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Exercise 3.1

Let X and Xn, n ∈ N, be random variables on a probability space (Ω,F ,P). Prove the following
statements:

(i) If (Xn)n∈N is uniformly integrable and Xn → X P-a.s., then Xn → X in L1.

(ii) If X is integrable, then the family {E[X|G] : G ⊆ F is a σ-algebra} is uniformly integrable.

Recall that a family of random variables (Yi)i∈I is called uniformly integrable if for every ε > 0 there
exists an L > 0 such that

sup
i∈I

E
[
|Yi|1|Yi|≥L

]
≤ ε.

Exercise 3.2

Let (Mt)t∈[0,T ] be a continuous local martingale with respect to the filtration (Ft)t∈[0,T ] and suppose
that T < ∞. Prove the following statements:

(i) If (Mt)t∈[0,T ] is bounded from below and E[Mt] = E[M0] < ∞ for all t ∈ [0, T ], then (Mt)t∈[0,T ]

is a martingale.

(ii) If M0 = 0 and ⟨M⟩t = 0 for all t ∈ [0, T ], then Mt = 0 for all t ∈ [0, T ], P-a.s. Proceed as follows:

a) Show that if (Mt)t∈[0,T ] is a continuous square-integrable martingale, then (M2
t −⟨M⟩t)t∈[0,T ]

is a martingale.

b) Assume that M is a continuous square-integrable martingale and show the claim.

c) Extend the argument in b) by a localization argument to obtain the result for the general
case.

Exercise 3.3

Let (Bt)t∈[0,T ] be a Brownian motion. Show that∫ t

0
Bs dBs =

1

2

(
B2

t − t
)
, t ∈ [0, T ].

Please submit your solutions by Tuesday, the 28th of September, at noon (12 pm).



Programming exercise 3

Doing this exercise is optional! Do not submit your solution for correction. If you found an elegant
solution, please do submit it so that we can improve our sample solution and thus help all students.

In this exercise, your task is to approximate pathwise Lebesque–Stieltjes integrals of the form

Xt :=

∫ t

0
f(s,Bs) ds, t ∈ [0, T ]. (1)

where B = (Bt)t∈[0,T ] is a Brownian motion, and stochastic Itô integrals of the form

Yt :=

∫ t

0
g(s,Bs) dBs, t ∈ [0, T ]. (2)

To do that, use an equal width discretization of [0, T ] with N discretization steps per time unit, and
the approximation formulas

X̂tn+1 = X̂tn + f(tn, Btn)∆n, n = 0, . . . , TN − 1, (3)

and

Ŷtn+1 = Ŷtn + g(tn, Btn)∆Bn, n = 0, . . . , TN − 1, (4)

where ∆n := tn+1 − tn and ∆Bn := Btn+1 − Btn . Use (3) and (4) to visualize that the following
equalities hold:

(i) ∫ t

0
Bs dBs =

1

2
(B2

t − t),

(ii) ∫ t

0
B2

s dBs =
1

3
B3

t −
∫ t

0
Bs ds,

(iii) ∫ t

0
s2 dBs = t2Bt − 2

∫ t

0
sBs ds.

Plot your approximations of the left- and right-hand sides of (i), (ii) and (iii) with T = 5 and
N = 5, 100, 10000 to visualize that the approximations (3) and (4) converge against the integrals (1)
and (2).

Remark. (a) The approximation in (3) is a simple Riemann sum, and we could therefore also
evaluate f on the right interval bound (tn+1, Btn+1) here. The approximation in (4) though is
a simple form of the so-called Euler-scheme. Evaluating g on (tn+1, Btn+1) would yield a wrong
convergence here.

(b) It is easy to prove the equalities (i), (ii) and (iii) by using Itô’s formula, which is the equivalent
of the fundamental theorem of calculus for the stochastic integration theory, and will be content
of the lecture soon.


