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Exercise 1.1

Recall the definition of a Brownian motion (see Definition 2.1).
A real-valued stochastic process B = (Bt)t∈[0,T ] is called a (standard one-dimensional) Brownian

motion if

(BM0) B0 = 0 a.s.

(BM1) B has independent increments, i.e., Bt0 −B0, Bti −Bti−1 , i = 1, . . . , n, are independent random
variables for all n ∈ N and 0 ≤ t0 < t1 < . . . < tn ≤ T .

(BM2) The increments of B are stationary and normally distributed, i.e.,

Bt −Bs ∼ N (0, |t− s|), s, t ∈ [0, T ].

(BM3) B has almost surely continuous sample paths, i.e., the map t 7→ Bt(ω) is continuous for almost
all ω ∈ Ω.

Comment: We only check (BM0) - (BM3). (W 1
t )t∈[0,T ], (W

2
t )t∈[0,T−s] and (W 3

t )t∈[0,T ] are real-valued
stochastic processes.

(i) We separately check (BM0) - (BM3).

(BM0) This is clear since W 1
0 = −B0 = 0 a.s.

(BM1) Let n ∈ N and 0 ≤ t0 < t1 < . . . < tn ≤ T . Then we have that

Bt0 , Bti −Bti−1 , i = 1, . . . , n

are independent and so are

W 1
t0 = −Bt0 , W 1

ti −W 1
ti−1

= −(Bti −Bti−1), i = 1, . . . , n.

(BM2) Recall that for any real-valued random variable X it holds that X ∼ N (0, σ2) if and only
if −X ∼ N (0, σ2). So with

Bt −Bs ∼ N(0, |t− s|), s, t ∈ [0, T ]

we can conclude that

W 1
t −W 1

s = −(Bt −Bs) ∼ N(0, |t− s|), s, t ∈ [0, T ].

(BM3) This is clear since B has almost surely continuous paths and x → −x is a continuous
function.

(ii) We separately check (BM0) - (BM3).

(BM0) This is clear since W 2
0 = Bs+0 −Bs = 0 (a.s.)

(BM1) Let n ∈ N and 0 ≤ t0 < t1 < . . . < tn ≤ T − s. Then we have that

W 2
t0 = Bs+t0 −Bs and W 2

ti −W 2
ti−1

= Bs+ti −Bs − (Bs+ti−1 −Bs)

= Bs+ti −Bs+ti−1 , i = 1, . . . , n. (1)

Put t′i := s+ ti and note that 0 ≤ s ≤ t′0 < t′1 < . . . < t′n ≤ T . With (1) and (BM1) we then
get that the increments of W 2 are independent.



(BM2) Let t, t′ ∈ [0, T − s]. Again, it holds

W 2
t −W 2

t′ = Bs+t −Bs − (Bs+t′ −Bs) = Bs+t −Bs+t′ . (2)

Note that s + t, s + t′ ∈ [0, T ] and s + t − (s + t′) = t − t′. With (2) and (BM2) we then
conclude that

W 2
t −W 2

t′ ∼ N (0, |t− t′|).

(BM3) This follows directly since W 2 is simply a shift in t by s minus a random variable not
depending on t. So t → W 2

t (ω) is continuous for a.e. ω ∈ Ω as a composition of continuous
functions.

(iii) We separately check (BM0) - (BM3).

(BM0) This is clear since W 3
0 = αB0 +

√
1− α2B′

0 = 0 a.s.

(BM1) Let n ∈ N and 0 ≤ t0 < t1 < · · · < tn ≤ T . Then we have

W 3
t0 = αBt0 +

√
1− α2B′

t0 , W 3
ti −W 3

ti−1
= α

(
Bti −Bti−1

)
+
√
1− α2

(
B′

ti −B′
ti−1

)
,

i = 1, . . . , n,

which are independent since B and B′ are independent by assumption and we know that

Bt0 , Bt1 −Bt0 , . . . , Btn −Btn−1 and B′
t0 , B

′
t1 −B′

t0 , . . . , B
′
tn −B′

tn−1

are independent.

(BM2) Let s, t ∈ [0, T ]. Again, it holds

W 3
t −W 3

s = α(Bt −Bs) +
√
1− α2(B′

t −B′
s). (3)

Since B and B′ are BMs, we have that

Xt −Xs ∼ N (0, |t− s|), X ∈ {B,B′}. (4)

Recall that it holds for any real-valued random variables Y1, Y2: if Y1 ∼ N (0, σ2
1) and

Y2 ∼ N (0, σ2
2) are independent, then any linear combination a1Y1 + a2Y2, a1, a2 ∈ R, is

again normally distributed, particularly

a1Y1 + a2Y2 ∼ N (0, a21σ
2
1 + a22σ

2
2).

Using this and (3) and (4), we conclude that

W 3
t −W 3

s ∼ N (0, α2|t− s|+ (1− α2)|t− s|)
= N (0, |t− s|).

(BM3) This is clear since W 3 is a linear combination of a.s. continuous processes. So, t → W 3
t (ω)

is continuous for a.e. ω ∈ Ω as a composition of continuous functions.

(iv) Choose B′ = ±B. Clearly, B and B′ are not independent. In this case, we have

W 3 = (α±
√

1− α2)B.

We now show that W 3 does not satisfy (BM2) and is consequently not a Brownian motion:

Let s, t ∈ [0, T ]. We have

W 3
t −W 3

s = (α±
√

1− α2)(Bt −Bs)

Applying (BM2) for B we get that

W 3
t −W 3

s ∼ N(0, (α±
√

1− α2)2|t− s|).

But (α±
√
1− α2)2 ̸= 1 for α ∈ (0, 1). This concludes the example showing that if B and B′ are

not independent, then W 3 need not be a Brownian motion.



Exercise 1.2

Recall the definition of a stopping time (see Definition 2.10)
A random variable τ with values in [0,∞) ∪ {∞} is called a stopping time (with respect to the

filtration (Ft)t∈[0,∞)) if
{τ ≤ t} ∈ Ft for any t ∈ [0,∞).

(i) Let t ∈ [0,∞). We show that {τA ≤ t} ∈ Ft.

(Xt)t∈[0,∞) is right-continuous and A is an open set, thus we have

{τA < t} = {ω ∈ Ω | ∃ 0 ≤ s < t : Xs(ω) ∈ A}
= {ω ∈ Ω | ∃ s ∈ Q, 0 ≤ s < t : Xs(ω) ∈ A}

=
⋃

s∈Q, 0≤s<t

{Xs ∈ A} ∈ Ft

since {Xs ∈ A} ∈ Fs ⊂ Ft for all 0 ≤ s < t, s ∈ Q.

In more detail: Let ω ∈ {τA < t}, i.e., ∃ 0 ≤ s < t such that Xs(ω) ∈ A. A is open, so ∃ ε > 0
such that Bε(Xs(ω)) ⊂ A. And since X is right-continuous, ∃ δ > 0 such that for s̃ ∈ [s, s + δ]
|Xs̃(ω)−Xs(ω)| < ε

2 , i.e., Xs̃ ⊂ Bε(Xs(ω)) ⊂ A. We know that Q is dense in R and 0 ≤ s < t,
so we find s ∈ Q, 0 ≤ s < t such that Xs(ω) ∈ A.

The filtration (Ft)t∈[0,∞) is assumed to be right-continuous, so it holds

{τA ≤ t} =
⋂
n∈N

{τA < t+ 1
n} ∈

⋂
s<t

Fs = Ft+ = Ft

since {τA < t+ 1
n} ∈ Ft+ 1

n
for all n ∈ N.

(ii) Let t ∈ [0,∞). We show that {τA ≤ t} ∈ Ft.

Consider the open sets An = {y ∈ R : d(y,A) < 1
n} for n ∈ N and d(y,A) = infx∈A |x− y|. Then

A ⊂ An and An+1 ⊂ An.
Since A is closed, it is A =

⋂
n∈N

An. X is continuous and it follows that τAn ≤ τAn+1 ≤ τA, n ∈ N.

Claim: {τA ≤ t} =
⋂
n∈N

{τAn < t}.

Proof: Let ω ∈ {τA ≤ t}. This implies τAn(ω) < t for all n ∈ N, i.e., {τA ≤ t} ⊂
⋂
n∈N

{τAn < t}.

Let ω ∈
⋂
n∈N

{τAn < t}. Then ∀n ∈ N,∃ s ∈ [0, t) such that Xs(ω) ∈ An. Since X is continuous

and A =
⋂

n∈NAn, this gives
⋂
n∈N

{τAn < t} ⊂ {τA ≤ t}.

As in (i), we get that {τAn < t} ∈ Ft, n ∈ N. We conclude that

{τA ≤ t} =
⋂
n∈N

{τAn < t} ∈ Ft.

Exercise 1.3

Recall the definition of a martingale (see Definition 2.8.):
Let (Mt)t∈[0,T ] be a real-valued (Ft)-adapted stochastic process with E[|Mt|] < ∞ for all t ∈ [0, T ].

(Mt) is called a martingale if E[Mt|Fs] = Ms a.s., for all s, t ∈ [0, T ] with s ≤ t.

(i) The Brownian motion (Bt)t∈[0,T ] is a martingale: Indeed, (Bt)t∈[0,T ] is a real-valued (Ft)-adapted

stochastic process and E[|Bt|]
CSI
≤ E[B2

t ]
1/2 =

√
t < ∞ for all t ∈ [0, T ].

Let s, t ∈ [0, T ] with s < t. Then Bt −Bs is independent of Fs (Markov property, Lemma 2.6.).
It follows that

E[Bt|Fs] = Bs + E[Bt −Bs|Fs] = Bs + E[Bt −Bs] = Bs a.s.



since Bt −Bs ∼ N(0, t− s).
And clearly, E[Bt|Fs] = Bs a.s. for s, t ∈ [0, T ], s = t.

(ii) Again, (X2
t )t∈[0,T ] is a real-valued (Ft)-adapted stochastic process and

E[|X2
t |] = E[|B2

t − t|]
∆−ineq.

≤ E[B2
t ] + t = 2t < ∞ for all t ∈ [0, T ]. And it holds

E[X2
t |Fs] = E[B2

t − t|Fs] = E[(Bt −Bs +Bs)
2|Fs]− t

= E[(Bt −Bs)
2 + 2(Bt −Bs)Bs +B2

s |Fs]− t

= E[(Bt −Bs)
2] + 2E[Bt −Bs|Fs]Bs +B2

s − t

= (t− s) +B2
s − t

= B2
s − s a.s.

for s, t ∈ [0, T ], s < t. Here, we applied properties of the conditional expectation and again the
Markov property and that Bt −Bs ∼ N(0, t− s).

And clearly, E[X2
t |Fs] = X2

s a.s. for s, t ∈ [0, T ], s = t.

(iii) For σ > 0 the stochastic exponential (Zt)t∈[0,T ] of (σBt)t∈[0,T ], given by

Zt := exp

(
σBt −

1

2
σ2t

)
, t ∈ [0, T ],

is a martingale: Indeed, (Zt)t∈[0,T ] is a real-valued (Ft)-adapted stochastic process.

Let t ∈ [0, T ].

Note that Bt
d
=

√
tB1 and B1 ∼ N(0, 1), i.e., (∗) E[exp(αB1)] = exp(12α

2) for α ∈ R. It holds

E[|Zt|] = exp

(
− 1

2
σ2t

)
E
[
exp(σBt)

]
= exp

(
− 1

2
σ2t

)
E
[
exp(σ

√
tB1)

]
(∗)
= exp

(
− 1

2
σ2t

)
exp

(
1

2
σ2t

)
= 1 < ∞.

Let s, t ∈ [0, T ] with s < t. Again note that Bt −Bs
d
=

√
t− sB1. Then the Markov property of

(Bt)t∈[0,T ] and properties of the conditional expectation give

E[Zt|Fs] = E
[
exp

(
σBt −

1

2
σ2t

)∣∣∣∣Fs

]
= E

[
exp

(
σBt − σBs

)∣∣∣∣Fs

]
exp

(
σBs −

1

2
σ2t

)
= E

[
exp

(
σ(Bt −Bs)

)]
exp

(
σBs −

1

2
σ2t

)
= E

[
exp

(
σ
√
t− sB1

)]
exp

(
σBs −

1

2
σ2t

)
(∗)
= exp

(
1

2
σ2(t− s)

)
exp

(
σBs −

1

2
σ2t

)
= exp

(
σBs −

1

2
σ2s

)
= Zs a.s.

And clearly, E[Zt|Fs] = Zs a.s. for s, t ∈ [0, T ], s = t.


