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Exercise 1.1

Recall the definition of a Brownian motion (see Definition 2.1).
A real-valued stochastic process B = (By)c[o,7] is called a (standard one-dimensional) Brownian
motion if

(BMO) By =0 a.s.

(BM1) B has independent increments, i.e., By, — By, By, — By, ,, i =1,...,n, are independent random
variables foralln e Nand 0 <tp <t1 < ... <t, <T.

(BM2) The increments of B are stationary and normally distributed, i.e.,
By — Bs ~ N(0,|t —s]), s,te]0,T].
(BM3) B has almost surely continuous sample paths, i.e., the map ¢ — Bi(w) is continuous for almost
all w e Q.

Comment: We only check (BMO) - (BM3). (W)scio.r1, (Wi)iepo,r—s) and (W)ieo 1 are real-valued
stochastic processes.

(i) We separately check (BMO) - (BM3).
(BMO) This is clear since W} = —By = 0 as.
(BM1) Let n € Nand 0 <ty <t; <...<t, <T. Then we have that

Bto, Bti_Btifl? ’L':].,...,’I’L

are independent and so are
1 1 1 .
Wi = —Big, Wi, —W;, | =—(By, —By,_,), i=1,...,n.

(BM2) Recall that for any real-valued random variable X it holds that X ~ A(0,02) if and only
if —X ~ N(0,0%). So with
By — Bs ~ N(0,|t —s|), s,t€0,T]
we can conclude that

W} —W!=—(B; — Bs) ~N(0,|t —s|), s,t€]0,T].

(BM3) This is clear since B has almost surely continuous paths and z — —z is a continuous
function.

(ii) We separately check (BMO) - (BM3).
(BMO) This is clear since W¢ = Bs1o — Bs = 0 (a.s.)
(BM1) Let n e Nand 0 < tg < t; < ... <t, <T —s. Then we have that

w2

0

= Bs+to — Bs and Wt2i - Wtzi_1 = Bsyt, — Bs — (Bs-i‘ti—l - Bs)
= Bstt, — Bogt, ,, t=1,...,n. (1)

Put ¢} :== s+1t; and note that 0 < s <t{ <t} <...<t, <T.With (1) and (BM1) we then
get that the increments of W?2 are independent.



(BM2) Let t,t' € [0,T — s]. Again, it holds
W{ = Wj = Boyy — Bs — (Bsw — Bs) = Boyt — Boyyr. (2)

Note that s +t,s +t € [0,T] and s+t — (s +t') =t —¢. With (2) and (BM2) we then
conclude that

(BM3) This follows directly since W? is simply a shift in ¢ by s minus a random variable not
depending on t. So t — W72 (w) is continuous for a.e. w € ) as a composition of continuous
functions.

(iii) We separately check (BMO) - (BM3).
(BMO) This is clear since W§ = aBy + V1 — a2Bj, = 0 a.s.
(BM1) Let n e Nand 0 < tg < t; < -+ < t, <T. Then we have
Wi = aBy + V1= a’Bl,, Wi-Wi_ =a(B,-Bi,)+vV1-a?(B,~B_),
1=1,...,n,

which are independent since B and B’ are independent by assumption and we know that

Biy, Biy — Big,---, By, — By, , and B}, Bj —Bl,...,B, — Bl
are independent.
(BM2) Let s,t € [0,T]. Again, it holds
W2 — W2 = a(B; — By) 1 — a2(B} — B). (3)
Since B and B’ are BMs, we have that
X;— Xs ~N(0,|t—s|), X e{B,B}. (4)

Recall that it holds for any real-valued random variables Y7, Ys: if Y1 ~ N(0,0%) and
Yo ~ N (0,0%) are independent, then any linear combination a1Y; + a2Y3, a1,a2 € R, is
again normally distributed, particularly

a1Y1 + aaYa ~ N(0,a}o? + a303).
Using this and (3) and (4), we conclude that

Wi =W~ N(0,0%[t — s+ (1= a?)|t = s])
= N(0, [t — s]).

(BM3) This is clear since W3 is a linear combination of a.s. continuous processes. So, t — W3 (w)
is continuous for a.e. w € £ as a composition of continuous functions.

(iv) Choose B’ = £B. Clearly, B and B’ are not independent. In this case, we have
W3 =(a++v1-0a?)B.

We now show that 1?2 does not satisfy (BM2) and is consequently not a Brownian motion:
Let s,t € [0,T]. We have

W2 —W3=(a+V1-a?)(B;— By)
Applying (BM2) for B we get that
W2 — W2~ N, (a+ 1 —a2)?t —s]|).

But (a4++v1—a?)? # 1 for a € (0,1). This concludes the example showing that if B and B’ are
not independent, then W3 need not be a Brownian motion.



Exercise 1.2

Recall the definition of a stopping time (see Definition 2.10)
A random variable 7 with values in [0,00) U {co} is called a stopping time (with respect to the
filtration (F)sc(0,00)) if
{r <t} eF foranyte]|0,o00).
(i) Let t € [0,00). We show that {74 <t} € F;.

(Xt)te[0,00) is Tight-continuous and A is an open set, thus we have

{ta<t}={we]I0<s<t: Xs(w) € A}
={weQ|IseQ, 0<s<t: Xs(w) € A}
= U {xearer

s€Q,0<s<t
since {X; € Al e FsC Frforall0 <s<t,seQ.

In more detail: Let w € {74 < t}, i.e., 30 < s < ¢ such that X (w) € A. A is open, so I& > 0
such that B.(Xs(w)) C A. And since X is right-continuous, 36 > 0 such that for § € [s, s + ]
| X3(w) — Xs(w)| < §, ie., X5 C Bo(Xs(w)) C A. We know that Q is dense in R and 0 < s < ¢,
so we find s € Q, 0 < s < t such that X,(w) € A.

The filtration (F})iec[,) is assumed to be right-continuous, so it holds
{TASZL/}: m{TA<t+%}€ ﬂfszft+zft
neN s<t

since {74 <t++} € F, 1 forallneN.

(ii) Let ¢t € [0,00). We show that {74 <t} € F;.

Consider the open sets A, = {y € R: d(y, A) < 2} for n € N and d(y, A) = inf,c [z — y|. Then
AC A, and A,4+1 C A,.
Since A is closed, it is A = [ A,. X is continuous and it follows that 74, < 74,,, <74,n € N.

neN
Claim: {r4 <t} = () {ra, <t}
Proof: Let w € {TAngel\;}. This implies 74, (w) <t for all n € N, i.e., {74 <t} C ) {ra, <t}
Let w € () {74, < t}. Then ¥Yn € N,3s € [0,t) such that Xs(w) € A,. Since g(e\ils continuous
and A :nﬁfeN A, this gives ﬂN{TAn <t} C{ma <t}
ne

As in (i), we get that {74, <t} € F;, n € N. We conclude that

{ra<t}=(){ra, <t} € F
neN

Exercise 1.3

Recall the definition of a martingale (see Definition 2.8.):
Let (My)sejo,r) be a real-valued (F;)-adapted stochastic process with E[|M;|] < oo for all ¢ € [0, T].
(M) is called a martingale if E[M;|F;] = M; a.s., for all s,t € [0, 7] with s <.

(i) The Brownian motion (Bt)¢c[o,7] is a martingale: Indeed, (By).c(o,7) is a real-valued (F)-adapted

CSI
stochastic process and E[|B;|] < E[B?'/? =/t < oo for all t € [0, T].

Let s,t € [0,7] with s < t. Then B; — B; is independent of F; (Markov property, Lemma 2.6.).
It follows that

E[By|F,) = B, + E[B; — Bs|F,| = B, + E[B, — By] = B, as.



since By — Bs ~ N(0,t — s).
And clearly, E[B;|Fs] = Bs a.s. for s,t € [0,T], s =t.
(i) Again, (X7?)iejo7) is a real-valued (F;)-adapted stochastic process and
A—ineq.
E[| X2 =E[B? —t] < E[B? +t=2t<ooforallte[0,7T]. And it holds

E[X?|F,] = E[B? — t|F,] = E[(B; — Bs + Bs)*|Fs] — t

E[(B; — B,)? + 2(B; — Bs)Bs + B2| F,] — t
E[(B; — B.)’] + 2E[B; — B|F|Bs + B2 — t
(t —s)+ B2 —t

B2 -5 as.

for s,t € [0,T], s < t. Here, we applied properties of the conditional expectation and again the
Markov property and that By — By ~ N(0,t — s).

And clearly, E[X?|Fs] = X2 a.s. for s,t € [0,T], s = t.

(iii) For o > 0 the stochastic exponential (Zi)ejo,r) of (0 Bt)iejo,r), given by

1
Zy = exp <aBt - zazt), te[0,T7,

is a martingale: Indeed, (Z¢)c[o,7) is a real-valued (F;)-adapted stochastic process.
Let ¢ € [0,T].
Note that B, £ v/£B; and By ~ N(0,1), ie., (x) Elexp(aBi)] = exp(3a?) for a € R. It holds

)
— exp ( — ;U%)E[exp(m/%Bl)]

* 1 1
(:) exp < — 202t> exp <202t> =1 < o0.

Let s,t € [0, T] with s < t. Again note that By — Bs 4 v/t — sB1. Then the Markov property of
(Bt)te[o,T} and properties of the conditional expectation give

E[Z|Fs] = E| exp (UBt - ;UQt) ‘fs]

[ 1
fs} exp <UBS — 20275)

=E|exp (o(B; — Bs))] exp (O'BS - ;(Ft)

=E|exp (O’Bt — O‘Bs)

[ 1
=E|exp (m/t — 331)} exp <O’BS — 202t>

* 1 1
© exp | =0%(t — s) | exp | 0By — =0t
2 2
(o:-37)
=exp | oBs — 50 s

=Zs a.s.

And clearly, E[Z;|Fs] = Z a.s. for s,t € [0,T], s = t.



