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Exercise 3.1

(i) First, assume that the random variables | X,,| are uniformly bounded by a finite constant c. Then,
for e > 0,

E[|Xn — X[] = E[| X5 — X|1{x,-x>23] + E[[ Xn — X|L{x,-x1<5)]
<2P(| X, — X[ >5)+5.
Here, we used that |X| < ¢ P-a.s since |X,| < ¢ and (X, )nen converges P-a.s. to X.

Further, recall that P-a.s. convergence implies convergence in probability. So there exists N =
N(e) such that the right-hand side is smaller than e for all n > N. Therefore,

E[| X, — X|] = 0 as n — oo. (1)

Now, for ¢ € (0,00) we consider the function ¢, : R — R defined by

c ifx>c
¢e(z) :=(xAc)V(—c)=qx ifxec(-cc), z€R.

—c ifx<—c
Note that the function ¢, is a contraction, i.e. |p.(X,) — ¢(X)| < | X, — X]|, and
|9c(Xn)| < ¢, meN.

With X,, — X P-a.s., it follows that ¢.(X,) — ¢.(X) P-a.s. (continuous mapping theorem).
Hence, for any ¢, by (1)
E[|¢e(Xn) — ¢e(X)|] — 0 as n — oc.

We want to show E[|X,, — X|] — 0.
Note that since (Xp,)nen is uniformly integrable, for e = 1 there exists a constant L > 0 such
that

E[|Xn|] = E[| Xn|1x, <} + E[[Xn|1{x,>1}]
< L+E[|Xn|lqx,>1]
<L+1, neN.

So with X,, = X P-a.s., we get

E[|X|] < liminf E[|X,]] < oo
n—oo
by Fatou’s lemma. It follows

E[| Xy — X|] < E[|Xn = ¢e(Xn)[] + El[¢c(Xn) = ¢e(X)[] + E[|pe(X) — X]

<
< E[’Xnm{\anzc}] + ]EH(Z)c(Xn) - ¢C(X)H + EHX|IL{\X|20}]
Let € > 0 be given. Choosing ¢ large enough, by uniform integrability of (X,,),cn and integrability

of X the first and last summand on the right-hand side are smaller than § for all n € N. And

there exists N = N(c) such that the second summand on the right-hand side is smaller than §
for all n > N. Consequently, E[|X,, — X|] < & for n > N, thus X,, — X in L'.



(ii) To show: For every € > 0 there exists an L > 0 such that

sup B [[E[XIG]|Lyrxig)>13] < e
gg—aﬁgei)ra

For G C F, G o-algebra, we have that

Jensen’s ineq.

E[EXIG rxg=y] < E[EIX]I9]1Em)x)6)>11]
E [E[|X| 1z x| g>1}9]]

E [|X] Lig) x| 91> L]
E

[\X\ <H{|X|>ﬁ} + ﬂ{mgm) Lim)ix| |g}zL}]
< E[X|Ly o ypy) + VI P(EIX]|G) > L)
Sw, Markov’s ineq.

< E[|X|Lyxypy) + LPEX])

Let € > 0 be given. Choosing L large enough, the summands on the right-hand side are each
smaller than 5. Consequently, E [|E[X|g]|]l{|E[XIG]IZL}] < e. Note that the upper bound holds
uniformly over all o-algebras G C F which proves the claim.

Exercise 3.2

(i) By Exercise 2.3 (i), we know that every continuous local martingale (M;);c[o,77, Which is bounded
from below, is also a super-martingale and, in particular,

E[M:|Fs] < My a.s. forall s,t €[0,T] with s <t.
Hence, it is sufficient to show that
E[M|Fs] = My as. forall s,t €[0,T] with s <t.
Let s,t € [0,T] with s < t. We observe that
0 < M — E[M|Fs] as.
and, using the assumption E[M;] = E[My] for all ¢ € [0, T7,
E[M, — E[M,|7.]] = E[M,] - E[M;] = 0.
Hence, My — E[M;|Fs] is an a.s. non-negative random variable with mean zero. This implies
E[MFs] — Ms =0 as.,
which shows the claim.

(i) (a) Let (My)sepo,r) be a continuous martingale in L?.
We want to apply Theorem 2.10 (ii) = (i): If (Xt)iejo,1) s right-continuous and adapted
and if X; € L' and E[X,] = E[Xy] for any bounded stopping time 7, then X is a martingale.

By Theorem 2.20, (Mtz_<M>t)te[0,T] is a continuous local martingale. Then (MtQ_<M>t)te[0,T]
is right-continuous and adapted.

Let 7 >0 and 7 < .7 be a bounded stopping time.

We first show that E[M2 — (M),] = E[MZ — (M)o] = 0 or, equivalently, E[M?] = E[(M)].

Again, by Theorem 2.20, (M2 — (M)t)sejo,r) 18 a continuous local martingale. Let (7,,)nen
be a localizing sequence for (MZ — (M)¢)iejo 7).



Note that, since p(u) = u? is convex and M is assumed to be square-integrable, M? is a

nonnegative sub-martingale which implies

MTQ AT < E[Mélfmm]-
Hence, (M2 ,;)nen is uniformly integrable. Further, as (7,)nen is a localizing sequence for

(MZ — (M)t)sepo,m), for t € [0,T7,

E[MZ py = (M) 7] = EIMZ = (M)r,p, = (MG = (M)o)]
= E[M§ — (M)o — (M§ — (M)o)]
=0
which implies E[M?2 ,,] = E[(M), ), n € N. Hence, E[M?2,

Tn/\T

| =E[{M), Ar].- Thus,

E[M2] = lim E[M2,] = lim E[(M)g,ar] = E[(M)]

n—o0 n—o0
where we applied Exercise 3.1.(i) in the first step and monotone convergence ({(M) non-
decreasing) in the last step.
This also gives E[M2 — (M),] =0 < oo, i.e. M2 — (M), € L.
We can now conclude that (M7 — (M);)e[o,r) is a martingale.

Again suppose that (M;)e(o,r) is a continuous martingale in L?, in particular, E[M?] < oo
for all ¢t € [0,T]. Doob’s LP-inequality (p = 2) implies

IE[ sup ]Mt|2] < 4R[M?2] = 4E[M% — (M)7] = 4R[MZ — (M)o] = 0,
t€[0,T]

where we used that (M? — (M), )telo,r] s a martingale by (a) and by assumption My = 0
and (M), = 0 for all ¢ € [0,T].

This gives M; = 0 for all ¢ € [0,T7], a.s.

Alternative proof: Suppose that M is a continuous martingale in L2. By (a) (M7 —(M )t)te(0,T]
is a martingale. Since (M); = 0 for all ¢ € [0,7T] it follows that M? is also a martingale.
Then for all ¢ € [0, 7] it holds

E[M2] = E[MZ] M= 0.

This implies M? = 0 P-a.s. for all t € [0, 7], i.e. My = 0 P-a.s. for all t € [0, T, consequently,
since M is continuous, P(M; = 0Vt) = 1, by Exercise 2.1.(i).

Let (My)iecpo,r) be a continuous local martingale, not necessarily in L?. Consider now the
localizing sequence (7, )nen, defined by

=inf{t € [0,T] : |[M¢| >n} AT, neN.
Mp=0 - .
Then, by Exercise 2.3.(i), (Mz, nt — Mo)ie[o, ] = (Mr,nt)epo,r) =2 (M{™ )iefo,r) =2 M™ is
a continuous martingale and in L? and we know, from Remark 2.22, that

<MTn>t = <M>T7L/\t = O’ t € [07 T]?

for all n € N. So (M;™)¢[o,r) satisfies the conditions to apply (a) and (b).
Hence, by monotone convergence we get

E[ sup \Mtlz] = lim E[ sup | M, al } ®),
te[0,7) n—=o0 | tefo,T)

As in (b) it follows M; = 0 for all t € [0,T7], a.s



Exercise 3.3

We want to show
€ (0,7

t
/ BydB, = 1(Bt2 — 1),
0 2

Let T > t. First note that f = B € 2#2([0,T]) because

T rubini [T T
E[/ B,(w)? ds] uzml/ E[B?] ds :/ sds < oo.
0 0 0

We approximate B by

-5

(tl,tz+1]( )

whereti:%T,i:O,...,
fn € #3. Then

B:)? dt}

Tn—1
Hf_anifz _E|:/0‘ Z]l(tz,tlJrl](t)(Bt_
=0
Fubini = fit1
Ll Z/ E[(B; — By,)?] dt
i=0 7t
n—1 tiv1
Z/ (t —t;)dt
t;

=0
~1
1 n
=) (tis1 — ;)
23
T2
=5, —+0, n—o0
n

Therefore, for k, := max{i : t; <t}

I(fly) = Jim I(fnlpy)
:JLI{:O Z Bti(Bti-H _Bti)—i_Btkn(Bt_Btkn)
i<kn—1
. 1
= nh_?;o Z (§(Btl+1 Bt ) (Bti+1 - Bti)2> + Btkn (Bt - Btkn
i<knp—1
1 2 B B B 1 B B 2 ]‘B2
:7311{.102B + tkn( t — tkn)_§ Z( tiv1 — ti) _5 t

r
—>Bf e i<kn—1

since B is continuous, By = 0 a.s. and

. 2
nlggo Z (Bti+1 - Bti) =1
1<kp—1

by Corollary 2.23 ((B); = t) in the lecture notes.

n. Note that By, is F;,-measurable and E[Bt%] =t <o00,i=0,...,

)

L
2

n, hence,



