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Exercise 4.1

(i)

(i)

Assume first that f is a step function, i.e.,

n—1
= Z Ciﬂ[ti,tprl)(t)? le [a7 b]’
1=0

where ¢;, ¢ = 0,...,n are constants and a =ty < t; < ... < t, = b is a partition of [a,b]. It
follows
n—1
j(zb - /f dW = ch Wtz+1 Wtz)
=0

Since the increments Wy, , — W;, are independent and normally distributed, i =0,...,n—1, we
obtain that 7,5 is normally distributed with

jab ZCZ WtZ_H - 1] =

and
n—1 n—1 b
Var(Jup) = Zcf Var(Wy, ., — Wy,) = tiyr —t;) = /f2(s) ds.
i=0 i=0

Here, we used in the first step Bienaymé.
Now, consider a general f € L?([0,7],R). Then there exists a sequence of step functions ( f,,)nen
such that f,, — f in L?([0,T],R). Applying Ito’s isometry we find

b b
/ Fuls) AW (s) — / F(s)dW (s) = Toy

in L2(P). By the given lemma and since L?-convergence implies convergence in distribution, Tap
is normally distributed with E[7, 3] = 0 and the following variance

Var(Jup) = lim Var / fa(s)dW(s) | = lim / f2(s)ds = / £2(s)

n—oo

Let 0 =ty <t1 <...<t, =T be a partition containing the points a, b, ¢, d. Assume

n—1
t) = Z ciﬂ[tivti+l)(t)7 t € la,b],
1=0

is a step function (similar to the previous step). Then

i€ly

b
Tut = / F(s)dW(s) = 3 es(Wi,, — Way)

d
T = [ £ AW (s) = 3 sl = W2,

i€l



where I1, I are suitable sets such that I; N Is contains at most one point. Since the increments
of a Brownian motion are independent and normally distributed, we see that J,p,J.q are
independent and normally distributed. It follows also that for all o, 8 € R, aJap + BTcq is
normally distributed. Consequently, (74, Jc,q) is a Gaussian vector.

Suppose f € L2([0,T],R). Then there exists a sequence (f,)nen of step functions such that
fn — fin L%([0,T],R). Similar to the proof of the first claim we get that

b d b d
a / ful(s) W (s) + B / fa(s) AW (s) > o / F(s) AW (s) + B / F(5) AW (s) = aap + BT

in L?(P). By the given lemma a7, + 8J..4 is again normally distributed. Hence, (Jap, Je.a) is
a Gaussian random vector. Consequently, in order to show independence it is enough to show

that Cov(Jap, Je,d) = 0. We observe

1
(COV(ja,ba jc,d) = i(Var(ja,b + jc,d) - Var(ja,b) - Var(jc,d))

and therefore, if we apply the given lemma, we obtain

Cov(Taps Tea) = lim (Var(/ fn(s)dW (s /fn )dW (s >

(/fn (s )_Var(c/fnsdm))

:nli_{gOC0v</ fn(s) dW(s),/fn(s) dW(s)> —0

Exercise 4.2 (Prop.3.10)

First, consider f € %2 and let X denote the integral process of f. We show X1y ,) = Y1y, where
Y denotes the integral process of f1jy,). Note that by linearity of the integral it suffices to consider

f=alygfor 0 <7 <s<T and a an F.-measurable r.v. with E[a?] < oo.
We discretize the stopping time v as follows:

Sin=r+4+(s—1)—

2" —1

- Z 3i+1,nﬂ(si7n,si+1,n} (V)
=0

Then,
fﬂ[OvV"] =f- f]l[l/”,T}
2n—1
=/=7 Z (8i,n,8i+1, n] v)1 (sitin, ] € %2
and

t
= / f(7 S)R[O,u"](u)dBu = a(Bs/\V”/\t - Br/\u"/\t)-
0

Since B is continuous, it follows ¥; = lim Y} = a(Bsavat — Bravar). On the other hand, it holds

n—0o0

X; = a(Bspt — Byat) which implies
XLjou) = Yl (1)



Now, let f € 72 and (fn)nen C H2 such that || f,, — f|lx2 — 0 as n — oo with fnlp, =0,n €N.
If X" denotes the integral process of f, and Y the integral process of f,1[g,, it then holds

: @ .
This proves the first claim.

Further, let f,g € 2 with 1o = gljp,) and note that f —g € A% with (f — )L, = 0. We
apply (2) to f — g and conclude

/deS]]-[O,l/}:/ gdBS]]‘[O,V}’
0 0

L.e., the integral processes coincide on 1y ).

Exercise 4.3

We first note that the value at time ¢ of the given processes can be written as the value of (C?- or)
C12-functions at the point (t, W;). So, we can apply It&’s formula.

(i) Let fO : 2+ 22. Then, Xt(l) = fM(W;). We compute
82

ox?

FO(z) = 2.

1t0’s formula yields

t t
(1) _ (D) 9 ) 1 / 9 )
xW_ x L rOwyaw, + = [ L 0w,
O =x+ [ LrOawgaw+g [ 0w

t t
= 2/ WdW +/ ds
0 0

t
:2/ WsdW, +t
0

P-a.s.
(ii) Let f@ : (t,2) — t223. Then, Xt(2) = f@)(t,W;). Partial differentiation gives
2

@)(t,2) = 2ta’, aaf@) (z) = 3t%2?, a—f(z) (t,z) = 6tz
x

ot 0z?

1t6’s formula yields

t a t 8 1 t 82
_x® /(2) /(2) g /(2)
0 + 0 atf (87W$)d8+ 0 8.fo (87W)dWS+2 0 8.’132f (vas)ds
t t
:/ (2sW2 + 35°W) ds—|—3/ s*W2dW,
0 0
P-a.s.

(iii) Let f®) : (t,x) — exp (mt + oz). Then, Xt(s) = fO)(t,W;). We compute

ﬁf(i’*)(t, r) = mexp (mt + ox), 2f(?’) (t,z) = oexp (mt + ox),
ot ox
82

@f(g) (t,x) = o exp (mt + o).



1t6’s formula yields
X® = ex
. = exp (mt + oWy)

@ [0 "0 ) 1/ 3)
=X, +/6tf (S,Ws)d8+/ 8xf (s, Ws)dWy + = /82f (s, Wy)ds

0

t 1 t
=1+ / (m + 202> exp (ms + oWy) ds + / oexp (ms+ oWs) dW
0 0

P-a.s. We can also rewrite the last equality as

4 t
x® - x = / (m + ;#) XPds + / o XOdw,
0 0

P-a.s.
(iv) Let f® : (¢,2) — cos (t + x). Then, Xt(4) = @ (¢t,W;). We compute

0 0 2
G = —gi Il {C)] = —gi 2@ —
8tf (t,x) sin (t + x) , 8xf (t,x) sin (t + ), 57 fH(t,x) cos (t+ ).

1t6’s formula yields

(4)—cos(t+Wt
(4) FE(
= X, /a >.9st+/ ) (s, W)dWy + = /aZf( W,)ds
t
_1—/ <s1n(s+W) ;cos(s—kW))ds—/sin(s+W5)dWS
0 0

P-a.s.

(v) Let fO): (t,x) — log (2 4 cos (z — t)). Then, X = fO) (t,W;). We compute

0 _ sin(xz—1)
gl o) =
3 O)(f ) = 0@ 1)
f5(t’ )= 24 cos(z—1t)’
f(5( z) = — Cos(x—t)(2+COS($—t))+Sin(a:—t)2 _ 1+ 2cos(z—1)
89«“2 (2 + cos (z — t))? (2 + cos (z — t))*

1t6’s formula yields

Xt(s) = log (2 + cos (W; — t))

=xP+ / — O (s, W) ds+/ (s, We)dWy + = / o 2f(5 (s, Wy)ds
b/ sin (W — s) 1+ 2cos (W5 —s) b sin (W — s)
g3+ [ ( - Jas— | aw,
&) 0 \2+cos(Ws—s)  2(2+ cos (W — s))? ’ 0 2+cos(Ws—s)

P-a.s.



