

Stochastic Itô integration - extension of Itô integration via localization

Fix $T \in (0, \infty)$. Let $B = (B_t)_{t \in [0,T]}$ be a Brownian motion on the complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $(\mathcal{F}_t)_{t \in [0,T]}$ the corresponding Brownian standard filtration (satisfying the usual conditions).

Definition. We introduce

$$\mathscr{H}^2_{loc} := \left\{ f: \Omega \times [0,T] \to \mathbb{R}: f \text{ is measurable, adapted and } \int_0^T f^2(\cdot,s) \mathrm{d}s < \infty \right\}.$$

Definition. An increasing sequence $(\nu_n)_{n \in \mathbb{N}}$ of [0, T]-valued stopping times is called *localizing sequence* for $f \in \mathscr{H}^2_{loc}$ if $f \mathbb{1}_{[0,\nu_n]} \in \mathscr{H}^2$ for all $n \in \mathbb{N}$ and $\mathbb{P}\left(\bigcup_{n \in \mathbb{N}} \{\nu_n = T\}\right) = 1$.

Remark. (i) $\mathscr{H}^2 \subseteq \mathscr{H}^2_{loc}$.

(ii) For any continuous $g : \mathbb{R} \to \mathbb{R}$ it holds that $f(\omega, t) = g(B_t(\omega)) \in \mathscr{H}^2_{loc}$ since B is a.s. pathwise continuous.

Proposition. For every $f \in \mathscr{H}^2_{loc}$ there exists a localizing sequence $(\nu_n)_{n \in \mathbb{N}}$.

Definition. Let $f \in \mathscr{H}^2_{loc}$ and $(\nu_n)_{n \in \mathbb{N}}$ be a localizing sequence for f. The *Itô integral process* $(\int_0^t f(\cdot, s) dB_s)_{t \in [0,T]}$ is defined as the continuous process $X = (X_t)_{t \in [0,T]}$ such that

$$\int_0^t f(\cdot, s) dB_s := X_t = \lim_{n \to \infty} \int_0^t f \mathbb{1}_{[0, \nu_n]} dB_s \quad \mathbb{P}\text{-a.s.}$$

for all $t \in [0, T]$.

Remark. Recall that $f \mathbb{1}_{[0,\nu_n]} \in \mathscr{H}^2, n \in \mathbb{N}$.

Theorem. For $f \in \mathscr{H}^2_{loc}$ there exists a continuous local martingale $(X_t)_{t \in [0,T]}$ such that for any localizing sequence $(\nu_n)_{n \in \mathbb{N}}$ of f it holds that

$$\int_0^t f(\cdot, s) \mathbb{1}_{[0,\nu_n]} \mathrm{d}B_s \to X_t \quad as \ n \to \infty \quad \mathbb{P}\text{-}a.s.,$$

for all $t \in [0,T]$. In particular, $(X_t)_{t \in [0,T]}$ does not depend on the choice of the localizing sequence $(\nu_n)_{n \in \mathbb{N}}$, and the Itô integral process $(\int_0^t f(\cdot, s) dB_s)_{t \in [0,T]}$ is well-defined.

Theorem (Persistence of identity). Let $f, g \in \mathscr{H}^2_{loc}$ and ν be a stopping time such that $f \mathbb{1}_{[0,\nu]} = g \mathbb{1}_{[0,\nu]}$. Then it holds

$$\int_0^t f(\cdot, s) \mathrm{d}B_s \mathbb{1}_{[0,\nu]} = \int_0^t g(\cdot, s) \mathrm{d}B_s \mathbb{1}_{[0,\nu]} \quad \mathbb{P}\text{-}a.s.$$

for all $t \in [0, T]$.

Theorem (Riemann sum approximation). If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and $t_i = \frac{i}{n}T$, i = 0, ..., n, then, for $n \to \infty$, we have

$$\sum_{i=1}^n f(B_{t_{i-1}})(B_{t_i} - B_{t_{i-1}}) \to \int_0^T f(B_s) \mathrm{d}B_s \quad in \ probability.$$

Stochastic Itô integration - Itô formula for Brownian motion

Theorem (Itô formula). For any twice continuously differentiable function $f : \mathbb{R} \to \mathbb{R}$ we have

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) dB_s,$$

for $t \in [0, T]$, \mathbb{P} -a.s.

Remark. We denote by $C^{1,2}([0,T] \times \mathbb{R})$ the space of continuous functions $f : [0,T] \times \mathbb{R} \to \mathbb{R}, (t,x) \mapsto f(t,x)$ such that f(t,x) is continuously differentiable in $t \in (0,T)$ and twice continuously differentiable in $x \in \mathbb{R}$.

Theorem (Itô formula, space-time version). For any $f \in C^{1,2}([0,T] \times \mathbb{R})$ we have

$$f(t, B_t) = f(0, 0) + \int_0^t \frac{\partial f}{\partial t}(s, B_s) dB_s + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds,$$

for $t \in [0,T]$, \mathbb{P} -a.s.

Hints for Exercise Sheet 5

Exercise 5.1

- (i) We want to apply Lemma 3.19.
- (ii) Use Itô's formula.

Exercise 5.2

- (i) Apply the fundamental theorem of calculus.
- (iii) Use Itô's formula.

Exercise 5.3

- (i) Use the definition of $\langle X, Y \rangle_t$.
- (i) Use Itô's formula for $f(X_t)$ and $g(Y_t)$ and work again with the definition of $\langle f(X), g(Y) \rangle_t$