

Stopping times

Definition. A random variable τ with values in $[0, T] \cup \{\infty\}$ is called **stopping time** (with respect to the filtration $(\mathcal{F}_t)_{t \in [0,T]}$) if

$$\{\tau \leq t\} \in \mathcal{F}_t \text{ for any } t \in [0, T].$$

Interpretation: If τ is a stopping time, one can tell up to time t (based on the information in \mathcal{F}_t) whether $\tau \leq t$ or not.

Lemma. Let σ , τ be stopping times. Then:

- i) $\sigma \wedge \tau$ and $\sigma \vee \tau$ are stopping times.
- ii) If $\sigma, \tau \geq 0$, then $\sigma + \tau$ is a stopping time.
- iii) If $s \ge 0$, then $\tau + s$ is a stopping time. However, in general, τs is not.

Proof. Let $t \in [0, T]$.

- i) It holds $\{\sigma \lor \tau \le t\} = \{\sigma \le t\} \cup \{\tau \le t\} \in \mathcal{F}_t$. Analogously, $\{\sigma \land \tau \le t\} = \{\sigma \le t\} \cap \{\tau \le t\} \in \mathcal{F}_t$.
- ii) Clearly, t is a stopping time. By i) it then follows that $\sigma \wedge t$ and $\tau \wedge t$ are stopping times. So, $\{\tau \wedge t \leq s\} \in \mathcal{F}_s \subset \mathcal{F}_t$ for $s \leq t$. And it holds $\tau \wedge t \leq s$ for s > t. Hence $\sigma' := (\sigma \wedge t) + \mathbb{1}_{\{\tau > t\}}$ and $\tau' := (\tau \wedge t) + \mathbb{1}_{\{\sigma > t\}}$ are \mathcal{F}_t -measurable, and so is $\sigma' + \tau'$. Consequently, $\{\sigma + \tau \leq t\} = \{\sigma' + \tau' \leq t\} \in \mathcal{F}_t$.
- iii) By ii) $\tau + s$ is a stopping time since s is a stopping time. Now note that $\{\tau - s \leq t\} = \{\tau \leq s + t\} \in F_{s+t}$. But in general, $\mathcal{F}_{s+t} \supseteq \mathcal{F}_t$. So $\tau - s$ need not be a stopping time.

Definition. Let τ be a stopping time.

$$F_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for any } t \in [0, T] \}$$

is called σ -algebra of τ -past.

Lemma. If σ , τ are stopping times with $\sigma \leq \tau$, it holds $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Proof. Let $A \in \mathcal{F}_{\sigma}$ and $t \in [0, T]$. Then, $A \cap \{\sigma \leq t\} \in \mathcal{F}_t$ and $\{\tau \leq t\} \in \mathcal{F}_t$ since τ is a stopping time. And since $\sigma \leq \tau$, it follows

$$A \cap \{\tau \le t\} = (A \cap \{\sigma \le t\}) \cap \{\tau \le t\} \in \mathcal{F}_t$$

which shows $A \in \mathcal{F}_{\tau}$.

Hints for Exercise Sheet 2

Exercise 2.2

- (ii) Apply a telescope sum argument.
- (iii) Consider a sequence of partitions $(\Pi_n)_{n \in \mathbb{N}}$ such that $|\Pi_n| \to \infty$ as $n \to \infty$, use the arguments in ii) and apply dominated convergence.
- (iv) We want to apply optional stopping and Fatou's lemma.

Exercise 2.3

- (i) We want to apply Proposition 2.19 b).
- (ii) Again, we can apply Fatou's lemma.