∫ ·

0
Xs ds

〉
t
= ⟨B⟩t = t.

Therefore,

B̃2
t =

∫ t

0
2B̃s dB̃s + ⟨B̃⟩t =

∫ t

0
2B̃s dB̃s + t =

∫ t

0
2B̃s dBs −

∫ t

0
2B̃sXs ds+ t

and the product formula implies that

(B̃2
t − t)Lt =

∫ t

0
(B̃2

s − s) dLs +

∫ t

0
Ls · 2B̃s dB̃s +

∫ t

0
2B̃sLsXs ds

=

∫ t

0
(B̃2

s − s)LsXs dBs +

∫ t

0
2LsB̃s dBs −

∫ t

0
2LsB̃sXs ds+

∫ t

0
2B̃sLsXs ds

=

∫ t

0

(
(B̃2

s − s)Xs + 2B̃s
)
Ls dBs

is a continuous local P-martingale.

8 Application: Bachelier model
Bonus ma-
terial

Stochastic calculus has many applications in various areas of applied mathematics,
engineering and related fields. For instance, continuous-time mathematical finance relies
fundamentally on stochastic calculus. In this chapter, as a toy application, we shall briefly
discuss the task of pricing and hedging of European options in the Bachelier model. Already
in 1900 Louis Bachelier proposed to use the Brownian motion as a model for the price
evolution of stocks and derived explicit formulas for the prices of European call and put
options.

The Bachelier model assumes that the financial market (S0
t , S

1
t )t∈[0,T ] consists of two

assets:

• The price process (S1
t )t∈[0,T ] of the risky asset, e.g. some stock, is given by

S1
t = S1

0 + µt+ σBt, t ∈ [0, T ],

where, S1
0 ∈ R, µ ∈ R is the drift parameter, σ > 0 is the volatility parameter and

(Bt)t∈[0,T ] is a Brownian motion.

• The price process (S0
t )t∈[0,T ] of the risk-free asset with price process is given by S0

t := 1
for t ∈ [0, T ], i.e. the interest rate is r = 0.
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The information flow (Ft)t∈[0,T ] on this financial market is supposed to be generated by the
processes (S0

t , S
1
t )t∈[0,T ], that is, we take (Ft)t∈[0,T ] as the Brownian standard filtration. A

financial derivative ξ is an FT -measurable random variable.

Before relying on the Bachelier model for any task in mathematical finance, we need to
check that it is arbitrage-free, i.e., that there is no way to make money without any risk. So
what does it mean to trad on a financial market modeled by the Bachelier model?

• A trading strategy is a R2-valued adapted process φ = (φ0
t , φ

1
t )t∈[0,T ] with φ1 ∈ L(S1).

The corresponding capital process V (φ) = (Vt(φ))t∈[0,T ] is given by

Vt(φ) := φTt St =
1∑
i=0

φitS
i
t , t ∈ [0, T ],

where φTt is the transpose of the random vector φt.

• A trading strategy φ is called admissible if

Vt(φ) ≥ C(1 + |S1
t |) and Vt(φ) = V0(φ) +

∫ t

0
φ0
r dS

0
r +

∫ t

0
φ1
r dS

1
r , t ∈ [0, T ],

for some constant C > 0.

Definition 8.1. An admissible trading strategy φ = (φt)t∈[0,T ] is called arbitrage oppor-
tunity if

V0(φ) = 0, VT (φ) ⩾ 0, P-a.s and P(VT (φ) > 0) > 0.

Lemma 8.2. The Bachelier model (S0
t , S

1
t )t∈[0,T ] is

(i) arbitrage-free, i.e. there exists no arbitrage opportunity.

(ii) complete, i.e. for every bounded financial derivative ξ there exists an admissible trading
strategy φ such that ξ = VT (φ).

Proof. Introducing a new probability measure Q by the Radon-Nikodym density

dQ

dP
:= exp

(
− µ

σ
BT − 1

2

(
µ

σ

)2

T

)
,

we know, by Girsanov’s theorem (Theorem 7.3), that (B̃t)t∈[0,T ] := (Bt+
µ
σ t)t∈[0,T ] is a Brow-

nian motion w.r.t. Q and (S1
t )t∈[0,T ] is a martingale w.r.t. Q, see the problem sheets.

(i) Suppose φ = (φ0
t , φ

1
t )t∈[0,T ] is an admissible trading strategy with V0(φ) = 0 and

VT (φ) ⩾ 0, P-a.s. Since φ is admissible, we get

EQ[VT (φ)] = EQ[
∫ T

0
φ1
r dS

1
r ] ≤ 0.

Hence, since Q and P are equivalent probability measures and VT (φ) ⩾ 0, we have VT (φ) = 0.
Consequently, there exists no arbitrage opportunity.
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(ii) We work again with the probability measureQ: Since ξ is a bounded FT -valued random
variable, the martingale representation theorem (Proposition 6.2) provides a ψ ∈ H 2 such
that

ξ = EQ[ξ] +
∫ T

0
ψ(r) dB̃r, Q-a.s.,

since (B̃t)t∈[0,T ] is a Brownian motion w.r.t. Q. Hence,

ξ = EQ[ξ] +
∫ T

0

ψ(r)

σ
d(σBr + µt) = EQ[ξ] +

∫ T

0

ψ(r)

σ
dS1

r .

Setting φ = (φ0
t , φ

1
t )t∈[0,T ] with φ1

t := ψ(t)
σ and φ0

t := EQ[ξ] +
∫ t
0 φ

1
rdS

1
r − φ1

tS
1
t , we arrive at

ξ = VT (φ).

The aim is to find an arbitrage-free price and a hedging strategy for a European option

g(S1
T ), for g ∈ C(R;R),

for example,

• a call option g(S1
T ) := (S1

T −K)+ := max{0, S1
T −K} with strike K > 0 and maturity T ,

• a put option g(S1
T ) := (K − S1

T )
+ with strike K > 0 and maturity T .

The idea is to determine the arbitrage-free price as the cost of a (dynamic) replicating strategy,
that is, we are looking for a self-financing trading strategy φ = (φ0

t , φ
1
t )t∈[0,T ] such that

g(S1
T ) = V0(φ) +

∫ T

0
φ0
t dS

0
t +

∫ T

0
φ1
t dS

1
t = V0(φ) +

∫ T

0
φ1
t dS

1
t .

Then, the law of one price reveals that the arbitrage-free price π(g(S1
T )) of the option g(S1

T )
has to be V0(φ), i.e.

π(g(S1
T )) = V0(φ).

As an ansatz we apply Itô formula to F (t, S1
t ) with

F ∈ C1,2([0, T ]× R;R) and F (T, x) = g(x), x ∈ R,

which leads to

F (T, S1
T ) = F (0, S1

0) +

∫ T

0

∂

∂x
F (t, S1

t ) dS
1
t +

1

2
σ2

∫ T

0

∂2

∂x2
F (t, S1

t ) dt+

∫ T

0

∂

∂t
F (t, S1

t ) dt.

(8.1)
since ⟨S1⟩t = ⟨σW ⟩t = σ2t. Hence, we are looking for a function F solving the partial
differential equation (PDE){

1
2σ

2 ∂2

∂x2
F (t, x) + ∂

∂tF (t, x) = 0, (t, x) ∈ [0, T )× R,
F (T, x) = g(x).

(8.2)

Indeed, if F ∈ C1,2([0, T ]× R;R) is a solution to the terminal value problem (8.2), then

g(S1
T ) = F (0, S0) +

∫ T

0

∂

∂x
F (t, S1

t ) dSt, P-a.s.



62 8 APPLICATION: BACHELIER MODEL

Luckily, the PDE in (8.2) can be explicitly solved. It is, loosely speaking, a time-reversed
heat equation. Let us recall that the fundamental solution of the heat equation is given by

φt(x) :=
1√
2πt

exp

(
− x2

2t

)
, t > 0, x ∈ R.

Assuming the growth condition

|g(x)| ≤ C
(
1 + exp(C|x|)

)2 for some C > 0, (8.3)

the function
F (t, x) :=

∫
R
g(y)φσ2(T−t)(x− y) dy, (t, x) ∈ [0, T )× R, (8.4)

belongs to C∞([0, T ) × R;R), satisfies limt→T F (t, x) = g(x) and solves the terminal value
problem (8.2).

Corollary 8.3. Suppose that g : R → R satisfies the growth condition (8.3) and that F is
defined as in (8.4). Then, the arbitrage-free price of the European option g(S1

T ) is

π(g(S1
T )) = F (0, S1

0) =

∫
R
g(y)

1

σ
√
2πT

exp

(
− (S1

0 − y)2

2σ2T

)
dy.

Remark 8.4. Since the solution of the heat equation is just the density of the normal distribu-
tion, we can also observe a more probabilistic representation for the price of the option g(S1

T ).
Recall, that

π(g(S1
T )) =

∫
R
g(y)

1

σ
√
2πT

exp

(
− (S1

0 − y)2

2σ2T

)
dy

=
1√
2π

∫
R
g(S1

0 + σ
√
Tz) exp

(
− z2

2

)
dz

[
Substitution: y = S0 + σ

√
Tz

]
= EQ

[
g
(
S1
T

)]
,

since S1
T is normally distributed with mean S1

0 and variance σT , where Q is probability
measure defined in the proof of Lemma 8.2. It is important to notice that the representation
of the price π(g(S1

T )) depends on the volatility parameter σ but does not depend on the drift
parameter µ.
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A Mathematical Foundation

The appendix collects definitions and results which are treated as known prior knowledge
from other lecture course, like Mathematical Finance and Wahrscheinlichkeitstheorie I. If you
want to learn about these results properly, please visit these lecture courses. All the results
presented in the appendix can also be found in the book [Klenke, 2014].

A.1 Conditional expectation

Definition A.1. Let X ∈ L1 and G ⊆ F be a σ-algebra. A random variable Y is called
conditional expectation of X given G, denoted by E[X|G] := Y , if

(i) Y is G-measurable;

(ii) for every A ∈ G one has E[X1A] = E[Y 1A].

If X,Y ∈ L1, we set E[X|Y ] := E[X|σ(Y )].

Next, we summarize some properties of the conditional expectation.

Theorem A.2 (Properties of the conditional expectation). Let H ⊆ G ⊆ F be σ-algebras and
X,Y ∈ L1(Ω,F ,P). Then:

(i) Linearity: For λ ∈ R we have E[λX + Y |G] = λE[X|G] + E[Y |G].

(ii) Monotonicity: If X ≥ Y , then E[X|G] ≥ E[Y |G].

(iii) If E[|XY |] <∞ and Y is measurable w.r.t. G, then

E[XY |G] = Y E[X|G] and E[Y |G] = E[Y |σ(Y )] = Y.

(iv) Tower property: E[E[X|G]|H] = E[X|H] = E[E[X|H]|G].

(v) Triangle inequality: |E[X |G]| ≤ E[|X| |G].

(vi) Independence: If σ(X) and G are independent, then E[X|G] = E[X].

(vii) Fatou’s lemma: If the sequence of random variables (Xn)n∈N such that Xn ≥ c, then

E[lim inf
n→∞

Xn|G] ≤ lim inf
n→∞

E[Xn|G] P-a.s.

(viii) Dominated Convergence: If the sequence of random variables (Xn)n∈N such that |Xn| ≤
Y , then

lim
n→∞

E[Xn|G] = E[X|G] P-a.s. and in L1(P).

Proposition A.3 (Conditional Jensen’s inequality). Let I ⊆ R be an interval, let φ : I → R
be convex and let X be an I-valued random variable on (Ω,F ,P). If E[|X]] < ∞ and G ⊆ F
be a σ-algebra, then

φ(E[X|G]) ≤ E[φ(X)|G] ≤ ∞.
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A.2 Filtration, stochastic processes and stopping times

Let us fix an arbitrary set I ⊆ [0,∞). We mostly care about I = T := {0, 1, . . . , N}, I = N,
I = [0, T ] and I = [0,∞).

Definition A.4.

• A family of random variables (Xt)t∈I (with values in Rd) is called stochastic process
with index set I and range Rd.

• A family of σ-algebras (Ft)t∈I ⊆ F is called filtration if Fs ⊆ Ft for s, t ∈ I with s ≤ t.

• A stochastic process (Xt)t∈I is called adapted to (Ft)t∈I if Xt is Ft-measurable.

Remark A.5. A stochastic process (Xt)t∈I is always adapted to the filtration Ft := σ(Xs :
s ∈ I, s ≤ t), i.e., this is the smallest filtration to which the process (Xt)t∈I is adapted.

As a probabilistic base we fix a filtered probability space (Ω,F , (Ft)t∈I ,P), i.e., a proba-
bility space (Ω,F ,P) equipped with a filtration (Ft)t∈I .

Definition A.6. A random variable τ with values in I ∪ {∞} is called a stopping time
(with respect to (Ft)t∈I) if

{τ ≤ t} ∈ Ft for any t ∈ I.

Lemma A.7. Let σ and τ be stopping times. Then:

(i) σ ∨ τ := max{σ, τ} and σ ∧ τ := min{σ, τ} are stopping times.

(ii) If σ, τ ≥ 0 and I ⊆ [0,∞) is closed under addition, then σ + τ is a stopping time.

Definition A.8. Let τ be a stopping time. The σ-algebra of τ-past is defined as

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft for any t ∈ I

}
.

Lemma A.9. If σ and τ are stopping times with σ ≤ τ , then Fσ ⊆ Fτ .

A.3 Martingales

Let us fix an arbitrary set I ⊆ [0,∞], for instance, I = T := {0, 1, . . . , T} and I = [0, T ].

Definition A.10. Let (Xt)t∈I be a real-valued (Ft)-adapted stochastic process with E[|Xt|] <
∞ for all t ∈ I. X is called a

• martingale if E[Xt|Fs] = Xs,

• sub-martingale if E[Xt|Fs] ≥ Xs,

• super-martingale if E[Xt|Fs] ≤ Xs,

for all s, t ∈ I with s ≤ t.

Remark A.11. Every martingale is also a sub- and a super-martingale. For a martingale
(Xt)t∈I , the map t 7→ E[Xt] is constant as

E[Xt] = E[E[Xt|F0]] = E[X0], t ∈ I.
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Proposition A.12. Let (Xt)t∈I be a martingale and φ : R → R be a convex function. If
E[|φ(Xt)|] <∞ for all t ∈ I, then (φ(Xt))t∈I is a sub-martingale.

In the following we focus on discrete-time martingales, i.e.,

I = T := {0, 1, . . . , T}

Theorem A.13 (Doob’s optional sampling theorem). Let σ, τ be stopping times such that
σ ≤ τ ≤ T .

(i) If (Xt)t∈T is a martingale, then

E[Xτ |Fσ] = Xσ and thus E[Xτ ] = X0.

(ii) If (Xt)t∈T is a sub-martingale (super-martingale), then

E[Xτ |Fσ] ≥ Xσ

(
E[Xτ |Fσ] ≤ Xσ

)
.

As an immediate consequence of Doob’s optional sampling theorem (Theorem A.13), we
obtain the following corollary.

Corollary A.14 (Doob’s stopping theorem). Let τ be a bounded stopping time and (Xt)t∈T
be a martingale. Then, one has

E[|Xτ |] <∞ and E[Xτ ] = X0.

The analog statement holds for sub- and super-martingales.

Let (Xt)t∈T be an adapted stochastic process and τ be a stopping time. The stopped
process (Xτ

t )t∈T is defined as

Xτ
t := Xt∧τ :=

{
Xt(ω) if t ≤ τ(ω)

Xτ(ω)(ω) if t > τ(ω)
for ω ∈ Ω and for t ∈ T .

Proposition A.15. Let (Xt)t∈T be a (super-, sub-)martingale and τ be a stopping time.
Then, the stopped process (Xτ

t )t∈T is a (super-, sub-)martingale.

Another application of Doob’s optional sampling theorem leads to the so-called Doob’s
Lp-inequality.

Proposition A.16 (Doob’s Lp-inequality). Let (Xt)t∈T be a martingale.

(i) Doob’s maximal inequality holds for all λ > 0:

P
(
sup
t∈T

|Xt| ⩾ λ
)
⩽

1

λ
E[|XT |].

(ii) For p > 1 and supposing XT ∈ Lp, we have Doob’s Lp-inequality

E
[
sup
t∈T

|Xt|p
]
⩽

( p

p− 1

)p
E[|XT |p].
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A.4 Backward martingales

The concepts of filtration and martingale do not require the index set to be a subset of [0,∞).
Indeed, one can consider more general index sets. Here we are interested in

I = −N0 := {0,−1,−2, . . . }, where N0 := {0, 1, 2, . . . }.

• Let (Ft)t∈−N0be a filtration, that is, (Ft)t∈−N0 ⊆ F and Fs ⊆ Ft for s, t ∈ −N0 with
s < t.

• Let (Mt)t∈−N0be a martingale with respect to (Ft)t∈−N0 , that is, Mt is Ft-measurable,
E[|Mt|] <∞, and E[Mt|Ft] =Ms for all s, t ∈ −N0 with s < t.

The stochastic process (M−t)t∈N0 is called backwards martingale. For backwards martin-
gales we have the following convergence theorem.

Theorem A.17. Let (M−t)t∈N0 be a martingale with respect to the filtration (Ft)t∈−N0. Then,
there exists a random variable M−∞ such that

lim
t→∞

M−t =M−∞ almost surely and in L1.

Moreover,

M−∞ = E[M0|F∞], where F−∞ :=

∞⋂
t=1

F−t.

A.5 Grönwall’s lemma

In the study of differential equations Grönwall’s lemma (also called Grönwall’s inequality) is
a frequently applied tool, in particular, to prove the uniqueness of solutions of differential
equations.

Lemma A.18 (Grönwall’s lemma). For T ∈ (0,∞) let g : [0, T ] → R be a bounded and
measurable function. If there are constants A,B ∈ R such that

g(t) ⩽ A+B

∫ t

0
g(s) ds for all t ∈ [0, T ],

then g(t) ⩽ AeBt.

Proof. Define the function

φ(t) := B

∫ t

0
g(s) ds, t ∈ [0, T ].

By the fundamental theorem of calculus and the assumptions of the lemma we get

φ′(t) = Bg(t) ≤ AB +Bφ(t), a.e. t ∈ [0, T ],

which implies
φ′(t)−Bφ(t) ≤ AB.
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Multiplying both side with exp(−Bt), we observe that

d

dt

(
exp(−Bt)φ(t)

)
≤ exp(−Bt)

(
φ′(t)−Bφ(t)

)
≤ exp(−Bt)AB

and integrating both sides leads to

exp(−Bt)φ(t) ≤ AB

∫ t

0
exp(−Bs) ds.

Therefore, we arrive at

g(t) ≤ A+ φ(t) ≤ A+AB

∫ t

0
exp(B(t− s)) ds = A exp(Bt).

A.6 Radon-Nikodym theorem

This subsections collects results about (probability) measures, which are properly treated in
the courses “Functional Analysis” and/or “Maßtheorie”.

Definition A.19. Let Q1 and Q2 be measures on a measurable space (Ω,F) (not necessarily
probability measure).

• Q1 is said to be σ-finite if there is a sequence (An)n∈N ⊆ F such that

Ω =
⋃
n∈N

An and Q1(An) <∞ for n ∈ N.

• Q1 is called absolutely continuous w.r.t. Q2, denoted by Q1 ≪ Q2, if

Q2(A) = 0 for A ∈ F ⇒ Q1(A) = 0.

• Q1 and Q2 are said to be equivalent (in symbols Q1 ∼ Q2) if Q1 ≪ Q2 and Q2 ≪ Q1.

• Q1 has a density w.r.t. Q2 if there exists a measurable map dQ1

dQ2
: Ω → [0,∞] such that

Q1(A) =

∫
Ω
1A

dQ1

dQ2
dQ2.

A fundamental theorem in functional analysis as well as measure theory is the so-called
Radon-Nikodym theorem.

Theorem A.20 (Radon-Nikodym theorem). Let Q1 and Q2 be σ-finite measures on (Ω,F).
Then,

Q1 has a density w.r.t. Q2 ⇔ Q1 ≪ Q2.

In this case, the density dQ1

dQ2
is F-measurable and P-a.s. finite. dQ1

dQ2
is called the Radon-

Nikodym density (also called Radon-Nikodym derivative) of Q1 w.r.t. Q2.

Proof. See see Corollary 7.34 in [Klenke, 2014].
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Let us restrict our attention to two probability measures Q1 and Q2 on (Ω,F).

Lemma A.21. If Q1 ≪ Q2 on (Ω,F), then

Q1 ∼ Q2 ⇔ dQ1

dQ2
> 0, Q2-a.s.

In this case, the Radon-Nikodym density of Q2 w.r.t. Q1 is given by

Q2

Q1
=

(
dQ1

dQ2

)−1

.
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B Miscellaneous

B.1 Dictionary English-German

English German
absolutely continuous absolut stetig
adapted adaptiert
almost sure convergence fast sichere Konvergenz
bounded beschränkt
contingent claim Zahlungsanspruch
continuous stetig
countable abzählbar
conditional expectation bedingter Erwartungswert
density Dichte
density process Dichteprozess
derivative Ableitung
differentiable differenzierbar
dominated convergence theorem Satz von der majorisierten Konvergenz
expectation Erwartungswert
equivalent äquivalent
Fatou’s lemma Lemma von Fatou
filtered probability space gefilterter Wahrscheinlichkeitsraum
filtration Filtration, Filtrierung
(financial) derivative Derivat
identically distributed identisch verteilt
independent unabhängig
indistinguishable ununterscheidbar
inequality Ungleichung
integers ganze Zahlen
integrable integrierbar
integration Integration
integral Integral
intermediate value theorem Zwischenwertsatz
martingale Martingal
maturity Fälligkeit
measure Maß
measurable space Messraum, messbarer Raum
monotone convergence theorem Satz von der monotonen Konvergenz
natural numbers natürliche Zahlen
P-almost surely P-fast sicher
ordinary differential equation gewöhnliche Differentialgleichung
partial differential equation partielle Differentialgleichung
power set Potenzmenge
predictable vorhersehbar
probability measure Wahrscheinlichkeitsmaß
probability space Wahrscheinlichkeitsraum
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English German
quadratic variation quadratische Variation
Radon-Nikodym density Radon-Nikodym-Dichte
random variable Zufallsgröße, Zufallsvariable
rational numbers rationale Zahlen
real numbers reelle Zahlen
σ-algebra σ-Algebra
sample path Pfad
sample space Ergebnisraum
set Menge
stochastic process stochastischer Prozess
trading strategy Handelsstrategie
trajectory Trajektorie
stopping time Stoppzeit
triangle inequality Dreiecksungleichung
tower property Turmeigenschaft
uniformly integrable gleichgradig integrierbar
variance Varianz
volatility Volatilität, Schwankungsanfälligkeit



B.2 English abbreviations 71

B.2 English abbreviations

Abbreviation Meaning
ad. adapted
a.e. almost everywhere
a.s. almost surely
bdd bounded
BM Brownian motion
cts continuous
eq. equation
fct. function
ineq. inequality
iid independent and identically distributed
iff if and only if
loc. local
mart. martingale
mb. measurable
ODE ordinary differential equations
P-a.s. P-almost surely
PDE partial differential equations
pred. predictable
prob. probability
RN density Radon-Nikodym density
r.v. random variable
SDE stochastic differential equation
s.t. such that
stoch. stochastic
trad. trading
u.i. uniformly integrable
w.l.o.g. without lost of generality
w.r.t. with respect to
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