

Martingales

Lemma 1. Consider a real-valued stochastic process $(X_t)_{t \in [0,T]}$ adapted to the filtration $(\mathcal{F}_t)_{t \in [0,T]}$ with the property that $\mathbb{E}[|X_t|] < \infty$ for all $t \in [0,T]$.

- (i) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function. If $(X_t)_{t \in [0,T]}$ is a martingale with $\mathbb{E}[|\varphi(X_t)|] < \infty$ for $t \in [0,T]$, then $(\varphi(X_t))_{t \in [0,T]}$ is a sub-martingale.
- (ii) Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a non-decreasing convex function. If $(X_t)_{t \in [0,T]}$ is a sub-martingale with $\mathbb{E}[|\varphi(X_t)|] < \infty$ for $t \in [0,T]$, then $(\varphi(X_t))_{t \in [0,T]}$ is a sub-martingale.

Recall Jensen's inequality for conditional expectations: Let $I \subseteq \mathbb{R}$ be an interval, let $\varphi : I \to \mathbb{R}$ be a convex function and let X be an I-valued random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. If $\mathbb{E}[|X|] < \infty$ and $\mathcal{G} \subseteq \mathcal{F}$ be a σ -algebra, then

$$\varphi(\mathbb{E}[X|\mathcal{G}]) \le \mathbb{E}[\varphi(X)|\mathcal{G}] \le \infty.$$

Proof. (i) Since $(X_t)_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted and φ is measurable as a convex function, we first note that $(\varphi(X_t))_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted. By assumption, it holds $\mathbb{E}[|\varphi(X_t)|] < \infty$ for $t \in [0,T]$. For the martingale property, let $s, t \in [0,T]$, s < t. Then

$$\mathbb{E}[\varphi(X_t)|\mathcal{F}_s] \stackrel{\text{Jensen's meq.}}{\geq} \varphi(\underbrace{\mathbb{E}[X_t|\mathcal{F}_s]}_{\substack{=X_s \text{ a.s.,}\\(X_t)_t \text{ mart.}}}) = \varphi(X_s) \quad \text{a.s.}$$

(ii) Since $(X_t)_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted and φ is measurable as a convex function, we first note that $(\varphi(X_t))_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted. By assumption, it holds $\mathbb{E}[|\varphi(X_t)|] < \infty$ for $t \in [0,T]$. For the martingale property, let $s, t \in [0,T]$, s < t. Then

$$\mathbb{E}[\varphi(X_t)|\mathcal{F}_s] \stackrel{\text{Jensen's ineq.}}{\geq} \varphi(\underbrace{\mathbb{E}[X_t|\mathcal{F}_s]}_{\substack{\geq X_s \text{ a.s.,}\\ (X_t)_t \text{ sub-m.}}}) \stackrel{\varphi \text{ non-decr.}}{\geq} \varphi(X_s) \quad \text{a.s.}$$

Lemma 2. Consider a real-valued integrable random variable X on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$. Let $(X_t)_{t \in [0,T]} = (\mathbb{E}[X|\mathcal{F}_t])_{t \in [0,T]}$. Then $(X_t)_{t \in [0,T]}$ is a martingale.

Proof. By definition of the conditional expectation, $\mathbb{E}[X|\mathcal{F}_t]$ is \mathcal{F}_t -measurable for all $t \in [0,T]$, i.e. $(X_t)_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted. For $t \in [0,T]$ it holds

$$\mathbb{E}[|X_t|] = \mathbb{E}\left[|\mathbb{E}[X|\mathcal{F}_t]|\right] \stackrel{\text{Jensen's ineq.}}{\leq} \mathbb{E}\left[\mathbb{E}[|X||\mathcal{F}_t]\right] = \mathbb{E}[|X|] < \infty$$

by assumption. For the martingale property, let $s, t \in [0, T], s < t$. Then

$$\mathbb{E}[X_t|\mathcal{F}_s] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_t]|\mathcal{F}_s] \stackrel{\text{tower prop.}}{=}_{\substack{\mathcal{F}_s \subset \mathcal{F}_t}} \mathbb{E}[X|\mathcal{F}_s] = X_s \quad \text{a.s.}$$

Lemma 3. Consider two real-valued stochastic processes $(X_t)_{t \in [0,T]}$, $(Y_t)_{t \in [0,T]}$ adapted to the same filtration $(\mathcal{F}_t)_{t \in [0,T]}$ with $\mathbb{E}[|X_t|] < \infty$ and $\mathbb{E}[|Y_t|] < \infty$ for $t \in [0,T]$. Then, if $(X_t)_{t \in [0,T]}$ and $(Y_t)_{t \in [0,T]}$ are both super-martingales, then $(Z_t)_{t \in [0,T]}$ with $Z_t := \min(X_t, Y_t)$, $t \in [0,T]$, is a super-martingale with respect to $(\mathcal{F}_t)_{t \in [0,T]}$.

Proof. Since $(X_t)_{t \in [0,T]}$ and $(Y_t)_{t \in [0,T]}$ are (\mathcal{F}_t) -adapted and since min : $\mathbb{R}^2 \to \mathbb{R}$ is measurable, $(Z_t)_{t \in [0,T]}$ is (\mathcal{F}_t) -adapted. And for $t \in [0,T]$ it holds

$$\mathbb{E}[|Z_t|] \le \mathbb{E}[|X_t|] + \mathbb{E}[|Y_t|] < \infty$$

by assumption. For the martingale property, let $s, t \in [0, T]$, s < t. Then

$$\mathbb{E}[Z_t|\mathcal{F}_s] = \mathbb{E}[\min(X_t, Y_t)|\mathcal{F}_s] \le \mathbb{E}[X_t|\mathcal{F}_s] \stackrel{(X_t)_t \text{ super-m.}}{\le} X_s \quad \text{a.s.}$$

and, analogously,

$$\mathbb{E}[Z_t|\mathcal{F}_s] = \mathbb{E}[\min(X_t, Y_t)|\mathcal{F}_s] \le \mathbb{E}[Y_t|\mathcal{F}_s] \stackrel{(Y_t)_t \text{ super-m.}}{\le} Y_s \quad \text{a.s.},$$

hence, $\mathbb{E}[Z_t|\mathcal{F}_s] \leq \min(X_s, Y_s) = Z_s$ a.s.

Hints for Exercise Sheet 3

Exercise 3.1

First, download the latest version of the Exercise Sheet, unfortunately, there was a small mistake in the definition of uniform integrability.

(i) Assume that the random variables $|X_n|$ are uniformly bounded by a finite constant c and show the claim.

Then consider the function $\phi_c(x) = (x \wedge c) \lor (-c)$ for some c. Use Fatou's lemma to show that X is integrable. Apply the triangular inequality twice to show $\mathbb{E}[|X_n - X|] \to 0$ as $n \to \infty$.

Exercise 3.2

- (i) Use Exercise 2.3.(ii)
- (ii) (a) Use Theorem 2.20.
 (b) Apply Doob's L^p-inequality.

Exercise 3.3

Find an approximating sequence of simple functions f_n such that $||f - f_n||_2^2 \to 0$ as $n \to \infty$ for f = Band calculate $I(f \mathbb{1}_{[0,t]}) = \lim_{n \to \infty} I(f_n \mathbb{1}_{[0,t]})$.