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Exercise 2.1

(i) Let us assume that X,Y are indistinguishable. Let t ∈ [0, T ]. Then

{ω ∈ Ω : Xt(ω) = Yt(ω)∀t ∈ [0, T ]} ⊆ {ω ∈ Ω : Xt(ω) = Yt(ω)}

and it follows that
1 ≥ P(Xt = Yt) ≥ P(Xt = Yt ∀t ∈ [0, T ]) = 1,

which implies P(Xt = Yt) = 1, i.e., by definition X,Y are modifications of each other.

Now, let us assume that X,Y are modifications of each other and w.l.o.g. right-continuous (the
left-continuous case works analogously).
Write NX and NY for the P-null sets where X and Y are not right-continuous, respectively.
Further, let {qk, k ∈ N} = Q ∩ [0, T ] be the set of rational points in [0, T ] and consider Nqk =
{ω ∈ Ω : Xqk(ω) ̸= Yqk(ω)}, k ∈ N. Since X,Y are modifications of each other, we have
P(Nqk) = 0, k ∈ N. Hence, it holds P(N) = 0 for N := NX ∪NY ∪

⋃
k∈N

Nqk ∈ F as N is defined

as a countable union of null sets.
Clearly, we have P(N c) = 1 and we show that if ω ∈ N c, then Xt(ω) = Yt(ω) for all t ∈ [0, T ].
This then implies the result.
So let ω ∈ N c, i.e., (∗) ω ∈ N c

X ∩N c
Y and (∗∗) ω ∈

⋂
k∈N

N c
qk
, and let t ∈ [0, T ].

Since Q is dense in R, we can find a sequence (qk)k∈N ⊂ Q ∩ [0, T ] in the set of rational points
in [0, T ] such that (qk)k∈N is decreasing and converges to t. It follows

Xt(ω)
(∗)
= lim

k→∞
Xqk(ω)

(∗∗)
= lim

k→∞
Yqk(ω)

(∗)
= Yt(ω),

where we used the fact that X,Y are right-continuous. Consequently, X,Y are indistinguishable.

(ii) Let Ω = [0, T ], F = B([0, T ]) and P be a probability measure on (Ω,F) with density with respect
to the Lebesgue measure. Consider X = (Xt)t∈[0,T ], where Xt(ω) = 1{t=ω}, and Y = (Yt)t∈[0,T ],
where Yt(ω) = 0, t ∈ [0, T ], ω ∈ Ω. Note that X is neither left- nor right-continuous.
Then X,Y are modifications of each other: Let t ∈ [0, T ]. Then, Xt(ω) = 0 = Yt(ω), for t ̸= ω,
and Xt(ω) = 1 ̸= 0 = Yt(ω), for t = ω.
Since P has a density, it holds P({t}) = 0, hence P({ω ∈ Ω : ω ̸= t}) = 1. So, we get

P({ω ∈ Ω : Xt(ω) = Yt(ω)}) = P({ω : Xt(ω) = Yt(ω), t ̸= ω}) + P({ω : Xt(ω) = Yt(ω), t = ω})
= P({ω : t ̸= ω}) + P(∅)
= 1 ∀t ∈ [0, T ].

On the other hand,

P(Xt = Yt ∀t ∈ [0, T ]) = 1− P(∃t ∈ [0, T ] : Xt ̸= Yt) = 1− P(Ω) = 0,

so X,Y are not indistinguishable.

Exercise 2.2 (Lemma 2.14.)

(i) W.l.o.g. we assume M0(ω) = 0 ∀ω ∈ Ω. Otherwise, consider (M̃t)t∈[0,T ] where M̃t = Mt −M0.



(ii) Let 0 = t0 ≤ · · · ≤ tn = t, t ∈ [0, T ], n ∈ N. Note that, since M is a martingale,

E
[
MtiMti−1

]
= E

[
E
[
MtiMti−1 |Fti−1

]]
= E

[
E [Mti |Fti−1]Mti−1

]
= E

[
M2

ti−1

]
. (1)

Applying a telescope sum argument and since M0 = 0 a.s., we have that

E
[
M2

t

]
= E

[
M2

t −M2
0

]
=

n∑
i=1

E
[
M2

ti −M2
ti−1

]
=

n∑
i=1

E
[
M2

ti − 2M2
ti−1

+M2
ti−1

]
(1)
=

n∑
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E
[
(Mti −Mti−1)

2
]
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i=1

(Mti −Mti−1)
2

]
.

(iii) Let (Πn)n∈N be a sequence of partitions such that |Πn| → 0 as n → ∞. Let t ∈ T . By abuse of
notation we write

∑
ti∈Πn

or supti∈Πn
, where the sum or the supremum, respectively, is taken

over 0 = t0 ≤ . . . ≤ tn = t for (ti−1, ti] ∈ Πn, i = 1, . . . , n. It holds that

E
[
M2

t

]
= lim

n→∞
E

 ∑
ti∈Πn

(Mti −Mti−1)
2


≤ lim

n→∞
E
[
sup
ti∈Πn

|Mti −Mti−1 |︸ ︷︷ ︸
≤2C′

by ass.

∑
ti∈Πn

|Mti −Mti−1 |︸ ︷︷ ︸
≤|M |t≤C by ass.

]

dom.conv.
≤ E

[
lim
n→∞

sup
ti∈Πn

|Mti −Mti−1 |︸ ︷︷ ︸
→0 by cont. of M, |Πn|→0

·C
]

= 0.

This implies that Mt = 0 a.s. for all t ∈ [0, T ]. Consequently, by Exercise 2.1.(i) and since M is
continuous,

P({ω ∈ Ω : Mt(ω) = 0∀t ∈ [0, T ]}) = 1.

(iv) Note that (Mt)t∈[0,T ] and (|M |t)t∈[0,T ] are continuous and adapted stochastic processes. By
Exercise 1.2. τn is an (Ft)-stopping time, n ∈ N.
Hence, by optional stopping (see Theorem 2.11.) (Mτn∧t)t∈[0,T ] is a martingale and satisfies the
conditions in (ii) and (iii). Additionally, τn → ∞, τn ∧ t → t and since M is continuous, we have
Mτn∧t → Mt as n → ∞. It then holds

E
[
M2

t

]
= E

[
lim
n→∞

M2
τn∧t

]
Fatou
≤ lim inf

n→∞
E
[
M2

τn∧t
]

(iii)
= 0.

This again implies that Mt = 0 a.s. for all t ∈ [0, T ]. As above we get

P({ω ∈ Ω : Mt(ω) = 0∀t ∈ [0, T ]}) = 1.

Exercise 2.3

Recall the definition of a local martingale (Definition 2.16.)
An (Ft)-adapted process (Xt)t∈[0,T ] is called local martingale if there is an increasing sequence

(τn)n∈N of (Ft)-stopping times with τn ↑ T P-a.s. and (Xn
t )t∈[0,T ] := (Xt∧τn − X0)t∈[0,T ] is an (Ft)-

martingale for every n ∈ N. The sequence (τn)n∈N is called localizing sequence for (Xt)t∈[0,T ].



(i) Let τn := inf{t ∈ [0, T ] : |Mt| ≥ n} ∧ T , n ∈ N. Since (Mt)t∈[0,T ] is continuous, it follows by
Exercise 1.2. that τn is a stopping time, n ∈ N. Note that by definition (τn)n∈N is an increasing
sequence and τn ↑ T P-a.s.
Now, let (σk)k∈N be the localizing sequence for (Mt)t∈[0,T ]. Then for each n ∈ N we know
that (σk)k∈N is also a localizing sequence for (Mn

t )t∈[0,T ] := (Mt∧τn −M0)t∈[0,T ]. So (Mn
t )t∈[0,T ]

is a continuous local martingale and bounded. Therefore Proposition 2.18.(ii) tells us that
(Mn

t )t∈[0,T ] is a martingale. This on the other hand implies that (τn)n∈N is a localizing sequence
for (Mt)t∈[0,T ].

(ii) W.l.o.g. M0 = 0. LetMt ≥ c, t ∈ [0, T ], and (τn)n∈N be a localizing sequence forM = (Mt)t∈[0,T ].

Consider the local martingale (M̃t)t∈[0,T ] where M̃t = Mt − c ≥ 0. Clearly, if M̃ is a super-
martingale, then M is a super-martingale. Hence, we can assume c = 0. Consequently, applying
Fatou’s lemma we find for t ∈ [0, T ]

E[|Mt|] = E[Mt] = E[ lim
n→∞

M τn
t ] ≤ lim inf

n→∞
E[M τn

t ] = lim inf
n→∞

E[M τn
0 ] = E[M0] < ∞

since M0 ∈ R. Hence M is integrable. Furthermore, for s ≤ t we have, applying Fatou’s lemma,

E[Mt |Fs] = E[ lim
n→∞

M τn
t |Fs] ≤ lim inf

n→∞
E[M τn

t |Fs] = lim inf
n→∞

M τn
s = Ms a.s.

Since M is also adapted (as a local martingale), it follows that M is a super-martingale.


