HWS 2021 Prof. Dr. David Prömel Anna Kwossek

Exercise 3.1

(i) First, assume that the random variables $|X_n|$ are uniformly bounded by a finite constant c. Then, for $\varepsilon > 0$,

$$\mathbb{E}[|X_n - X|] = \mathbb{E}[|X_n - X| \mathbb{1}_{\{|X_n - X| > \frac{\varepsilon}{2}\}}] + \mathbb{E}[|X_n - X| \mathbb{1}_{\{|X_n - X| \le \frac{\varepsilon}{2}\}}]$$
$$\leq 2c\mathbb{P}(|X_n - X| > \frac{\varepsilon}{2}) + \frac{\varepsilon}{2}.$$

Here, we used that $|X| \leq c \mathbb{P}$ -a.s since $|X_n| \leq c$ and $(X_n)_{n \in \mathbb{N}}$ converges \mathbb{P} -a.s. to X. Further, recall that \mathbb{P} -a.s. convergence implies convergence in probability. So there exists $N = N(\varepsilon)$ such that the right-hand side is smaller than ε for all $n \geq N$. Therefore,

$$\mathbb{E}[|X_n - X|] \to 0 \text{ as } n \to \infty.$$
(1)

Now, for $c \in (0, \infty)$ we consider the function $\phi_c : \mathbb{R} \to \mathbb{R}$ defined by

$$\phi_c(x) := (x \wedge c) \lor (-c) = \begin{cases} c & \text{if } x \ge c \\ x & \text{if } x \in (-c,c) , \quad x \in \mathbb{R} \\ -c & \text{if } x \le -c \end{cases}$$

Note that the function ϕ_c is a contraction, i.e. $|\phi_c(X_n) - \phi_c(X)| \leq |X_n - X|$, and

$$|\phi_c(X_n)| \le c, \quad n \in \mathbb{N}.$$

With $X_n \to X$ P-a.s., it follows that $\phi_c(X_n) \to \phi_c(X)$ P-a.s. (continuous mapping theorem). Hence, for any c, by (1)

$$\mathbb{E}[|\phi_c(X_n) - \phi_c(X)|] \to 0 \text{ as } n \to \infty.$$

We want to show $\mathbb{E}[|X_n - X|] \to 0$.

Note that since $(X_n)_{n \in \mathbb{N}}$ is uniformly integrable, for $\varepsilon = 1$ there exists a constant L > 0 such that

$$\mathbb{E}[|X_n|] = \mathbb{E}[|X_n|\mathbb{1}_{\{|X_n| < L\}}] + \mathbb{E}[|X_n|\mathbb{1}_{\{|X_n| \ge L\}}]$$

$$\leq L + \mathbb{E}[|X_n|\mathbb{1}_{\{|X_n| \ge L\}}]$$

$$\leq L + 1, \quad n \in \mathbb{N}.$$

So with $X_n \to X$ \mathbb{P} -a.s., we get

$$\mathbb{E}[|X|] \le \liminf_{n \to \infty} \mathbb{E}[|X_n|] < \infty$$

by Fatou's lemma. It follows

$$\mathbb{E}[|X_n - X|] \le \mathbb{E}[|X_n - \phi_c(X_n)|] + \mathbb{E}[|\phi_c(X_n) - \phi_c(X)|] + \mathbb{E}[|\phi_c(X) - X|] \\ \le \mathbb{E}[|X_n|\mathbb{1}_{\{|X_n| \ge c\}}] + \mathbb{E}[|\phi_c(X_n) - \phi_c(X)|] + \mathbb{E}[|X|\mathbb{1}_{\{|X| \ge c\}}]$$

Let $\varepsilon > 0$ be given. Choosing c large enough, by uniform integrability of $(X_n)_{n \in \mathbb{N}}$ and integrability of X the first and last summand on the right-hand side are smaller than $\frac{\varepsilon}{3}$ for all $n \in \mathbb{N}$. And there exists N = N(c) such that the second summand on the right-hand side is smaller than $\frac{\varepsilon}{3}$ for all $n \geq N$. Consequently, $\mathbb{E}[|X_n - X|] < \varepsilon$ for $n \geq N$, thus $X_n \to X$ in L^1 . (ii) To show: For every $\varepsilon > 0$ there exists an L > 0 such that

$$\sup_{\substack{\mathcal{G}\subseteq\mathcal{F},\\\mathcal{G} \ \sigma \text{-algebra}}} \mathbb{E}\left[|\mathbb{E}[X|\mathcal{G}]|\mathbb{1}_{\{|\mathbb{E}[X|\mathcal{G}]| \geq L\}}\right] < \varepsilon.$$

For $\mathcal{G} \subseteq \mathcal{F}$, \mathcal{G} σ -algebra, we have that

$$\mathbb{E}\left[|\mathbb{E}[X|\mathcal{G}]|\mathbb{1}_{\{|\mathbb{E}[X|\mathcal{G}]| \ge L\}}\right] \stackrel{\text{Jensen's ineq.}}{\leq} \mathbb{E}\left[\mathbb{E}[|X||\mathcal{G}]\mathbb{1}_{\{\mathbb{E}[|X||\mathcal{G}] \ge L\}}\right] \\ = \mathbb{E}\left[\mathbb{E}[|X||\mathbb{1}_{\{\mathbb{E}[|X||\mathcal{G}] \ge L\}}|\mathcal{G}]\right] \\ = \mathbb{E}\left[|X||\mathbb{1}_{\{\mathbb{E}[|X||\mathcal{G}] \ge L\}}\right] \\ = \mathbb{E}\left[|X||\mathbb{1}_{\{|X| > \sqrt{L}\}} + \mathbb{1}_{\{|X| \le \sqrt{L}\}}\right)\mathbb{1}_{\{\mathbb{E}[|X||\mathcal{G}] \ge L\}}\right] \\ \leq \mathbb{E}[|X|\mathbb{1}_{\{|X| > \sqrt{L}\}}] + \sqrt{L}\underbrace{\mathbb{P}\left(\mathbb{E}[|X||\mathcal{G}] \ge L\right)}_{\leq \frac{\mathbb{E}[|X|]}{L}, \text{ Markov's ineq.}} \\ \leq \mathbb{E}[|X|\mathbb{1}_{\{|X| > \sqrt{L}\}}] + L^{-\frac{1}{2}}\mathbb{E}[|X|].$$

Let $\varepsilon > 0$ be given. Choosing L large enough, the summands on the right-hand side are each smaller than $\frac{\varepsilon}{2}$. Consequently, $\mathbb{E}\left[|\mathbb{E}[X|\mathcal{G}]|\mathbb{1}_{\{|\mathbb{E}[X|\mathcal{G}]| \ge L\}}\right] < \varepsilon$. Note that the upper bound holds uniformly over all σ -algebras $\mathcal{G} \subset \mathcal{F}$ which proves the claim.

Exercise 3.2

(i) By Exercise 2.3 (ii), we know that every continuous local martingale $(M_t)_{t \in [0,T]}$, which is bounded from below, is also a super-martingale and, in particular,

$$\mathbb{E}[M_t|\mathcal{F}_s] \le M_s$$
 a.s. for all $s, t \in [0,T]$ with $s \le t$.

Hence, it is sufficient to show that

$$\mathbb{E}[M_t|\mathcal{F}_s] = M_s$$
 a.s. for all $s, t \in [0, T]$ with $s \leq t$.

Let $s, t \in [0, T]$ with $s \leq t$. We observe that

$$0 \leq M_s - \mathbb{E}[M_t | \mathcal{F}_s]$$
 a.s.

and, using the assumption $\mathbb{E}[M_t] = \mathbb{E}[M_0]$ for all $t \in [0, T]$,

$$\mathbb{E}[M_s - \mathbb{E}[M_t | \mathcal{F}_s]] = \mathbb{E}[M_s] - \mathbb{E}[M_t] = 0$$

Hence, $M_s - \mathbb{E}[M_t | \mathcal{F}_s]$ is an a.s. non-negative random variable with mean zero. This implies

$$\mathbb{E}[M_t | \mathcal{F}_s] - M_s = 0 \quad \text{a.s.},$$

which shows the claim.

(ii) (a) Let $(M_t)_{t \in [0,T]}$ be a continuous martingale in L^2 .

We want to apply Theorem 2.10 (ii) \Rightarrow (i): If $(X_t)_{t \in [0,T]}$ is right-continuous and adapted and if $X_{\tau} \in L^1$ and $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$ for any bounded stopping time τ , then X is a martingale.

By Theorem 2.20, $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is a continuous local martingale. Then $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is right-continuous and adapted.

Let $\mathscr{T} > 0$ and $\tau \leq \mathscr{T}$ be a bounded stopping time. We first show that $\mathbb{E}[M_{\tau}^2 - \langle M \rangle_{\tau}] = \mathbb{E}[M_0^2 - \langle M \rangle_0] = 0$ or, equivalently, $\mathbb{E}[M_{\tau}^2] = \mathbb{E}[\langle M \rangle_{\tau}]$.

Again, by Theorem 2.20, $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is a continuous local martingale. Let $(\tau_n)_{n \in \mathbb{N}}$ be a localizing sequence for $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$.

Note that, since $\varphi(u) = u^2$ is convex and M is assumed to be square-integrable, M^2 is a nonnegative sub-martingale which implies

$$M_{\tau_n \wedge \tau}^2 \leq \mathbb{E}[M_{\mathscr{T}}^2 | \mathcal{F}_{\tau_n \wedge \tau}].$$

Hence, $(M^2_{\tau_n \wedge \tau})_{n \in \mathbb{N}}$ is uniformly integrable. Further, as $(\tau_n)_{n \in \mathbb{N}}$ is a localizing sequence for $(M^2_t - \langle M \rangle_t)_{t \in [0,T]}$, for $t \in [0,T]$,

$$\mathbb{E}[M_{\tau_n \wedge t}^2 - \langle M \rangle_{\tau_n \wedge t}] = \mathbb{E}[M_{\tau_n \wedge t}^2 - \langle M \rangle_{\tau_n \wedge t} - (M_0^2 - \langle M \rangle_0)]$$
$$= \mathbb{E}[M_0^2 - \langle M \rangle_0 - (M_0^2 - \langle M \rangle_0)]$$
$$= 0$$

which implies $\mathbb{E}[M^2_{\tau_n \wedge t}] = \mathbb{E}[\langle M \rangle_{\tau_n \wedge t}], n \in \mathbb{N}$. Hence, $\mathbb{E}[M^2_{\tau_n \wedge \tau}] = \mathbb{E}[\langle M \rangle_{\tau_n \wedge \tau}]$. Thus,

$$\mathbb{E}[M_{\tau}^2] = \lim_{n \to \infty} \mathbb{E}[M_{\tau_n \wedge \tau}^2] = \lim_{n \to \infty} \mathbb{E}[\langle M \rangle_{\tau_n \wedge \tau}] = \mathbb{E}[\langle M \rangle_{\tau}]$$

where we applied Exercise 3.1.(i) in the first step and monotone convergence ($\langle M \rangle$ non-decreasing) in the last step.

This also gives $\mathbb{E}[M_{\tau}^2 - \langle M \rangle_{\tau}] = 0 < \infty$, i.e. $M_{\tau}^2 - \langle M \rangle_{\tau} \in L^1$. We can now conclude that $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is a martingale.

(b) Again suppose that $(M_t)_{t \in [0,T]}$ is a continuous martingale in L^2 , in particular, $\mathbb{E}[M_t^2] < \infty$ for all $t \in [0,T]$. Doob's L^p -inequality (p = 2) implies

$$\mathbb{E}\left[\sup_{t\in[0,T]}|M_t|^2\right] \le 4\mathbb{E}[M_T^2] = 4\mathbb{E}[M_T^2 - \langle M \rangle_T] = 4\mathbb{E}[M_0^2 - \langle M \rangle_0] = 0,$$

where we used that $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is a martingale by (a) and by assumption $M_0 = 0$ and $\langle M \rangle_t = 0$ for all $t \in [0,T]$. This gives $M_t = 0$ for all $t \in [0,T]$, a.s.

Alternative proof: Suppose that M is a continuous martingale in L^2 . By (a) $(M_t^2 - \langle M \rangle_t)_{t \in [0,T]}$ is a martingale. Since $\langle M \rangle_t = 0$ for all $t \in [0,T]$ it follows that M^2 is also a martingale. Then for all $t \in [0,T]$ it holds

$$\mathbb{E}[M_t^2] = \mathbb{E}[M_0^2] \stackrel{M_0=0}{=} 0.$$

This implies $M_t^2 = 0$ P-a.s. for all $t \in [0, T]$, i.e. $M_t = 0$ P-a.s. for all $t \in [0, T]$, consequently, since M is continuous, $\mathbb{P}(M_t = 0 \forall t) = 1$, by Exercise 2.1.(i).

(c) Let $(M_t)_{t \in [0,T]}$ be a continuous local martingale, not necessarily in L^2 . Consider now the localizing sequence $(\tau_n)_{n \in \mathbb{N}}$, defined by

$$\tau_n := \inf\{t \in [0,T] : |M_t| \ge n\} \land T, \ n \in \mathbb{N}.$$

Then, by Exercise 2.3.(i), $(M_{\tau_n \wedge t} - M_0)_{t \in [0,T]} \stackrel{M_0=0}{=} (M_{\tau_n \wedge t})_{t \in [0,T]} =: (M_t^{\tau_n})_{t \in [0,T]} =: M^{\tau_n}$ is a continuous martingale and in L^2 and we know, from Remark 2.22, that

$$\langle M^{\tau_n} \rangle_t = \langle M \rangle_{\tau_n \wedge t} = 0, \quad t \in [0, T],$$

for all $n \in \mathbb{N}$. So $(M_t^{\tau_n})_{\in [0,T]}$ satisfies the conditions to apply (a) and (b). Hence, by monotone convergence we get

$$\mathbb{E}\left[\sup_{t\in[0,T]}|M_t|^2\right] = \lim_{n\to\infty}\mathbb{E}\left[\sup_{t\in[0,T]}|M_{\tau_n\wedge t}|^2\right] \stackrel{(b)}{=} 0.$$

As in (b) it follows $M_t = 0$ for all $t \in [0, T]$, a.s.

Exercise 3.3

We want to show

$$\int_0^t B_s \, \mathrm{d}B_s = \frac{1}{2} \big(B_t^2 - t \big), \quad t \in [0, T]$$

Let T > t. First note that $f = B \in \mathscr{H}^2([0,T])$ because

$$\mathbb{E}\Big[\int_0^T B_s(\omega)^2 \,\mathrm{d}s\Big] \stackrel{\text{Fubini}}{=} \int_0^T \mathbb{E}[B_s^2] \,\mathrm{d}s = \int_0^T s \,\mathrm{d}s < \infty.$$

We approximate B by

$$f_n(\omega, t) = \sum_{i=0}^{n-1} B_{t_i}(\omega) \mathbb{1}_{(t_i, t_{i+1}]}(t),$$

where $t_i = \frac{i}{n}T$, i = 0, ..., n. Note that B_{t_i} is \mathcal{F}_{t_i} -measurable and $\mathbb{E}[B_{t_i}^2] = t_i^2 < \infty$, i = 0, ..., n, hence, $f_n \in \mathscr{H}_0^2$. Then

$$\|f - f_n\|_{\mathscr{H}^2}^2 = \mathbb{E}\Big[\int_0^T \sum_{i=0}^{n-1} \mathbb{1}_{(t_i, t_{i+1}]}(t)(B_t - B_{t_i})^2 \, \mathrm{d}t\Big]$$

Fubini $\sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E}[(B_t - B_{t_i})^2] \, \mathrm{d}t$
 $= \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} (t - t_i) \, \mathrm{d}t$
 $= \frac{1}{2} \sum_{i=0}^{n-1} (t_{i+1} - t_i)^2$
 $= \frac{T^2}{2n} \to 0, \quad n \to \infty.$

Therefore, for $k_n := \max\{i : t_i < t\}$

$$\begin{split} I(f \mathbb{1}_{[0,t]}) &= \lim_{n \to \infty} I(f_n \mathbb{1}_{[0,t]}) \\ &= \lim_{n \to \infty} \sum_{i \le k_n - 1} B_{t_i} (B_{t_{i+1}} - B_{t_i}) + B_{t_{k_n}} (B_t - B_{t_{k_n}}) \\ &= \lim_{n \to \infty} \sum_{i \le k_n - 1} \left(\frac{1}{2} (B_{t_{i+1}}^2 - B_{t_i}^2) - \frac{1}{2} (B_{t_{i+1}} - B_{t_i})^2 \right) + B_{t_{k_n}} (B_t - B_{t_{k_n}}) \\ &= \lim_{n \to \infty} \frac{1}{2} \underbrace{B_{t_{k_n}}^2}_{\rightarrow B_t^2} + \underbrace{B_{t_{k_n}} (B_t - B_{t_{k_n}})}_{\rightarrow 0} - \frac{1}{2} \sum_{i \le k_n - 1} (B_{t_{i+1}} - B_{t_i})^2 = \frac{1}{2} B_t^2 - \frac{1}{2} t \end{split}$$

since B is continuous, $B_0 = 0$ a.s. and

$$\lim_{n \to \infty} \sum_{i \le k_n - 1} (B_{t_{i+1}} - B_{t_i})^2 = t$$

by Corollary 2.23 $(\langle B \rangle_t = t)$ in the lecture notes.