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Exercise 4.1

(i) Assume first that f is a step function, i.e.,

f(t) =
n−1∑
i=0

ci1[ti,ti+1)(t), t ∈ [a, b],

where ci, i = 0, . . . , n are constants and a = t0 < t1 < . . . < tn = b is a partition of [a, b]. It
follows

Ja,b =

b∫
a

f(s) dW (s) =
n−1∑
i=0

ci(Wti+1 −Wti).

Since the increments Wti+1 −Wti are independent and normally distributed, i = 0, . . . , n− 1, we
obtain that Ja,b is normally distributed with

E[Ja,b] =
n−1∑
i=0

ciE[Wti+1 −Wti ] = 0

and

Var(Ja,b) =
n−1∑
i=0

c2i Var(Wti+1 −Wti) =
n−1∑
i=0

c2i (ti+1 − ti) =

b∫
a

f2(s) ds.

Here, we used in the first step Bienaymé.
Now, consider a general f ∈ L2([0, T ],R). Then there exists a sequence of step functions (fn)n∈N
such that fn → f in L2([0, T ],R). Applying Itô’s isometry we find

b∫
a

fn(s) dW (s) →
b∫

a

f(s) dW (s) =: Ja,b

in L2(P). By the given lemma and since L2-convergence implies convergence in distribution, Ja,b

is normally distributed with E[Ja,b] = 0 and the following variance

Var(Ja,b) = lim
n→∞

Var

 b∫
a

fn(s) dW (s)

 = lim
n→∞

b∫
a

f2
n(s) ds =

b∫
a

f2(s) ds.

(ii) Let 0 = t0 < t1 < . . . < tn = T be a partition containing the points a, b, c, d. Assume

f(t) =

n−1∑
i=0

ci1[ti,ti+1)(t), t ∈ [a, b],

is a step function (similar to the previous step). Then

Ja,b =

b∫
a

f(s) dW (s) =
∑
i∈I1

ci(Wti+1 −Wti)

Jc,d =

d∫
c

f(s) dW (s) =
∑
i∈I2

ci(Wti+1 −Wti),



where I1, I2 are suitable sets such that I1 ∩ I2 contains at most one point. Since the increments
of a Brownian motion are independent and normally distributed, we see that Ja,b,Jc,d are
independent and normally distributed. It follows also that for all α, β ∈ R, αJa,b + βJc,d is
normally distributed. Consequently, (Ja,b,Jc,d) is a Gaussian vector.
Suppose f ∈ L2([0, T ],R). Then there exists a sequence (fn)n∈N of step functions such that
fn → f in L2([0, T ],R). Similar to the proof of the first claim we get that

α

b∫
a

fn(s) dW (s) + β

d∫
c

fn(s) dW (s) → α

b∫
a

f(s) dW (s) + β

d∫
c

f(s) dW (s) =: αJa,b + βJc,d.

in L2(P). By the given lemma αJa,b + βJc,d is again normally distributed. Hence, (Ja,b,Jc,d) is
a Gaussian random vector. Consequently, in order to show independence it is enough to show
that Cov(Ja,b,Jc,d) = 0. We observe

Cov(Ja,b,Jc,d) =
1

2
(Var(Ja,b + Jc,d)− Var(Ja,b)− Var(Jc,d))

and therefore, if we apply the given lemma, we obtain

Cov(Ja,b,Jc,d) = lim
n→∞

1

2

(
Var

( b∫
a

fn(s) dW (s) +

d∫
c

fn(s) dW (s)

)
−

Var
( b∫

a

fn(s) dW (s)

)
− Var

( d∫
c

fn(s) dW (s)

))

= lim
n→∞

Cov
( b∫

a

fn(s) dW (s),

d∫
c

fn(s) dW (s)

)
= 0

Exercise 4.2 (Prop.3.10 )

First, consider f ∈ H 2
0 and let X denote the integral process of f . We show X1[0,ν] = Y 1[0,ν] where

Y denotes the integral process of f1[0,ν]. Note that by linearity of the integral it suffices to consider

f = a1(r,s] for 0 ≤ r < s ≤ T and a an Fr-measurable r.v. with E[a2] < ∞.

We discretize the stopping time ν as follows:

si,n := r + (s− r)
i

2n
, i = 0, 1, . . . , 2n,

νn :=
2n−1∑
i=0

si+1,n1(si,n,si+1,n](ν).

Then,

f1[0,νn] = f − f1[νn,T ]

= f − f
2n−1∑
i=0

1(si,n,si+1,n](ν)1(si+1,n,T ] ∈ H 2
0

and

Y n
t :=

∫ t

0
f(·, s)1[0,νn](u)dBu = a(Bs∧νn∧t −Br∧νn∧t).

Since B is continuous, it follows Yt = lim
n→∞

Y n
t = a(Bs∧ν∧t − Br∧ν∧t). On the other hand, it holds

Xt = a(Bs∧t −Br∧t) which implies
X1[0,ν] = Y 1[0,ν]. (1)



Now, let f ∈ H 2 and (fn)n∈N ⊂ H 2
0 such that ∥fn − f∥H 2 → 0 as n → ∞ with fn1[0,ν] = 0, n ∈ N.

If Xn denotes the integral process of fn and Y n the integral process of fn1[0,ν], it then holds

X1[0,ν] = lim
n→∞

Xn
1[0,ν]

(1)
= lim

n→∞
Y n

1[0,ν] = 0. (2)

This proves the first claim.

Further, let f, g ∈ H 2 with f1[0,ν] = g1[0,ν] and note that f − g ∈ H 2 with (f − g)1[0,ν] = 0. We
apply (2) to f − g and conclude ∫ ·

0
fdBs1[0,ν] =

∫ ·

0
gdBs1[0,ν],

i.e., the integral processes coincide on 1[0,ν].

Exercise 4.3

We first note that the value at time t of the given processes can be written as the value of (C2- or)
C1,2-functions at the point (t,Wt). So, we can apply Itô’s formula.

(i) Let f (1) : x 7→ x2. Then, X
(1)
t = f (1)(Wt). We compute

∂

∂x
f (1)(x) = 2x,

∂2

∂x2
f (1)(x) = 2.

Itô’s formula yields

X
(1)
t = X

(1)
0 +

∫ t

0

∂

∂x
f (1)(Ws)dWs +

1

2

∫ t

0

∂

∂x
f (1)(Ws)ds

= 2

∫ t

0
WsdWs +

∫ t

0
ds

= 2

∫ t

0
WsdWs + t

P-a.s.

(ii) Let f (2) : (t, x) 7→ t2x3. Then, X
(2)
t = f (2)(t,Wt). Partial differentiation gives

∂

∂t
f (2)(t, x) = 2tx3,

∂

∂x
f (2)(x) = 3t2x2,

∂2

∂x2
f (2)(t, x) = 6t2x.

Itô’s formula yields

X
(2)
t = t2W 3

t

= X
(2)
0 +

∫ t

0

∂

∂t
f (2)(s,Ws)ds+

∫ t

0

∂

∂x
f (2)(s,Ws)dWs +

1

2

∫ t

0

∂2

∂x2
f (2)(s,Ws)ds

=

∫ t

0

(
2sW 3

s + 3s2Ws

)
ds+ 3

∫ t

0
s2W 2

s dWs

P-a.s.

(iii) Let f (3) : (t, x) 7→ exp (mt+ σx). Then, X
(3)
t = f (3)(t,Wt). We compute

∂

∂t
f (3)(t, x) = m exp (mt+ σx) ,

∂

∂x
f (3)(t, x) = σ exp (mt+ σx) ,

∂2

∂x2
f (3)(t, x) = σ2 exp (mt+ σx) .



Itô’s formula yields

X
(3)
t = exp (mt+ σWt)

= X
(3)
0 +

∫ t

0

∂

∂t
f (3)(s,Ws)ds+

∫ t

0

∂

∂x
f (3)(s,Ws)dWs +

1

2

∫ t

0

∂2

∂x2
f (3)(s,Ws)ds

= 1 +

∫ t

0

(
m+

1

2
σ2

)
exp (ms+ σWs) ds+

∫ t

0
σ exp (ms+ σWs) dWs

P-a.s. We can also rewrite the last equality as

X
(3)
t −X

(3)
0 =

∫ t

0

(
m+

1

2
σ2

)
X(3)

s ds+

∫ t

0
σX(3)

s dWs

P-a.s.

(iv) Let f (4) : (t, x) 7→ cos (t+ x). Then, X
(4)
t = f (4) (t,Wt). We compute

∂

∂t
f (4)(t, x) = − sin (t+ x) ,

∂

∂x
f (4)(t, x) = − sin (t+ x) ,

∂2

∂x2
f (4)(t, x) = − cos (t+ x) .

Itô’s formula yields

X
(4)
t = cos (t+Wt)

= X
(4)
0 +

∫ t

0

∂

∂t
f (4)(s,Ws)ds+

∫ t

0

∂

∂x
f (4)(s,Ws)dWs +

1

2

∫ t

0

∂2

∂x2
f (4)(s,Ws)ds

= 1−
∫ t

0

(
sin (s+Ws) +

1

2
cos (s+Ws)

)
ds−

∫ t

0
sin (s+Ws) dWs

P-a.s.

(v) Let f (5) : (t, x) 7→ log (2 + cos (x− t)). Then, X
(5)
t = f (5) (t,Wt). We compute

∂

∂t
f (5)(t, x) =

sin (x− t)

2 + cos (x− t)
,

∂

∂x
f (5)(t, x) = − sin (x− t)

2 + cos (x− t)
,

∂2

∂x2
f (5)(t, x) = −cos (x− t) (2 + cos (x− t)) + sin (x− t)2

(2 + cos (x− t))2
= − 1 + 2 cos (x− t)

(2 + cos (x− t))2
.

Itô’s formula yields

X
(5)
t = log (2 + cos (Wt − t))

= X
(5)
0 +

∫ t

0

∂

∂t
f (5)(s,Ws)ds+

∫ t

0

∂

∂x
f (5)(s,Ws)dWs +

1

2

∫ t

0

∂2

∂x2
f (5)(s,Ws)ds

= log (3) +

∫ t

0

(
sin (Ws − s)

2 + cos (Ws − s)
− 1 + 2 cos (Ws − s)

2 (2 + cos (Ws − s))2

)
ds−

∫ t

0

sin (Ws − s)

2 + cos (Ws − s)
dWs

P-a.s.


