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Exercise 3.1

(i) First, assume that the random variables |Xn| are uniformly bounded by a finite constant c. Then,
for ε > 0,

E[|Xn −X|] = E[|Xn −X|1{|Xn−X|> ε
2
}] + E[|Xn −X|1{|Xn−X|≤ ε

2
}]

≤ 2cP(|Xn −X| > ε
2) +

ε
2 .

Here, we used that |X| ≤ c P-a.s since |Xn| ≤ c and (Xn)n∈N converges P-a.s. to X.
Further, recall that P-a.s. convergence implies convergence in probability. So there exists N =
N(ε) such that the right-hand side is smaller than ε for all n ≥ N . Therefore,

E[|Xn −X|] → 0 as n → ∞. (1)

Now, for c ∈ (0,∞) we consider the function ϕc : R → R defined by

ϕc(x) := (x ∧ c) ∨ (−c) =


c if x ≥ c

x if x ∈ (−c, c)

−c if x ≤ −c

, x ∈ R.

Note that the function ϕc is a contraction, i.e. |ϕc(Xn)− ϕc(X)| ≤ |Xn −X|, and

|ϕc(Xn)| ≤ c, n ∈ N.

With Xn → X P-a.s., it follows that ϕc(Xn) → ϕc(X) P-a.s. (continuous mapping theorem).
Hence, for any c, by (1)

E[|ϕc(Xn)− ϕc(X)|] → 0 as n → ∞.

We want to show E[|Xn −X|] → 0.
Note that since (Xn)n∈N is uniformly integrable, for ε = 1 there exists a constant L > 0 such
that

E[|Xn|] = E[|Xn|1{|Xn|<L}] + E[|Xn|1{|Xn|≥L}]

≤ L+ E[|Xn|1{|Xn|≥L}]

≤ L+ 1, n ∈ N.

So with Xn → X P-a.s., we get

E[|X|] ≤ lim inf
n→∞

E[|Xn|] < ∞

by Fatou’s lemma. It follows

E[|Xn −X|] ≤ E[|Xn − ϕc(Xn)|] + E[|ϕc(Xn)− ϕc(X)|] + E[|ϕc(X)−X|]
≤ E[|Xn|1{|Xn|≥c}] + E[|ϕc(Xn)− ϕc(X)|] + E[|X|1{|X|≥c}]

Let ε > 0 be given. Choosing c large enough, by uniform integrability of (Xn)n∈N and integrability
of X the first and last summand on the right-hand side are smaller than ε

3 for all n ∈ N. And
there exists N = N(c) such that the second summand on the right-hand side is smaller than ε

3
for all n ≥ N . Consequently, E[|Xn −X|] < ε for n ≥ N , thus Xn → X in L1.



(ii) To show: For every ε > 0 there exists an L > 0 such that

sup
G⊆F ,

G σ-algebra

E
[
|E[X|G]|1{|E[X|G]|≥L}

]
< ε.

For G ⊆ F , G σ-algebra, we have that

E
[
|E[X|G]|1{|E[X|G]|≥L}

] Jensen’s ineq.
≤ E

[
E[|X| |G]1{E[|X| |G]≥L}

]
= E

[
E[|X|1{E[|X| |G]≥L}|G]

]
= E

[
|X|1{E[|X| |G]≥L}

]
= E

[
|X|

(
1{|X|>

√
L} + 1{|X|≤

√
L}

)
1{E[|X| |G]≥L}

]
≤ E[|X|1{|X|>

√
L}] +

√
L P (E[|X| |G] ≥ L)︸ ︷︷ ︸

≤E[|X|]
L

, Markov’s ineq.

≤ E[|X|1{|X|>
√
L}] + L− 1

2E[|X|].

Let ε > 0 be given. Choosing L large enough, the summands on the right-hand side are each
smaller than ε

2 . Consequently, E
[
|E[X|G]|1{|E[X|G]|≥L}

]
< ε. Note that the upper bound holds

uniformly over all σ-algebras G ⊂ F which proves the claim.

Exercise 3.2

(i) By Exercise 2.3 (ii), we know that every continuous local martingale (Mt)t∈[0,T ], which is bounded
from below, is also a super-martingale and, in particular,

E[Mt|Fs] ≤ Ms a.s. for all s, t ∈ [0, T ] with s ≤ t.

Hence, it is sufficient to show that

E[Mt|Fs] = Ms a.s. for all s, t ∈ [0, T ] with s ≤ t.

Let s, t ∈ [0, T ] with s ≤ t. We observe that

0 ≤ Ms − E[Mt|Fs] a.s.

and, using the assumption E[Mt] = E[M0] for all t ∈ [0, T ],

E[Ms − E[Mt|Fs]] = E[Ms]− E[Mt] = 0.

Hence, Ms − E[Mt|Fs] is an a.s. non-negative random variable with mean zero. This implies

E[Mt|Fs]−Ms = 0 a.s.,

which shows the claim.

(ii) (a) Let (Mt)t∈[0,T ] be a continuous martingale in L2.
We want to apply Theorem 2.10 (ii) ⇒ (i): If (Xt)t∈[0,T ] is right-continuous and adapted
and if Xτ ∈ L1 and E[Xτ ] = E[X0] for any bounded stopping time τ , then X is a martingale.

By Theorem 2.20, (M2
t −⟨M⟩t)t∈[0,T ] is a continuous local martingale. Then (M2

t −⟨M⟩t)t∈[0,T ]

is right-continuous and adapted.

Let T > 0 and τ ≤ T be a bounded stopping time.
We first show that E[M2

τ − ⟨M⟩τ ] = E[M2
0 − ⟨M⟩0] = 0 or, equivalently, E[M2

τ ] = E[⟨M⟩τ ].

Again, by Theorem 2.20, (M2
t − ⟨M⟩t)t∈[0,T ] is a continuous local martingale. Let (τn)n∈N

be a localizing sequence for (M2
t − ⟨M⟩t)t∈[0,T ].



Note that, since φ(u) = u2 is convex and M is assumed to be square-integrable, M2 is a
nonnegative sub-martingale which implies

M2
τn∧τ ≤ E[M2

T |Fτn∧τ ].

Hence, (M2
τn∧τ )n∈N is uniformly integrable. Further, as (τn)n∈N is a localizing sequence for

(M2
t − ⟨M⟩t)t∈[0,T ], for t ∈ [0, T ],

E[M2
τn∧t − ⟨M⟩τn∧t ] = E[M2

τn∧t − ⟨M⟩τn∧t − (M2
0 − ⟨M⟩0)]

= E[M2
0 − ⟨M⟩0 − (M2

0 − ⟨M⟩0)]
= 0

which implies E[M2
τn∧t] = E[⟨M⟩τn∧t], n ∈ N. Hence, E[M2

τn∧τ ] = E[⟨M⟩τn∧τ ]. Thus,

E[M2
τ ] = lim

n→∞
E[M2

τn∧τ ] = lim
n→∞

E[⟨M⟩τn∧τ ] = E[⟨M⟩τ ]

where we applied Exercise 3.1.(i) in the first step and monotone convergence (⟨M⟩ non-
decreasing) in the last step.
This also gives E[M2

τ − ⟨M⟩τ ] = 0 < ∞, i.e. M2
τ − ⟨M⟩τ ∈ L1.

We can now conclude that (M2
t − ⟨M⟩t)t∈[0,T ] is a martingale.

(b) Again suppose that (Mt)t∈[0,T ] is a continuous martingale in L2, in particular, E[M2
t ] < ∞

for all t ∈ [0, T ]. Doob’s Lp-inequality (p = 2) implies

E
[

sup
t∈[0,T ]

|Mt|2
]
≤ 4E[M2

T ] = 4E[M2
T − ⟨M⟩T ] = 4E[M2

0 − ⟨M⟩0] = 0,

where we used that (M2
t − ⟨M⟩t)t∈[0,T ] is a martingale by (a) and by assumption M0 = 0

and ⟨M⟩t = 0 for all t ∈ [0, T ].
This gives Mt = 0 for all t ∈ [0, T ], a.s.

Alternative proof: Suppose thatM is a continuous martingale in L2. By (a) (M2
t −⟨M⟩t)t∈[0,T ]

is a martingale. Since ⟨M⟩t = 0 for all t ∈ [0, T ] it follows that M2 is also a martingale.
Then for all t ∈ [0, T ] it holds

E[M2
t ] = E[M2

0 ]
M0=0
= 0.

This implies M2
t = 0 P-a.s. for all t ∈ [0, T ], i.e. Mt = 0 P-a.s. for all t ∈ [0, T ], consequently,

since M is continuous, P(Mt = 0∀t) = 1, by Exercise 2.1.(i).

(c) Let (Mt)t∈[0,T ] be a continuous local martingale, not necessarily in L2. Consider now the
localizing sequence (τn)n∈N, defined by

τn := inf{t ∈ [0, T ] : |Mt| ≥ n} ∧ T, n ∈ N.

Then, by Exercise 2.3.(i), (Mτn∧t−M0)t∈[0,T ]
M0=0
= (Mτn∧t)t∈[0,T ] =: (M τn

t )t∈[0,T ] =: M τn is
a continuous martingale and in L2 and we know, from Remark 2.22, that

⟨M τn⟩t = ⟨M⟩τn∧t = 0, t ∈ [0, T ],

for all n ∈ N. So (M τn
t )∈[0,T ] satisfies the conditions to apply (a) and (b).

Hence, by monotone convergence we get

E
[

sup
t∈[0,T ]

|Mt|2
]
= lim

n→∞
E
[

sup
t∈[0,T ]

|Mτn∧t|2
]

(b)
= 0.

As in (b) it follows Mt = 0 for all t ∈ [0, T ], a.s.



Exercise 3.3

We want to show ∫ t

0
Bs dBs =

1

2

(
B2

t − t
)
, t ∈ [0, T ]

Let T > t. First note that f = B ∈ H 2([0, T ]) because

E
[ ∫ T

0
Bs(ω)

2 ds
]

Fubini
=

∫ T

0
E[B2

s ] ds =

∫ T

0
s ds < ∞.

We approximate B by

fn(ω, t) =
n−1∑
i=0

Bti(ω)1(ti,ti+1](t),

where ti =
i
nT , i = 0, . . . , n. Note that Bti is Fti-measurable and E[B2

ti ] = t2i < ∞, i = 0, . . . , n, hence,
fn ∈ H 2

0 . Then

∥f − fn∥2H 2 = E
[ ∫ T

0

n−1∑
i=0

1(ti,ti+1](t)(Bt −Bti)
2 dt

]
Fubini
=

n−1∑
i=0

∫ ti+1

ti

E[(Bt −Bti)
2] dt

=

n−1∑
i=0

∫ ti+1

ti

(t− ti) dt

=
1

2

n−1∑
i=0

(ti+1 − ti)
2

=
T 2

2n
→ 0, n → ∞.

Therefore, for kn := max{i : ti < t}

I(f1[0,t]) = lim
n→∞

I(fn1[0,t])

= lim
n→∞

∑
i≤kn−1

Bti(Bti+1 −Bti) +Btkn
(Bt −Btkn

)

= lim
n→∞

∑
i≤kn−1

(1
2
(B2

ti+1
−B2

ti)−
1

2
(Bti+1 −Bti)

2
)
+Btkn

(Bt −Btkn
)

= lim
n→∞

1

2
B2

tkn︸︷︷︸
→B2

t

+Btkn
(Bt −Btkn

)︸ ︷︷ ︸
→0

−1

2

∑
i≤kn−1

(Bti+1 −Bti)
2 =

1

2
B2

t −
1

2
t

since B is continuous, B0 = 0 a.s. and

lim
n→∞

∑
i≤kn−1

(Bti+1 −Bti)
2 = t

by Corollary 2.23 (⟨B⟩t = t) in the lecture notes.


