Mathematisches Präludium

Ein Mathematik Vorkurs - Folien aller Vorlesungen

Peter Parczewski

1. Einführung

Wer redet da?

Dr. Peter Parczewski

Universität Mannheim Institut für Mathematik LS Wirtschaftsmathematik II (Stochastische Numerik)

Wer redet da?

Dr. Peter Parczewski

Universität Mannheim Institut für Mathematik LS Wirtschaftsmathematik II (Stochastische Numerik)

Studium/Promotion:

Mathematik (+ Physik + Biologie + Philosophie)

Wer redet da?

Dr. Peter Parczewski

Universität Mannheim Institut für Mathematik LS Wirtschaftsmathematik II (Stochastische Numerik)

Studium/Promotion:

Mathematik (+ Physik + Biologie + Philosophie)

Lehre/Forschung:

Stochastik + Funktionalanalysis + Numerik

 \bullet Vorlesungen + Übungen (24.08-25.08 + 30.08-31.08)

- \bullet Vorlesungen + Übungen (24.08-25.08 + 30.08-31.08)
- alle Folien (Webpage)

- \bullet Vorlesungen + Übungen (24.08-25.08 + 30.08-31.08)
- alle Folien (Webpage)
- Videos aus Vorjahren (online)

- \bullet Vorlesungen + Übungen (24.08-25.08 + 30.08-31.08)
- alle Folien (Webpage)
- Videos aus Vorjahren (online)
- Schulstoff Übungen (Vorjahre, Webpage)

Einführung (diese Folge)

1. Mathematik und Schulmathematik

Einführung (diese Folge)

- 1. Mathematik und Schulmathematik
- Beispiel für Mathematik

Einführung (diese Folge)

- 1. Mathematik und Schulmathematik
- 2. Beispiel für Mathematik
- 3. Sätze und Beweise

Mathematik im Studium ist Neuanfang!

Mathematik im Studium ist Neuanfang!

Schulmathematik nützlich, aber nicht notwendig!

Mathematik im Studium ist Neuanfang!

• Schulmathematik nützlich, aber nicht notwendig!

Was eher wichtig wird:

Denken und Knobeln mögen

Mathematik im Studium ist Neuanfang!

Schulmathematik nützlich, aber nicht notwendig!

Was eher wichtig wird:

- Denken und Knobeln mögen
- Zusammenhänge verstehen wollen

Mathematik im Studium ist Neuanfang!

• Schulmathematik nützlich, aber nicht notwendig!

Was eher wichtig wird:

- Denken und Knobeln mögen
- Zusammenhänge verstehen wollen
- Mathematik machen und anwenden wollen

Mathematik im Studium ist Neuanfang!

• Schulmathematik nützlich, aber nicht notwendig!

Was eher wichtig wird:

- Denken und Knobeln mögen
- Zusammenhänge verstehen wollen
- Mathematik machen und anwenden wollen
- Mathematische Sprache (saubere Begriffe und Argumente!) erlernen wollen

Für welche reellen Zahlen gilt $\sqrt{ab} \leq \frac{a+b}{2}$?

Für welche reellen Zahlen gilt $\sqrt{ab} \leq \frac{a+b}{2}$?

Sind alle Objekte definiert?

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \geq 0$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \geq 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \ge 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \ge 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$
- Die Ungleichung ist äquivalent zu $2\sqrt{ab} \le a+b \Leftrightarrow 0 \le a+b-2\sqrt{ab}$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \ge 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$
- ullet Die Ungleichung ist äquivalent zu $2\sqrt{ab} \le a+b \Leftrightarrow 0 \le a+b-2\sqrt{ab}$
- Das ist äquivalent zu $0 \le \sqrt{a^2} + \sqrt{b^2} 2\sqrt{a}\sqrt{b} = (\sqrt{a} \sqrt{b})^2$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \ge 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$
- ullet Die Ungleichung ist äquivalent zu $2\sqrt{ab} \leq a+b \Leftrightarrow 0 \leq a+b-2\sqrt{ab}$
- Das ist äquivalent zu $0 \le \sqrt{a}^2 + \sqrt{b}^2 2\sqrt{a}\sqrt{b} = (\sqrt{a} \sqrt{b})^2$
- Für alle reellen Zahlen x gilt $x^2 \ge 0$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

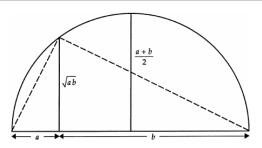
- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \geq 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$
- ullet Die Ungleichung ist äquivalent zu $2\sqrt{ab} \leq a+b \Leftrightarrow 0 \leq a+b-2\sqrt{ab}$
- Das ist äquivalent zu $0 \le \sqrt{a}^2 + \sqrt{b}^2 2\sqrt{a}\sqrt{b} = (\sqrt{a} \sqrt{b})^2$
- Für alle reellen Zahlen x gilt $x^2 \ge 0$
- Also gilt für alle $a, b \ge 0$ die Ungleichung $0 \le (\sqrt{a} \sqrt{b})^2$

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?

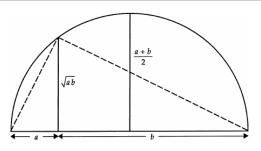
- Sind alle Objekte definiert?
- ullet $rac{a+b}{2}$ existiert für alle $a,b\in\mathbb{R}$ (reelle Zahlen)
- \sqrt{ab} existert in \mathbb{R} nur für $ab \ge 0$
- Für $a,b \le 0$ folgt $\frac{a+b}{2} \le 0 \le \sqrt{ab}$: Die Ungleichung $\sqrt{ab} \le \frac{a+b}{2}$ kann dann nur noch für a=b=0 erfüllt sein
- Also ist notwendig: $a, b \ge 0$
- ullet Die Ungleichung ist äquivalent zu $2\sqrt{ab} \leq a+b \Leftrightarrow 0 \leq a+b-2\sqrt{ab}$
- Das ist äquivalent zu $0 \le \sqrt{a}^2 + \sqrt{b}^2 2\sqrt{a}\sqrt{b} = (\sqrt{a} \sqrt{b})^2$
- Für alle reellen Zahlen x gilt $x^2 \ge 0$
- Also gilt für alle $a, b \ge 0$ die Ungleichung $0 \le (\sqrt{a} \sqrt{b})^2$
- Wegen Äquivalenzumformungen gilt also auch für alle $a,b\geq 0$ die Ungleichung $\sqrt{ab}\leq \frac{a+b}{2}$

Für welche reellen Zahlen gilt $\sqrt{ab} \leq \frac{a+b}{2}$?

Für welche reellen Zahlen gilt $\sqrt{ab} \leq \frac{a+b}{2}$?

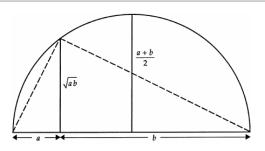


Für welche reellen Zahlen gilt $\sqrt{ab} \leq \frac{a+b}{2}$?



Allgemeiner: AM-GM-Ungleichung

Für welche reellen Zahlen gilt
$$\sqrt{ab} \le \frac{a+b}{2}$$
 ?

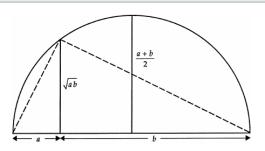


Seien
$$x_1, \ldots, x_n \ge 0$$
, so gilt:

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{x_1+x_2+\ldots+x_n}{n}$$

Ungleichung zwischen Arithmetischen und Geometrischen Mittel.

Für welche reellen Zahlen gilt $\sqrt{ab} \le \frac{a+b}{2}$?



Allgemeiner: AM-GM-Ungleichung

Seien
$$x_1, \ldots, x_n \ge 0$$
, so gilt:

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{x_1+x_2+\ldots+x_n}{n}$$

Ungleichung zwischen Arithmetischen und Geometrischen Mittel.

→ Studium: Viele weitere Ungleichungen, Verallgemeinerungen, ...

Mathematik - Uni

Wiederholung Schulmathematik:

Mathematik - Uni

Wiederholung Schulmathematik:

• (MINT BW) Online-Brückenkurs

Schulstoff und noch etwas mehr. Sehr sauber und ausführlich. Übungen integriert (Lösungen vorhanden). Abschlusstests.

Mathematik - Uni

Wiederholung Schulmathematik:

- (MINT BW) Online-Brückenkurs

 Schulstoff und noch etwas mehr. Sehr sauber und ausführlich. Übungen integriert (Lösungen vorhanden). Abschlusstests.
- Uni Mannheim VWL Wiederholungskurs: Link: Skript
 Skript mit Beispielen und Übungen+Lösungen. Viele Begriffe werden in eurem Studium genauer eingeführt.

Mathematik - Uni

Wiederholung Schulmathematik:

- (MINT BW) Online-Brückenkurs
 Schulstoff und noch etwas mehr. Sehr sauber und ausführlich. Übungen integriert (Lösungen vorhanden). Abschlusstests.
- Uni Mannheim VWL Wiederholungskurs: Plink: Skript
 Skript mit Beispielen und Übungen+Lösungen. Viele Begriffe werden in eurem Studium genauer eingeführt.
- Uni Wien Materialien
 Vorkurs Mathematik (Schulstoff und mehr):
 Arbeitsblätter, Übungsblätter und Videos zu einer Fülle von Themen. Von Schulstoff bis ins Studium.

Mathematik - Uni

Wiederholung Schulmathematik:

- (MINT BW) Online-Brückenkurs
 Schulstoff und noch etwas mehr. Sehr sauber und ausführlich. Übungen integriert (Lösungen vorhanden). Abschlusstests.
- Uni Mannheim VWL Wiederholungskurs: PLink: Skript
 Skript mit Beispielen und Übungen+Lösungen. Viele Begriffe werden in eurem Studium genauer eingeführt.
- Uni Wien Materialien
 Vorkurs Mathematik (Schulstoff und mehr):
 Link: Vorkurs Mathematik
 Arbeitsblätter, Übungsblätter und Videos zu einer Fülle von Themen. Von Schulstoff bis ins Studium.
- Hilfreicher im Studium: Die in den Grundvorlesungen verwendete Literatur zu Analysis und Lineare Algebra (genauere Hinweise in den Vorlesungen bzw. generell bei allen Dozenten)

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Beweis.

Da $x^2 \ge 0$ für alle reellen x, ist für alle $a, b \ge 0$: $(\sqrt{a} - \sqrt{b})^2 \ge 0$.

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Beweis.

Da $x^2 \ge 0$ für alle reellen x, ist für alle $a, b \ge 0$: $(\sqrt{a} - \sqrt{b})^2 \ge 0$. Nach Umformen ist $0 \le (\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$.

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Beweis.

Da $x^2 \ge 0$ für alle reellen x, ist für alle $a, b \ge 0$: $(\sqrt{a} - \sqrt{b})^2 \ge 0$.

Nach Umformen ist $0 \le (\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$.

Also folgt $\sqrt{ab} \leq \frac{a+b}{2}$.

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Beweis.

Da $x^2 \ge 0$ für alle reellen x, ist für alle $a, b \ge 0$: $(\sqrt{a} - \sqrt{b})^2 \ge 0$.

Nach Umformen ist $0 \le (\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$.

Also folgt $\sqrt{ab} \leq \frac{a+b}{2}$.

Satz

Die Kreiszahl π ist irrational.

Satz

Für alle reellen $a, b \ge 0$ gilt $\sqrt{ab} \le \frac{a+b}{2}$.

Beweis.

Da $x^2 \ge 0$ für alle reellen x, ist für alle $a, b \ge 0$: $(\sqrt{a} - \sqrt{b})^2 \ge 0$.

Nach Umformen ist $0 \le (\sqrt{a} - \sqrt{b})^2 = a + b - 2\sqrt{ab}$.

Also folgt $\sqrt{ab} \leq \frac{a+b}{2}$.

Satz

Die Kreiszahl π ist irrational.

Der Beweis ist hier zu lang: Angenommen, π ist rational, d.h. $\pi = \frac{m}{n}$ für natürliche Zahlen . . .

Typische Sätze im Studium werden auch mal länger sein:

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X,d) ein vollständiger metrischer Raum, $f:X\to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^*\in X$ und die Folge $x_{n+1}:=f(x_n)$ konvergiert für jeden Startwert $x_0\in X$ gegen x^* . Zudem gilt die a priori Abschätzung

 $d(x_k, x^*) \leq \frac{K^k}{1 - K} d(x_0, x_1).$

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X, d) ein vollständiger metrischer Raum, $f: X \to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^* \in X$ und die Folge $x_{n+1} := f(x_n)$ konvergiert für jeden Startwert $x_0 \in X$ gegen x^* . Zudem gilt die a priori Abschätzung

 $d(x_k,x^*) \leq \frac{K^k}{1-K}d(x_0,x_1).$

• Der mathematische Satz ist eine Aussage

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X, d) ein vollständiger metrischer Raum, $f: X \to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^* \in X$ und die Folge $x_{n+1} := f(x_n)$ konvergiert für jeden Startwert $x_0 \in X$ gegen x^* . Zudem gilt die a priori Abschätzung $d(x_k, x^*) \le \frac{K^k}{1 - K} d(x_0, x_1).$

 $1 - K^{2(N_0, N_1)}$

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X, d) ein vollständiger metrischer Raum, $f: X \to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^* \in X$ und die Folge $x_{n+1} := f(x_n)$ konvergiert für jeden Startwert $x_0 \in X$ gegen x^* . Zudem gilt die a priori Abschätzung $d(x_k, x^*) \le \frac{K^k}{1 - K} d(x_0, x_1).$

V = 1 - K

- Der Beweis ist logische/schlüssige Begründung aus Sätzen und Definitionen

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X,d) ein vollständiger metrischer Raum, $f:X\to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^*\in X$ und die Folge $x_{n+1}:=f(x_n)$ konvergiert für jeden Startwert $x_0\in X$ gegen x^* . Zudem gilt die a priori Abschätzung

 $d(x_k,x^*) \leq \frac{K^k}{1-K}d(x_0,x_1).$

- Der Beweis ist logische/schlüssige Begründung aus Sätzen und Definitionen
- Eine **Definition** erklärt einen Begriff oder Zusammenhang durch bereits bekannte Begriffe und Zusammenhänge (z.B. rationale Zahlen $\mathbb{Q}:=\{\frac{m}{n}:m,n\in\mathbb{Z},n>0\}$)

Typische Sätze im Studium werden auch mal länger sein:

Satz (Banachscher Fixpunktsatz)

Sei (X, d) ein vollständiger metrischer Raum, $f: X \to X$ eine Kontraktion mit Konstante K. Dann besitzt f genau einen **Fixpunkt** $x^* \in X$ und die Folge $x_{n+1} := f(x_n)$ konvergiert für jeden Startwert $x_0 \in X$ gegen x^* . Zudem gilt die a priori Abschätzung

 $d(x_k, x^*) \leq \frac{K^k}{1 - \kappa} d(x_0, x_1).$

- Der mathematische Satz ist eine Aussage d.h. entweder wahr oder falsch \rightsquigarrow Logik
- Der Beweis ist logische/schlüssige Begründung aus Sätzen und Definitionen
- Eine **Definition** erklärt einen Begriff oder Zusammenhang durch bereits bekannte Begriffe und Zusammenhänge (z.B. rationale Zahlen $\mathbb{Q} := \{ \frac{m}{n} : m, n \in \mathbb{Z}, n > 0 \}$
- Mathematik ist demnach die T\u00e4tigkeit, aus S\u00e4tzen und Beweisen, neue Sätze und **neue** Beweise zu erzeugen! 4 m b 4 個 b 4 图 b 4 图 b 图

2. Aussagen

Eine **Aussage** ist ein Satz, dem ein Wahrheitswert **wahr** oder **falsch**, eindeutig zugeordnet werden kann (auch wenn dieser Wahrheitswert unbekannt ist).

Das sind (aussagenlogische) Aussagen :

4 > 49/8

Das sind keine Aussagen:

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet

Das sind keine Aussagen:

Das sind (aussagenlogische) Aussagen :

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

Guten Tag!

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

- Guten Tag!
- 3 + 2 <
 </p>

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

- Guten Tag!
- 3 + 2 <
- 42

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

- Guten Tag!
- 3 + 2 <
- 42

Das sind (aussagenlogische) Aussagen :

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

- Guten Tag!
- 3 + 2 <
- 42

Die **Aussagenoperationen**, d.h. zusammengesetzte Aussagen für Aussagen A und B, sind:

Das sind (aussagenlogische) Aussagen:

- 4 > 49/8
- Am 24.08.1823 hat es in Mannheim geregnet
- Es gibt unendlich viele Primzahlen

Das sind keine Aussagen:

- Guten Tag!
- 3 + 2 <
- 42

Die Aussagenoperationen, d.h. zusammengesetzte Aussagen für Aussagen A und B. sind:

 $\neg A$ Nicht A (A gilt nicht)

 $A \wedge B$ A und B gelten gleichzeitig

 $A \vee B$ Es gilt A oder B (oder beide!)

 $A \Rightarrow B$ Aus A folgt B (Wenn A, dann B)

(A ist hinreichend für B bzw. B ist notwendig für A)

 $A \Leftrightarrow B$ A gilt genau dann, wenn B gilt (A und B sind logisch äquivalent)

4 □ → 4 □ → 4 □ →

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

Α	$\neg A$
W	f
f	w

Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
W	W	W	W	W	W
W	f	W	f	f	f
f	W	W	f	w	f
f	f	f	f	w	W

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W	W	W
W	f	W	f	W	f	f	f
f	w	f	W	W	f	W	f
	'	f	f	f	f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W	W	W
W	f	W	f	W	f	f	f
f	w	f	W	W	f	W	f
	'	f	f	f	f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. ⇔: die rechte Seite definiert.

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W	W	W
W	f	W	f	W	f	f	f
f	w	f	W	W	f	W	f
	1	f	f	f	f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. $\Leftrightarrow:$ die rechte Seite definiert.

Beispiele:

• neue Aussagenoperation $A|B :\Leftrightarrow \neg(A \land B)$.

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W f	W f	W
W	f	W		W	f	f	f
f	w	f	W	W	f	W	f
	1	f	f	f	f	W	w

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. $\Leftrightarrow:$ die rechte Seite definiert.

Beispiele:

- neue Aussagenoperation $A|B :\Leftrightarrow \neg(A \land B)$.
- $\sqrt{2}$:= die positive reelle Zahl, die die Gleichung $x^2 = 2$ löst

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W f	W f	W f
W	f	W		W	f	f	f
f	w	f	W	w	f	W	f
	1	f	f	f	f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. ⇔: die rechte Seite definiert.

Beispiele:

- neue Aussagenoperation $A|B :\Leftrightarrow \neg(A \land B)$.
- $\sqrt{2}$:= die positive reelle Zahl, die die Gleichung $x^2 = 2$ löst
- $n \in \mathbb{N}$ ist teilbar durch $m \in \mathbb{N}$: \Leftrightarrow es gibt ein $k \in \mathbb{N}$ mit n = mk

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	W f	W f	W f
W	f	W		W	f	f	f
f	w	f	W	w	f	W	f
	1	f	f	f	f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. ⇔: die rechte Seite definiert.

Beispiele:

- neue Aussagenoperation $A|B :\Leftrightarrow \neg(A \land B)$.
- $\sqrt{2}$:= die positive reelle Zahl, die die Gleichung $x^2 = 2$ löst
- $n \in \mathbb{N}$ ist teilbar durch $m \in \mathbb{N}$: \Leftrightarrow es gibt ein $k \in \mathbb{N}$ mit n = mk

Die Wahrheitswerte von zusammengesetzten Aussagen werden durch Wahrheitstabellen bzw. Wahrheitstafeln festgelegt bzw. definiert.

Die **logische Äquivalenz** von Aussagen erfolgt ebenfalls durch Betrachtung von Wahrheitstafeln, wie in den letzten beiden Spalten veranschaulicht. Wir kürzen im Weiteren wahr (w) und falsch (f) ab:

		Α	В	$A \vee B$	$A \wedge B$	$A \Rightarrow B$	$A \Leftrightarrow B$
Α	$\neg A$	W	W	W	w f	W f	W f
W	f	W		W			f
f	w	f	W	W	f	W	f
	1	f	f	f	f f	W	W

:= bzw. :⇔ Linke Seite wird **definiert** durch/als (**Definition**).

Analog wird bei =: bzw. $\Leftrightarrow:$ die rechte Seite definiert.

Beispiele:

- neue Aussagenoperation $A|B : \Leftrightarrow \neg(A \land B)$.
- $\sqrt{2}$:= die positive reelle Zahl, die die Gleichung $x^2 = 2$ löst
- $n \in \mathbb{N}$ ist teilbar durch $m \in \mathbb{N}$: \Leftrightarrow es gibt ein $k \in \mathbb{N}$ mit n = mk

Ein **Prädikat** p(x) wird erst durch Einsetzen von x zu einer Aussage, ein Beispiel ist x > 3.

• Mannheim liegt am Meer

- Mannheim liegt am Meer
- 4 < 7

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- 2²²⁰² − 1 ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn n durch 9 teilbar ist, dann ist es auch durch 3 teilbar

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn *n* durch 9 teilbar ist, dann ist es auch durch 3 teilbar
- Dieser Satz ist falsch

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn n durch 9 teilbar ist, dann ist es auch durch 3 teilbar
- Dieser Satz ist falsch
 - → (Paradoxien, mathematische/philosophische Logik)

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn n durch 9 teilbar ist, dann ist es auch durch 3 teilbar
- Dieser Satz ist falsch
 - √ (Paradoxien, mathematische/philosophische Logik)
- 309 ist genau dann eine Primzahl, wenn der Mars bewohnt ist

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn n durch 9 teilbar ist, dann ist es auch durch 3 teilbar
- Dieser Satz ist falsch
 - √ (Paradoxien, mathematische/philosophische Logik)
- 309 ist genau dann eine Primzahl, wenn der Mars bewohnt ist
- $\pi^7 > 1000 \text{ oder } \pi^7 \le 1000$

- Mannheim liegt am Meer
- 4 < 7
- Heute riecht es in Mannheim nach Schokolade
- Grüßgottle!
- Es gibt unendlich viele Primzahlzwillinge (d.h. Primzahlen mit Differenz 2)
- $2^{2202} 1$ ist eine Primzahl
- ullet Mannheim liegt am Meer und $\pi^7 < 2^{12}$
- Wenn n durch 9 teilbar ist, dann ist es auch durch 3 teilbar
- Dieser Satz ist falsch
 - → (Paradoxien, mathematische/philosophische Logik)
- 309 ist genau dann eine Primzahl, wenn der Mars bewohnt ist
- $\pi^7 > 1000 \text{ oder } \pi^7 \le 1000$
- Donald kann lesen und Donald kann nicht lesen

Satz. Für jede Aussage *A* gilt:

- $A \lor \neg A$ ist immer wahr (allgemeingültig bzw. Tautologie)
- $A \land \neg A$ ist immer falsch (Widerspruch)

Satz. Für jede Aussage *A* gilt:

- $A \lor \neg A$ ist immer wahr (allgemeingültig bzw. Tautologie)
- $A \land \neg A$ ist immer falsch (Widerspruch)

Logische Äquivalenz von Aussagen mittels Wahrheitstafeln.

Α	В	$A \Rightarrow B$	$\neg A \lor B$
W	W	W	W
W	f	f	f
f	w	w	W
f	f	w	W

Also ist $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$

Wahrheitswerte weiterer zusammengesetzter Aussagen erfolgen analog iterativ.

Α	В	C	$A \vee B$	$A \Rightarrow C$	$(A \vee B) \wedge (A \Rightarrow C)$
W	W	W	W	W	W
W	W	f	W	f	f
W	f	w	W	w	W
W	f	f	W	f	f
f	w	w	W	w	w
f	W	f	W	w	W
f	f	w	f	W	f
f	f	f	f	w	f

3. Mengen

 $x \in M$ x ist Element der Menge M

 $x \notin M$ x ist nicht Element der Menge M $(x \notin M \Leftrightarrow \neg(x \in M))$

Definition einer Menge oftmals mittels einer Aussage als Bedingung (geschweiften Klammern!):

$$M:=\{x:p(x)\}$$
 bzw. $M:=\{x\,|\,p(x)\}$ (d.h. Menge der x , für die $p(x)$ gilt)

Mengen Beispiele:

 \bullet The Beatles := {John Lennon, Paul McCartney, George Harrison, Ringo Starr}

 $x \in M$ x ist Element der Menge M

 $x \notin M$ x ist nicht Element der Menge M $(x \notin M \Leftrightarrow \neg(x \in M))$

Definition einer Menge oftmals mittels einer Aussage als Bedingung (geschweiften Klammern!):

$$M:=\{x:p(x)\}$$
 bzw. $M:=\{x\,|\,p(x)\}$ (d.h. Menge der x , für die $p(x)$ gilt)

Mengen Beispiele:

- \bullet The Beatles := {John Lennon, Paul McCartney, George Harrison, Ringo Starr}
- ullet Die Menge der natürlichen Zahlen $\mathbb{N}:=\{1,2,3,\ldots\}$

 $x \in M$ x ist Element der Menge M

$$x \notin M$$
 x ist nicht Element der Menge M $(x \notin M \Leftrightarrow \neg(x \in M))$

Definition einer Menge oftmals mittels einer Aussage als Bedingung (geschweiften Klammern!):

$$M:=\{x:p(x)\}$$
 bzw. $M:=\{x\,|\,p(x)\}$ (d.h. Menge der x , für die $p(x)$ gilt)

Mengen Beispiele:

- \bullet The Beatles := {John Lennon, Paul McCartney, George Harrison, Ringo Starr}
- ullet Die Menge der natürlichen Zahlen $\mathbb{N}:=\{1,2,3,\ldots\}$
- $\{1,2,3,2,1\}=\{1,2,3\}=\{3,2,1\}$ (Es gibt hier nur drei verschiedene Elemente!)

 $x \in M$ x ist Element der Menge M

$$x \notin M$$
 x ist nicht Element der Menge M $(x \notin M \Leftrightarrow \neg(x \in M))$

Definition einer Menge oftmals mittels einer Aussage als Bedingung (geschweiften Klammern!):

$$M:=\{x:p(x)\}$$
 bzw. $M:=\{x\,|\,p(x)\}$ (d.h. Menge der x , für die $p(x)$ gilt)

Mengen Beispiele:

- \bullet The Beatles := {John Lennon, Paul McCartney, George Harrison, Ringo Starr}
- Die Menge der natürlichen Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- $\{1,2,3,2,1\} = \{1,2,3\} = \{3,2,1\}$ (Es gibt hier nur drei verschiedene Elemente!)
- {2, Olaf Scholz, {1,2,3}} (Elemente sind beliebig, können auch selbst Mengen sein!)

Mit **Quantoren** wird eine Aussage (mittels Prädikat $p(\cdot)$) über eine Menge M abgekürzt:

 $\forall x \in M : p(x)$ bedeutet: **Für alle** Elemente x in M gilt p(x)

 $\exists x \in M : p(x)$ bedeutet: **Es gibt (mindestens) ein** Element x in M,

für das p(x) gilt

Mit **Quantoren** wird eine Aussage (mittels Prädikat $p(\cdot)$) über eine Menge M abgekürzt:

 $\forall x \in M : p(x)$ bedeutet: **Für alle** Elemente x in M gilt p(x)

 $\exists x \in M : p(x)$ bedeutet: **Es gibt (mindestens) ein** Element x in M,

für das p(x) gilt

Beispiele (Verwendung von Quantoren nur in Formeln zu Abkürzung, nie im Text):

• $\forall n \in \mathbb{N} : 2^n \ge n^2$ (Für alle natürliche Zahlen n gilt $2^n \ge n^2$. D.h. $2^1 \ge 1^2$ usw.)

Mit **Quantoren** wird eine Aussage (mittels Prädikat $p(\cdot)$) über eine Menge M abgekürzt:

 $\forall x \in M : p(x)$ bedeutet: **Für alle** Elemente x in M gilt p(x)

 $\exists x \in M : p(x)$ bedeutet: **Es gibt (mindestens) ein** Element x in M,

für das p(x) gilt

Beispiele (Verwendung von Quantoren nur in Formeln zu Abkürzung, nie im Text):

- $\forall n \in \mathbb{N} : 2^n \ge n^2$ (Für alle natürliche Zahlen n gilt $2^n \ge n^2$. D.h. $2^1 \ge 1^2$ usw.)
- $n \in \mathbb{N}$ gerade : $\Leftrightarrow \exists m \in \mathbb{N} : n = 2m$ (Definition: gerade bedeutet durch 2 teilbar)

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

$$A \cup B := \{x : x \in A \lor x \in B\}$$

$$A \cap B := \{x : x \in A \land x \in B\}$$

$$A \times B := \{(x,y) : x \in A, y \in B\}$$

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

A **Teilmenge** von B

Gleichheit

Vereinigung

Durchschnitt

kartesisches Produkt

Komplement von *B* in *A*

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

$$A \cup B := \{x : x \in A \lor x \in B\}$$

$$A \cap B := \{x : x \in A \land x \in B\}$$

$$A \times B := \{(x, y) : x \in A, y \in B\}$$

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

Gleichheit

Vereinigung

Durchschnitt

kartesisches Produkt

Komplement von *B* in *A*

$$\bullet \ \{1,2\} \cup \{0,1,5\} = \{0,1,2,5\}$$

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

$$A \cup B := \{x : x \in A \lor x \in B\}$$

$$A \cap B := \{x : x \in A \land x \in B\}$$

$$A \times B := \{(x,y) : x \in A, y \in B\}$$

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

A Teilmenge von B

Gleichheit

Vereinigung

Durchschnitt

kartesisches Produkt

Komplement von *B* in *A*

Beispiele:

- $\bullet \ \{1,2\} \cap \{0,1,5\} = \{1\}$

$$A \subseteq B :\Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

$$A \cup B := \{x : x \in A \lor x \in B\}$$

$$A \cap B := \{x : x \in A \land x \in B\}$$

$$A \times B := \{(x,y) : x \in A, y \in B\}$$

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

A **Teilmenge** von B

Gleichheit

Vereinigung

Durchschnitt

kartesisches Produkt

Komplement von *B* in *A*

- $\bullet \ \{1,2\} \cup \{0,1,5\} = \{0,1,2,5\}$
- $\bullet \ \{1,2\} \cap \{0,1,5\} = \{1\}$

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

A Teilmenge von B

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$

Gleichheit

$$A \cup B := \{x : x \in A \lor x \in B\}$$

Vereinigung

$$A \cap B := \{x : x \in A \land x \in B\}$$

Durchschnitt

$$A \times B := \{(x,y) : x \in A, y \in B\}$$

kartesisches Produkt

$$A \setminus B := \{x : x \in A \land x \notin B\}$$

Komplement von *B* in *A*

$$\bullet \ \{1,2\} \cup \{0,1,5\} = \{0,1,2,5\}$$

•
$$\{1,2\} \cap \{0,1,5\} = \{1\}$$

•
$$\{n \in \mathbb{N} : n \text{ gerade}\} = \{2n \mid n \in \mathbb{N}\} = 2\mathbb{N} \subsetneq \mathbb{N}$$

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$
 A **Teilmenge** von B

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$
 Gleichheit

$$A \cup B := \{x : x \in A \lor x \in B\}$$
 Vereinigung

$$A \cap B := \{x : x \in A \land x \in B\}$$
 Durchschnitt

$$A \times B := \{(x, y) : x \in A, y \in B\}$$
 kartesisches Produkt

$$A \setminus B := \{x : x \in A \land x \notin B\}$$
 Komplement von B in A

- $\bullet \ \{1,2\} \cup \{0,1,5\} = \{0,1,2,5\}$
- $\bullet \ \{1,2\} \cap \{0,1,5\} = \{1\}$
- $\{n \in \mathbb{N} : n \text{ gerade}\} = \{2n \mid n \in \mathbb{N}\} = 2\mathbb{N} \subsetneq \mathbb{N}$
- $\{1,2,3\} \times \{A,B\} = \{(1,A),(2,A),(3,A),(1,B),(2,B),(3,B)\}$

$$A \subseteq B : \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$
 A **Teilmenge** von B

$$A = B :\Leftrightarrow (A \subseteq B) \land (B \subseteq A)$$
 Gleichheit

$$A \cup B := \{x : x \in A \lor x \in B\}$$
 Vereinigung

$$A \cap B := \{x : x \in A \land x \in B\}$$
 Durchschnitt

$$A \times B := \{(x, y) : x \in A, y \in B\}$$
 kartesisches Produkt

$$A \setminus B := \{x : x \in A \land x \notin B\}$$
 Komplement von B in A

$$\bullet \ \{1,2\} \cup \{0,1,5\} = \{0,1,2,5\}$$

$$\bullet \ \{1,2\} \cap \{0,1,5\} = \{1\}$$

•
$$\{n \in \mathbb{N} : n \text{ gerade}\} = \{2n \mid n \in \mathbb{N}\} = 2\mathbb{N} \subsetneq \mathbb{N}$$

•
$$\{1,2,3\} \times \{A,B\} = \{(1,A),(2,A),(3,A),(1,B),(2,B),(3,B)\}$$

•
$$A_1 \times \cdots \times A_k := \{(x_1, x_2, \dots, x_k) : x_1 \in A_1, \dots, x_k \in A_k\}$$
 Menge von **k-Tupeln**

Beachte den Unterschied:

Menge {...} Reihenfolge irrelevant, Elemente verschieden! **Tupel/Vektor** (...) Reihenfolge relevant! Elemente evtl. identisch!

Beachte den Unterschied:

Menge {...} Reihenfolge irrelevant, Elemente verschieden!

Tupel/Vektor (...) Reihenfolge relevant! Elemente evtl. identisch!

• $\{1,2,3\} = \{2,3,1\} = \{3,2,1\}$ ist eine (!) Menge

Beachte den Unterschied:

Menge {...} Reihenfolge irrelevant, Elemente verschieden! **Tupel/Vektor** (...) Reihenfolge relevant! Elemente evtl. identisch!

- $\{1,2,3\} = \{2,3,1\} = \{3,2,1\}$ ist eine (!) Menge
- $(1,2,3) \neq (2,3,1) \neq (3,2,1)$ sind drei verschiedene Vektoren im \mathbb{R}^3

Wichtige Zahlenmengen:

 \bullet **Potenzmenge** einer Menge M ist die Menge aller Teilmengen :

$$\mathcal{P}(M) := \{U : U \subseteq M\}$$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- Ganze Zahlen $\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- \bullet Ganze Zahlen $\mathbb{Z}:=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$
- Rationale Zahlen (Brüche) $\mathbb{Q} := \{z/n : z \in \mathbb{Z}, n \in \mathbb{N}\}$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- Ganze Zahlen $\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Rationale Zahlen (Brüche) $\mathbb{Q} := \{z/n : z \in \mathbb{Z}, n \in \mathbb{N}\}$
- **Primzahlen** $Prim := \{n : n \ge 2, n \text{ hat nur die Teiler 1 und } n\}$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- \bullet Ganze Zahlen $\mathbb{Z}:=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$
- Rationale Zahlen (Brüche) $\mathbb{Q} := \{z/n : z \in \mathbb{Z}, n \in \mathbb{N}\}$
- **Primzahlen** $Prim := \{n : n \ge 2, n \text{ hat nur die Teiler 1 und } n\}$
- $\bullet \ \ \textbf{Reelle Zahlen} \ \mathbb{R} \ (\mathsf{Analysis!}). \ \mathsf{Es \ gilt:} \ \ \Pr{\mathrm{im} \subsetneqq \mathbb{N} \subsetneqq \mathbb{Z} \subsetneqq \mathbb{Q} \subsetneqq \mathbb{R}}$

- **Potenzmenge** einer Menge M ist die Menge aller Teilmengen : $\mathcal{P}(M) := \{U : U \subseteq M\}$
- Leere Menge $\emptyset := \{\}$ (Es gilt für jede Menge $M : \emptyset \subseteq M$)
- Natürliche Zahlen $\mathbb{N} := \{1, 2, 3, \ldots\}$
- Ganze Zahlen $\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Rationale Zahlen (Brüche) $\mathbb{Q} := \{z/n : z \in \mathbb{Z}, n \in \mathbb{N}\}$
- **Primzahlen** $Prim := \{n : n \ge 2, n \text{ hat nur die Teiler 1 und } n\}$
- Reelle Zahlen $\mathbb R$ (Analysis!). Es gilt: $\operatorname{Prim} \subsetneq \mathbb N \subsetneq \mathbb Z \subsetneq \mathbb Q \subsetneq \mathbb R$
- Intervalle

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$
 (abgeschlossenes Intervall)
$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$
 (offenes Intervall)
$$[a,b) := \{x \in \mathbb{R} : a \le x < b\},$$
 (halboffene Intervalle)
$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$
 (halboffene Intervalle)

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

- ullet Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

• $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!
- $\mathcal{P}(\{1,\pi,\Omega\}) = \{\emptyset, \{1\}, \{\pi\}, \{\Omega\}, \{1,\pi\}, \{1,\Omega\}, \{\pi,\Omega\}, \{1,\pi,\Omega\}\}\$

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!
- $\mathcal{P}(\{1,\pi,\Omega\}) = \{\emptyset, \{1\}, \{\pi\}, \{\Omega\}, \{1,\pi\}, \{1,\Omega\}, \{\pi,\Omega\}, \{1,\pi,\Omega\}\}\$

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!
- $\mathcal{P}(\{1,\pi,\Omega\}) = \{\emptyset, \{1\}, \{\pi\}, \{\Omega\}, \{1,\pi\}, \{1,\Omega\}, \{\pi,\Omega\}, \{1,\pi,\Omega\}\}$

Es gilt für jede Menge *M*:

• \emptyset , $M \in \mathcal{P}(M)$

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!
- $\mathcal{P}(\{1,\pi,\Omega\}) = \{\emptyset, \{1\}, \{\pi\}, \{\Omega\}, \{1,\pi\}, \{1,\Omega\}, \{\pi,\Omega\}, \{1,\pi,\Omega\}\}$

Es gilt für jede Menge M:

• \emptyset , $M \in \mathcal{P}(M)$

Die naive Definition der Menge führte zu Widersprüchen! (→ Grundlagenkrise der Mathematik)

- Für jede Menge M gilt: $\emptyset \subseteq M$
- $\emptyset \neq \{0\}$

Es ist:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}$ Die Potenzmenge der leeren Menge ist nichtleer!
- $\mathcal{P}(\{1,\pi,\Omega\}) = \{\emptyset, \{1\}, \{\pi\}, \{\Omega\}, \{1,\pi\}, \{1,\Omega\}, \{\pi,\Omega\}, \{1,\pi,\Omega\}\}$

Es gilt für jede Menge M:

• \emptyset , $M \in \mathcal{P}(M)$

Die naive Definition der Menge führte zu Widersprüchen! (→ Grundlagenkrise der Mathematik) Ist das eine Menge?

$$R := \{x \text{ Menge} : x \notin x\}$$
 (Russell 1903)

4. Abbildungen

$$f:A\to B,\ a\mapsto f(a)$$

ordnet jedem Element $a \in A$ eindeutig ein $f(a) \in B$ zu.

$$f:A\to B,\ a\mapsto f(a)$$

ordnet jedem Element $a \in A$ eindeutig ein $f(a) \in B$ zu.

• Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.

$$f: A \rightarrow B, \ a \mapsto f(a)$$

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das **Bild** von a, bzw. a das **Urbild** von b.

$$f: A \rightarrow B, \ a \mapsto f(a)$$

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das Bild von a, bzw. a das Urbild von b.
- Für $C \subseteq A$ heißt $f(C) = \{f(a) | a \in C\} \subseteq B$ das **Bild** von C und für $D \subseteq B$ heißt $f^{-1}(D) = \{a | f(a) \in D\} \subseteq A$ das **Urbild** von D.

$$f: A \rightarrow B, \ a \mapsto f(a)$$

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das Bild von a, bzw. a das Urbild von b.
- Für $C \subseteq A$ heißt $f(C) = \{f(a) | a \in C\} \subseteq B$ das **Bild** von C und für $D \subseteq B$ heißt $f^{-1}(D) = \{a | f(a) \in D\} \subseteq A$ das **Urbild** von D.
- Die Menge f(A) heißt Wertebereich/-menge und A Definitionsbereich/-menge von f.

$$f: A \rightarrow B, \ a \mapsto f(a)$$

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das Bild von a, bzw. a das Urbild von b.
- Für $C \subseteq A$ heißt $f(C) = \{f(a) | a \in C\} \subseteq B$ das **Bild** von C und für $D \subseteq B$ heißt $f^{-1}(D) = \{a | f(a) \in D\} \subseteq A$ das **Urbild** von D.
- Die Menge f(A) heißt Wertebereich/-menge und A Definitionsbereich/-menge von f.

$$f:A\to B,\ a\mapsto f(a)$$

ordnet jedem Element $a \in A$ eindeutig ein $f(a) \in B$ zu.

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das Bild von a, bzw. a das Urbild von b.
- Für $C \subseteq A$ heißt $f(C) = \{f(a) | a \in C\} \subseteq B$ das **Bild** von C und für $D \subseteq B$ heißt $f^{-1}(D) = \{a | f(a) \in D\} \subseteq A$ das **Urbild** von D.
- Die Menge f(A) heißt Wertebereich/-menge und A Definitionsbereich/-menge von f.

Eine Funktion $f: A \rightarrow B$ heißt

injektiv :
$$\Leftrightarrow \forall x, z \in A : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow f(A) = B$$

bijektiv : \Leftrightarrow f injektiv und surjektiv (f heißt dann **Bijektion**)

$$f:A\to B,\ a\mapsto f(a)$$

ordnet jedem Element $a \in A$ eindeutig ein $f(a) \in B$ zu.

- Unter einer **Funktion** (Abbildung) $f: A \to B$ für Mengen A, B versteht man also eine Vorschrift, die jedem $a \in A$ eindeutig ein $b = f(a) \in B$ zuordnet: $a \mapsto b = f(a)$.
- Dabei ist b das Bild von a, bzw. a das Urbild von b.
- Für $C \subseteq A$ heißt $f(C) = \{f(a) | a \in C\} \subseteq B$ das **Bild** von C und für $D \subseteq B$ heißt $f^{-1}(D) = \{a | f(a) \in D\} \subseteq A$ das **Urbild** von D.
- Die Menge f(A) heißt Wertebereich/-menge und A Definitionsbereich/-menge von f.

Eine Funktion $f: A \rightarrow B$ heißt

injektiv :
$$\Leftrightarrow \forall x, z \in A : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv : \Leftrightarrow f(A) = B

bijektiv : \Leftrightarrow f injektiv und surjektiv (f heißt dann **Bijektion**)

Für eine Bijektion $f: A \to B$ heißt $f^{-1}: B \to A$, $y \mapsto x := f^{-1}(y)$ die **Umkehrfunktion/Inverse von** f.

• $f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$

- $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2, 4, 6\} \\ ungerade, & x \in \{1, 3, 5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)

•
$$f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2, 4, 6\} \\ ungerade, & x \in \{1, 3, 5\} \end{cases}$$

- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$

•
$$f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$$

- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)

30. August 2023

- $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2, 4, 6\} \\ ungerade, & x \in \{1, 3, 5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x

- $f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x
- Die Wurzelfunktion $\sqrt{\cdot}: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} := \{x \in \mathbb{R}: x \geq 0\}, x \mapsto \sqrt{x} \text{ ist eine Bijektion. Die Inverse ist die Quadratfunktion } x \mapsto x^2.$

30. August 2023

- $f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x
- Die Wurzelfunktion $\sqrt{\cdot}: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} := \{x \in \mathbb{R}: x \geq 0\}, x \mapsto \sqrt{x} \text{ ist eine Bijektion. Die Inverse ist die Quadratfunktion } x \mapsto x^2.$
- Exponentialfunktion $\exp: \mathbb{R} \to (0,\infty), e^x = \exp(x)$ ($e \approx 2.718$ Eulersche Zahl) und die Umkehrfunktion: (natürliche) Logarithmusfunktion $\ln(x)$

- $f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x
- Die Wurzelfunktion $\sqrt{\cdot}: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} := \{x \in \mathbb{R}: x \geq 0\}, x \mapsto \sqrt{x} \text{ ist eine Bijektion. Die Inverse ist die Quadratfunktion } x \mapsto x^2.$
- Exponentialfunktion $\exp: \mathbb{R} \to (0, \infty), e^x = \exp(x)$ ($e \approx 2.718$ Eulersche Zahl) und die Umkehrfunktion: (natürliche) Logarithmusfunktion $\ln(x)$
- trigonometrische Funktionen sin(x), cos(x), tan(x) und die Umkehrfunktionen

- $f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$
- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x
- Die Wurzelfunktion $\sqrt{\cdot}: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} := \{x \in \mathbb{R}: x \geq 0\}, x \mapsto \sqrt{x} \text{ ist eine Bijektion. Die Inverse ist die Quadratfunktion } x \mapsto x^2.$
- Exponentialfunktion $\exp : \mathbb{R} \to (0, \infty), e^x = \exp(x)$ ($e \approx 2.718$ Eulersche Zahl) und die Umkehrfunktion: (natürliche) Logarithmusfunktion $\ln(x)$
- trigonometrische Funktionen sin(x), cos(x), tan(x) und die Umkehrfunktionen
- Anzahl Elemente: $|\cdot|:\{M\subset\mathbb{Z}:M\, \text{endlich}\}\to\mathbb{N}_0:=\mathbb{N}\cup\{0\},M\to|M|$

•
$$f: \{1,2,3,4,5,6\} \rightarrow \{gerade, ungerade\}, \ f(x) = \begin{cases} gerade, & x \in \{2,4,6\} \\ ungerade, & x \in \{1,3,5\} \end{cases}$$

- $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x + y$ (Summe)
- $f: \mathbb{R} \to \mathbb{R}$, f(x) = mx + c (lineare Funktion, $m, c \in \mathbb{R}$ fest) Für $m \neq 0$ ist es eine Bijektion mit Inverse $f^{-1}(x) = (x - c)/m$
- Polynome $p: \mathbb{R} \to \mathbb{R}$, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ (für $a_n, \ldots, a_0 \in \mathbb{R}$)
- rationale Funktionen p(x)/q(x) (für Polynome p,q), z.B. Hyperbelfunktion 1/x
- Die Wurzelfunktion $\sqrt{\cdot}: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0} := \{x \in \mathbb{R}: x \geq 0\}, x \mapsto \sqrt{x} \text{ ist eine Bijektion. Die Inverse ist die Quadratfunktion } x \mapsto x^2.$
- Exponentialfunktion $\exp : \mathbb{R} \to (0, \infty), e^x = \exp(x)$ ($e \approx 2.718$ Eulersche Zahl) und die Umkehrfunktion: (natürliche) Logarithmusfunktion $\ln(x)$
- trigonometrische Funktionen sin(x), cos(x), tan(x) und die Umkehrfunktionen
- Anzahl Elemente: $|\cdot|:\{M\subset\mathbb{Z}:M\,\text{endlich}\}\to\mathbb{N}_0:=\mathbb{N}\cup\{0\},M\to|M|$
- Indikatorfunktion für eine Menge $M \subseteq A$:

$$\mathbb{1}_M:A\to\{0,1\},\ \mathbb{1}_M(x)=\begin{cases} 1,&x\in M\\ 0,&x\notin M\end{cases}$$

Peter Parczewski (Uni Mannheim)

Nathematisches Präludium

30. August 2023

Eine Menge A heißt **endlich**, falls $n \in \mathbb{N}$ und eine Bijektion $f: A \to \{1, 2, \dots, n\}$ existieren.

Eine Menge A heißt **endlich**, falls $n \in \mathbb{N}$ und eine Bijektion $f: A \to \{1, 2, \dots, n\}$ existieren.

Ansonsten heißt die Menge unendlich.

Eine Menge A heißt **endlich**, falls $n \in \mathbb{N}$ und eine Bijektion $f: A \to \{1, 2, \dots, n\}$ existieren.

Ansonsten heißt die Menge unendlich.

Eine unendliche Menge A heißt **abzählbar unendlich**, falls es eine Bijektion $f: A \to \mathbb{N}$ gibt.

Eine Menge A heißt **endlich**, falls $n \in \mathbb{N}$ und eine Bijektion $f: A \to \{1, 2, \dots, n\}$ existieren.

Ansonsten heißt die Menge unendlich.

Eine unendliche Menge A heißt **abzählbar unendlich**, falls es eine Bijektion $f: A \to \mathbb{N}$ gibt.

Ansonsten heißt die Menge überabzählbar.

Eine Menge A heißt **endlich**, falls $n \in \mathbb{N}$ und eine Bijektion $f : A \to \{1, 2, ..., n\}$ existieren.

Ansonsten heißt die Menge unendlich.

Eine unendliche Menge A heißt **abzählbar unendlich**, falls es eine Bijektion $f: A \to \mathbb{N}$ gibt.

Ansonsten heißt die Menge überabzählbar.

Hilfreiches Tool für Visualisierung von Funktionen und Berechnungen: www.desmos.com.

injektiv : $\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$

surjektiv : $\Leftrightarrow f(X) = Y$

 $\textbf{bijektiv} \quad :\Leftrightarrow f \text{ injektiv und surjektiv}$

 $f^{-1}: Y \to X, \ y \mapsto x := f^{-1}(y)$ Umkehrfunktion von f

Eine Funktion $f: X \rightarrow Y$ heißt

injektiv :
$$\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow f(X) = Y$$

bijektiv :
$$\Leftrightarrow$$
 f injektiv und surjektiv

$$f^{-1}: Y \to X, \ y \mapsto x := f^{-1}(y)$$
 Umkehrfunktion von f

•
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$$
 ist bijektiv

injektiv : $\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$

surjektiv : \Leftrightarrow f(X) = Y

bijektiv : \Leftrightarrow f injektiv und surjektiv

 $f^{-1}: Y \to X, y \mapsto x := f^{-1}(y)$ Umkehrfunktion von f

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv

injektiv : $\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$

surjektiv : \Leftrightarrow f(X) = Y

bijektiv : \Leftrightarrow f injektiv und surjektiv

 $f^{-1}: Y \to X, y \mapsto x := f^{-1}(y)$ Umkehrfunktion von f

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv
- $f: \mathbb{R} \to [-1,1], f(x) = \cos(x)$ ist surjektiv aber nicht injektiv

Eine Funktion $f: X \rightarrow Y$ heißt

injektiv :
$$\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow$$
 $f(X) = Y$

bijektiv :
$$\Leftrightarrow f$$
 injektiv und surjektiv

$$f^{-1}: Y \to X, y \mapsto x := f^{-1}(y)$$
 Umkehrfunktion von f

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv
- $f: \mathbb{R} \to [-1,1], f(x) = \cos(x)$ ist surjektiv aber nicht injektiv
- $f:[0,\pi] \to \mathbb{R}, f(x) = \cos(x)$ ist injektiv aber nicht surjektiv

injektiv :
$$\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow f(X) = Y$$

bijektiv :
$$\Leftrightarrow$$
 f injektiv und surjektiv

$$f^{-1}: Y \to X, y \mapsto x := f^{-1}(y)$$
 Umkehrfunktion von f

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv
- $f: \mathbb{R} \to [-1,1], f(x) = \cos(x)$ ist surjektiv aber nicht injektiv
- $f:[0,\pi] \to \mathbb{R}, f(x) = \cos(x)$ ist injektiv aber nicht surjektiv
- $f: [0, \pi] \to [-1, 1], f(x) = \cos(x)$ ist bijektiv

injektiv :
$$\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow$$
 $f(X) = Y$

bijektiv :
$$\Leftrightarrow$$
 f injektiv und surjektiv

$$f^{-1}: Y \to X, y \mapsto x := f^{-1}(y)$$
 Umkehrfunktion von f

Beispiele:

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv
- $f: \mathbb{R} \to [-1, 1], f(x) = \cos(x)$ ist surjektiv aber nicht injektiv
- $f:[0,\pi] \to \mathbb{R}, f(x) = \cos(x)$ ist injektiv aber nicht surjektiv
- $f: [0, \pi] \to [-1, 1], f(x) = \cos(x)$ ist bijektiv
- Anzahl Elemente: $|\cdot|:\{M\subset\mathbb{Z}:M\, \text{endlich}\}\to\mathbb{N}_0$ ist nur surjektiv

Peter Parczewski (Uni Mannheim)

injektiv :
$$\Leftrightarrow \forall x, z \in X : (f(x) = f(z) \Rightarrow x = z)$$

surjektiv :
$$\Leftrightarrow$$
 $f(X) = Y$

bijektiv :
$$\Leftrightarrow$$
 f injektiv und surjektiv

$$f^{-1}: Y \to X, \ y \mapsto x := f^{-1}(y)$$
 Umkehrfunktion von f

- $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 7$ ist bijektiv
- $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$ ist weder injektiv noch surjektiv
- $f: \mathbb{R} \to [-1, 1], f(x) = \cos(x)$ ist surjektiv aber nicht injektiv
- $f:[0,\pi]\to\mathbb{R}, f(x)=\cos(x)$ ist injektiv aber nicht surjektiv
- $f: [0, \pi] \to [-1, 1], f(x) = \cos(x)$ ist bijektiv
- Anzahl Elemente: $|\cdot|:\{M\subset\mathbb{Z}:M\, \text{endlich}\}\to\mathbb{N}_0$ ist nur surjektiv
- Exponential funktion $f: \mathbb{R} \to \mathbb{R}^+ := \{x \in \mathbb{R}, x > 0\}, f(x) = e^x$ ist bijektiv

5. Beweismethoden

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Beweis.

Angenommen $n \in 2\mathbb{N}$, so gibt es also ein $m \in \mathbb{N}$ mit n = 2m.

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Beweis.

Angenommen $n \in 2\mathbb{N}$, so gibt es also ein $m \in \mathbb{N}$ mit n = 2m. Dann ist aber $n^2 = (2m)^2 = 2(2m^2) \in 2\mathbb{N}$.

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Beweis.

Angenommen $n \in 2\mathbb{N}$, so gibt es also ein $m \in \mathbb{N}$ mit n = 2m. Dann ist aber $n^2 = (2m)^2 = 2(2m^2) \in 2\mathbb{N}$.

31 / 55

Weitere direkte Beweise bisher:

• Unsere Beweise für logische Äquivalenz (Wahrheitstafeln)

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Beweis.

Angenommen $n \in 2\mathbb{N}$, so gibt es also ein $m \in \mathbb{N}$ mit n = 2m. Dann ist aber $n^2 = (2m)^2 = 2(2m^2) \in 2\mathbb{N}$.

Weitere direkte Beweise bisher:

- Unsere Beweise für logische Äquivalenz (Wahrheitstafeln)
- Unsere Beweise über Eigenschaften der leeren Menge

Aussage $A \Rightarrow B$ wird bewiesen, indem man bei Voraussetzung von A zeigt, dass B gilt.

Satz. Das Quadrat jeder geraden Zahl ist auch gerade.

 $(\forall n \in \mathbb{N} : n \in 2\mathbb{N} \Rightarrow n^2 \in 2\mathbb{N})$

Beweis.

Angenommen $n \in 2\mathbb{N}$, so gibt es also ein $m \in \mathbb{N}$ mit n = 2m. Dann ist aber $n^2 = (2m)^2 = 2(2m^2) \in 2\mathbb{N}$.

Weitere direkte Beweise bisher:

- Unsere Beweise für logische Äquivalenz (Wahrheitstafeln)
- Unsere Beweise über Eigenschaften der leeren Menge
- Unsere Aufgaben zu Mengen

Aussage $A\Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B\Rightarrow \neg A$ direkt zeigt.

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
W	f	f	f
f	w	w	w
f	f	w	w

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
w	f	f	f
f	W	W	w
f	f	w	w

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $\Delta \mid B \mid \Delta \rightarrow B \mid \neg B \rightarrow \neg \Delta$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	w
W	f	f	f
f	W	W	w
f	f	w	w

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Wir wollen also für alle $n \in \mathbb{N}$ zeigen:

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
W	f	f	f
f	w	w	w
f	f	w	w

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade.

 $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Wir wollen also für alle $n \in \mathbb{N}$ zeigen: $n \notin 2\mathbb{N} \Rightarrow n^2 \notin 2\mathbb{N}$:

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
W	f	f	f
f	w	w	w
f	f	w	w

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Wir wollen also für alle $n \in \mathbb{N}$ zeigen: $n \notin 2\mathbb{N} \Rightarrow n^2 \notin 2\mathbb{N}$: Angenommen $n \notin 2\mathbb{N}$, so ist es ungerade und es gibt ein $m \in \mathbb{N}$ mit n = 2m - 1.

Aussage $A \Rightarrow B$ wird bewiesen, indem man die äquivalente Aussage $\neg B \Rightarrow \neg A$ direkt zeigt. $A \mid B \mid A \Rightarrow B \mid \neg B \Rightarrow \neg A$

Α	В	$A \Rightarrow B$	$\neg B \Rightarrow \neg A$
W	W	W	W
W	f	f	f
f	W	W	w
f	f	W	w
		l	l

(Beweis durch Kontraposition heißt auch indirekter Beweis)

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Wir wollen also für alle $n \in \mathbb{N}$ zeigen: $n \notin 2\mathbb{N} \Rightarrow n^2 \notin 2\mathbb{N}$: Angenommen $n \notin 2\mathbb{N}$, so ist es ungerade und es gibt ein $m \in \mathbb{N}$ mit n = 2m - 1. Dann ist aber $n^2 = (2m - 1)^2 = 4m^2 - 4m + 1 = 2(2m^2 - 2m) + 1 \notin 2\mathbb{N}$.

Aussage $A \Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$, und zeigt, dass ein Widerspruch folgt.

Aussage $A\Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A\Rightarrow B)\Leftrightarrow (A\wedge \neg B)$, und zeigt, dass ein Widerspruch folgt.

Α	В	$\neg(A\Rightarrow B)$	$A \wedge \neg B$
W	W	f	f
W	f	W	W
f	W	f	f
f	f	f	f

Aussage $A\Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A\Rightarrow B)\Leftrightarrow (A\wedge \neg B)$, und zeigt, dass ein Widerspruch folgt.

Α	В	$\neg(A\Rightarrow B)$	$A \wedge \neg B$
W	W	f	f
W	f	W	w
f	W	f	f
f	f	f	f

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Aussage $A\Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A\Rightarrow B)\Leftrightarrow (A\wedge \neg B)$, und zeigt, dass ein Widerspruch folgt.

Α	В	$\neg(A\Rightarrow B)$	$A \wedge \neg B$
W	W	f	f
W	f	W	w
f	W	f	f
f	f	f	f

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Sei $\neg (n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$, d.h. $(n^2 \in 2\mathbb{N}) \land (n \notin 2\mathbb{N})$.

Aussage $A\Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A\Rightarrow B)\Leftrightarrow (A\wedge \neg B)$, und zeigt, dass ein Widerspruch folgt.

Α	В	$\neg(A \Rightarrow B)$	$A \wedge \neg B$
W	W	f	f
W	f	W	w
f	W	f	f
f	f	f	f

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Sei $\neg (n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$, d.h. $(n^2 \in 2\mathbb{N}) \land (n \notin 2\mathbb{N})$. Da n ungerade, gibt es ein $m \in \mathbb{N}$ mit n = 2m - 1.

Aussage $A\Rightarrow B$ wird bewiesen, indem man annimmt, dass diese Aussage falsch ist, d.h. es gilt $\neg(A\Rightarrow B)\Leftrightarrow (A\wedge \neg B)$, und zeigt, dass ein Widerspruch folgt.

Α	В	$\neg(A\Rightarrow B)$	$A \wedge \neg B$
W	W	f	f
W	f	W	W
f	W	f	f
f	f	f	f

Satz. Hat eine natürliche Zahl ein gerades Quadrat, dann ist sie auch gerade. $(\forall n \in \mathbb{N} : n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$

Beweis.

Sei $\neg (n^2 \in 2\mathbb{N} \Rightarrow n \in 2\mathbb{N})$, d.h. $(n^2 \in 2\mathbb{N}) \land (n \notin 2\mathbb{N})$. Da n ungerade, gibt es ein $m \in \mathbb{N}$ mit n = 2m - 1. Dann ist $n^2 = (2m - 1)^2 \notin 2\mathbb{N}$, ein Widerspruch zur Annahme $n^2 \in 2\mathbb{N}$.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$,

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele. Sei ihr Produkt $p_1 \cdots p_N \in \mathbb{N}$ und p_N ist die größte mögliche Primzahl.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele. Sei ihr Produkt $p_1 \cdots p_N \in \mathbb{N}$ und p_N ist die größte mögliche Primzahl. Da $p_1 \cdots p_N + 1 \in \mathbb{N}$, muß es entweder selbst Primzahl sein (größer als p_N Widerspruch!) oder es hat eine Primfaktorzerlegung.

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele. Sei ihr Produkt $p_1 \cdots p_N \in \mathbb{N}$ und p_N ist die größte mögliche Primzahl. Da $p_1 \cdots p_N + 1 \in \mathbb{N}$, muß es entweder selbst Primzahl sein (größer als p_N Widerspruch!) oder es hat eine Primfaktorzerlegung. Ein solcher Primteiler p teilt aber $p_1 \cdots p_N$ und $p_1 \cdots p_N + 1$,

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele. Sei ihr Produkt $p_1 \cdots p_N \in \mathbb{N}$ und p_N ist die größte mögliche Primzahl. Da $p_1 \cdots p_N + 1 \in \mathbb{N}$, muß es entweder selbst Primzahl sein (größer als p_N Widerspruch!) oder es hat eine Primfaktorzerlegung. Ein solcher Primteiler p teilt aber $p_1 \cdots p_N$ und $p_1 \cdots p_N + 1$, so müßte stets p = 1 sein, was keine Primzahl ist,

Satz. $\forall a, b \in \mathbb{R} : 2ab \leq a^2 + b^2$.

Beweis.

Angenommen, die Aussage sei falsch, d.h. es ist $2ab > a^2 + b^2$, dann ist aber der Widerspruch $0 > a^2 + b^2 - 2ab = (a - b)^2$.

Satz. Es gibt unendlich viele Primzahlen.

Beweis (Euklid, 300 v. Chr.)

Angenommen, es gibt nur endlich viele Primzahlen, nämlich $N \in \mathbb{N}$ viele. Sei ihr Produkt $p_1 \cdots p_N \in \mathbb{N}$ und p_N ist die größte mögliche Primzahl. Da $p_1 \cdots p_N + 1 \in \mathbb{N}$, muß es entweder selbst Primzahl sein (größer als p_N Widerspruch!) oder es hat eine Primfaktorzerlegung. Ein solcher Primteiler p teilt aber $p_1 \cdots p_N$ und $p_1 \cdots p_N + 1$, so müßte stets p = 1 sein, was keine Primzahl ist, ein Widerspruch!

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

35 / 55

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Für alle $b,c\in\mathbb{R}$ hat die Gleichung $x^2+bx+c=0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b = 0 und c = 1, so ist die Gleichung $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$

35 / 55

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b = 0 und c = 1, so ist die Gleichung $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$

Das Quadrat einer reellen Zahl ist nichtnegativ ($x \in \mathbb{R} \Rightarrow x^2 \geq 0 \leadsto$ Studium)

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b=0 und c=1, so ist die Gleichung $x^2+1=0 \Leftrightarrow x^2=-1$

Das Quadrat einer reellen Zahl ist nichtnegativ ($x \in \mathbb{R} \Rightarrow x^2 \ge 0 \leadsto$ **Studium**)

Also gibt es hier keine reelle Lösung \boldsymbol{x} und die Aussage ist falsch.

35 / 55

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b = 0 und c = 1, so ist die Gleichung $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$

Das Quadrat einer reellen Zahl ist nichtnegativ ($x \in \mathbb{R} \Rightarrow x^2 \geq 0 \leadsto$ Studium)

Also gibt es hier keine reelle Lösung \boldsymbol{x} und die Aussage ist falsch.

Offenbar erhalten wir:

Satz. Es gibt $b, c \in \mathbb{R}$ so dass die Gleichung $x^2 + bx + c = 0$ keine reelle Lösung besitzt.

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b = 0 und c = 1, so ist die Gleichung $x^2 + 1 = 0 \Leftrightarrow x^2 = -1$

Das Quadrat einer reellen Zahl ist nichtnegativ ($x \in \mathbb{R} \Rightarrow x^2 \geq 0 \leadsto$ Studium)

Also gibt es hier keine reelle Lösung \boldsymbol{x} und die Aussage ist falsch.

Offenbar erhalten wir:

Satz. Es gibt $b, c \in \mathbb{R}$ so dass die Gleichung $x^2 + bx + c = 0$ keine reelle Lösung besitzt.

Beispielsweise für b = 0 und c = -1 bzw. b = c = 0 erhalten wir ebenso:

Für alle $b, c \in \mathbb{R}$ hat die Gleichung $x^2 + bx + c = 0$ mindestens eine reelle Lösung.

Beweis.

Es genügt ein Gegenbeispiel, um die Aussage zu widerlegen.

Seien b=0 und c=1, so ist die Gleichung $x^2+1=0 \Leftrightarrow x^2=-1$

Das Quadrat einer reellen Zahl ist nichtnegativ ($x \in \mathbb{R} \Rightarrow x^2 \ge 0 \rightsquigarrow$ **Studium**)

Also gibt es hier keine reelle Lösung x und die Aussage ist falsch.

Offenbar erhalten wir:

Satz. Es gibt $b, c \in \mathbb{R}$ so dass die Gleichung $x^2 + bx + c = 0$ keine reelle Lösung besitzt.

Beispielsweise für b=0 und c=-1 bzw. b=c=0 erhalten wir ebenso:

Satz. Es gibt jeweils $b, c \in \mathbb{R}$ so dass die Gleichung $x^2 + bx + c = 0$

- genau zwei reelle Lösungen besitzt
- genau eine reelle Lösung besitzt.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

36 / 55

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z} \text{ bzw. } z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

36 / 55

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

36 / 55

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition $(\neg B \Rightarrow \neg A)$.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition $(\neg B \Rightarrow \neg A)$.

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$:

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition $(\neg B \Rightarrow \neg A)$.

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition $(\neg B \Rightarrow \neg A)$.

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$. Dann folgt aber $z = \frac{2m+1}{2} = m + \frac{1}{2} \notin \mathbb{Z}$.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition ($\neg B \Rightarrow \neg A$).

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$. Dann folgt aber $z = \frac{2m+1}{2} = m + \frac{1}{2} \notin \mathbb{Z}$.

Beweis durch Widerspruch $(\neg(A \Rightarrow B) \rightsquigarrow !)$

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition ($\neg B \Rightarrow \neg A$).

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$. Dann folgt aber $z = \frac{2m+1}{2} = m + \frac{1}{2} \notin \mathbb{Z}$.

Beweis durch Widerspruch $(\neg(A \Rightarrow B) \rightsquigarrow !)$

Angenommen, die Aussage sei falsch, d.h. es gilt $z\in\mathbb{Z}$ und zugleich $2z-1\in 2\mathbb{Z}$.

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z} \text{ bzw. } z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition ($\neg B \Rightarrow \neg A$).

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$. Dann folgt aber $z = \frac{2m+1}{2} = m + \frac{1}{2} \notin \mathbb{Z}$.

Beweis durch Widerspruch $(\neg(A \Rightarrow B) \rightsquigarrow !)$

Angenommen, die Aussage sei falsch, d.h. es gilt $z \in \mathbb{Z}$ und zugleich $2z - 1 \in 2\mathbb{Z}$. Dann gibt es also ein $m \in \mathbb{Z}$ mit $2z - 1 = 2m \in 2\mathbb{Z}$,

Satz. Für jede ganze Zahl z ist die Summe von z und der Vorgängerzahl stets ungerade. $(\forall z \in \mathbb{Z} : z + (z - 1) \notin 2\mathbb{Z}$ bzw. $z \in \mathbb{Z} \Rightarrow z + (z - 1) \notin 2\mathbb{Z})$

Direkter Beweis $(A \Rightarrow B)$.

Sei $z \in \mathbb{Z}$, so ist die zu untersuchende Summe z + (z - 1) = 2z - 1. Das ist also stets ungerade.

Beweis durch Kontraposition ($\neg B \Rightarrow \neg A$).

Wir zeigen: Ist besagte Summe gerade, dann ist $z \notin \mathbb{Z}$: Sei also ein $m \in \mathbb{Z}$ mit $z + (z - 1) = 2z - 1 = 2m \in 2\mathbb{Z}$. Dann folgt aber $z = \frac{2m+1}{2} = m + \frac{1}{2} \notin \mathbb{Z}$.

Beweis durch Widerspruch $(\neg(A \Rightarrow B) \rightsquigarrow !)$

Angenommen, die Aussage sei falsch, d.h. es gilt $z\in\mathbb{Z}$ und zugleich $2z-1\in 2\mathbb{Z}$. Dann gibt es also ein $m\in\mathbb{Z}$ mit $2z-1=2m\in 2\mathbb{Z}$, d.h. wir erhalten den Widerspruch $z=\frac{2m+1}{2}\notin\mathbb{Z}$ und zugleich $z\in\mathbb{Z}$!

6. Induktion und Abzählen

30. August 2023

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1$: $A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1 : A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N > 1 sein.

38 / 55

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1$: $A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N>1 sein.

Für jede natürliche Zahl n gilt $3^n \ge n$ $(\forall n \in \mathbb{N} : 3^n \ge n)$

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1 : A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N > 1 sein.

Für jede natürliche Zahl n gilt $3^n \ge n$ $(\forall n \in \mathbb{N} : 3^n \ge n)$

Beweis durch Induktion.

Für n = 1 ist klar $3^1 = 3 \ge 1$. (Das war der Induktionsanfang).

30. August 2023

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1 : A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N > 1 sein.

Für jede natürliche Zahl n gilt $3^n \ge n$ $(\forall n \in \mathbb{N} : 3^n \ge n)$

Beweis durch Induktion.

Für n = 1 ist klar $3^1 = 3 \ge 1$. (Das war der Induktionsanfang).

Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr,

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1 : A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N > 1 sein.

Für jede natürliche Zahl n gilt $3^n \ge n$ $(\forall n \in \mathbb{N} : 3^n \ge n)$

Beweis durch Induktion.

Für n = 1 ist klar $3^1 = 3 \ge 1$. (Das war der Induktionsanfang).

Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr, d.h. es gilt die **Induktionsvoraussetzung** $3^n \ge n$. Dann ist für n+1:

Vollständige Induktion

Sei A(n) eine Aussage über natürliche Zahlen. Wenn zugleich gelten:

- 1 Es gilt A(1) (Induktionsanfang)
- **2** $\forall n \geq 1$: $A(n) \Rightarrow A(n+1)$ (Induktionsschritt)

Dann gilt A(n) für alle $n \in \mathbb{N}$.

Induktions an fang kann auch ein festes N > 1 sein.

Für jede natürliche Zahl n gilt $3^n \ge n$ $(\forall n \in \mathbb{N} : 3^n \ge n)$

Beweis durch Induktion.

Für n=1 ist klar $3^1=3\geq 1$. (Das war der Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n\in\mathbb{N}$ wahr, d.h. es gilt die

Induktionsvoraussetzung $3^n \ge n$. Dann ist für n + 1:

$$3^{n+1} = 3^n \cdot 3 \ge n \cdot 3 = n + 2n \ge n + 1$$

(Das war der Induktionsschritt).

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang).

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr,

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr, d.h. es gilt die **Induktionsvoraussetzung** $A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr, d.h. es gilt die **Induktionsvoraussetzung** $A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. Die weitere Zahl (n+1) können wir bei den Anordnungen der Zahlen $1, \ldots, n, n+1$ an einer der Positionen 1 bis n+1 stellen.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr, d.h. es gilt die **Induktionsvoraussetzung** $A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. Die weitere Zahl (n+1) können wir bei den Anordnungen der Zahlen $1, \ldots, n, n+1$ an einer der Positionen 1 bis n+1 stellen. Steht sie an der ersten Position, gibt es nach Voraussetzung genau A(n) Anordnungen.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Betrachten wir die ersten Anordnungen:

1 12|21 123|132|213|231|312|321

Beweis durch Induktion.

Für 1 gibt es nur die Anordnung 1. (Induktionsanfang). Angenommen, die Aussage ist bereits für ein $n \in \mathbb{N}$ wahr, d.h. es gilt die **Induktionsvoraussetzung** $A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. Die weitere Zahl (n+1) können wir bei den Anordnungen der Zahlen $1, \ldots, n, n+1$ an einer der Positionen 1 bis n+1 stellen. Steht sie an der ersten Position, gibt es nach Voraussetzung genau A(n) Anordnungen. Steht sie an der zweiten Position ebenso, usw. Also ist

$$A(n+1) = A(n) \cdot (n+1) = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n \cdot (n+1).$$

(Das war der Induktionsschritt).

Beweis durch Induktion.

Sei $M = \emptyset$,

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang). Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$,

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$, dann ist für eine Menge N mit n+1 Elementen $N = \{a_1, a_2, \dots, a_{n+1}\}$:

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$, dann ist für eine Menge N mit n+1 Elementen $N = \{a_1, a_2, \dots, a_{n+1}\}$:

Eine Teilmenge enthält a_{n+1} oder nicht.

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$, dann ist für eine Menge N mit n+1 Elementen $N = \{a_1, a_2, \dots, a_{n+1}\}$:

Eine Teilmenge enthält a_{n+1} oder nicht.

Es gibt nun nach **Induktionsvoraussetzung** genau 2^n Teilmengen ohne a_{n+1} .

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$, dann ist für eine Menge N mit n+1 Elementen $N = \{a_1, a_2, \dots, a_{n+1}\}$:

Eine Teilmenge enthält a_{n+1} oder nicht.

Es gibt nun nach **Induktionsvoraussetzung** genau 2^n Teilmengen ohne a_{n+1} .

Ebenso gibt es genau 2^n Teilmengen mit a_{n+1} .

Beweis durch Induktion.

Sei $M = \emptyset$, so hat $\mathcal{P}(M) = \{\emptyset\}$ genau ein Element. (Induktionsanfang).

Angenommen, die Aussage ist bereit wahr für $n \in \mathbb{N}_0$, dann ist für eine Menge N mit n+1 Elementen $N = \{a_1, a_2, \dots, a_{n+1}\}$:

Eine Teilmenge enthält a_{n+1} oder nicht.

Es gibt nun nach **Induktionsvoraussetzung** genau 2^n Teilmengen ohne a_{n+1} .

Ebenso gibt es genau 2^n Teilmengen mit a_{n+1} .

Also ist die Anzahl der Teilmengen von N tatsächlich $2 \cdot 2^n = 2^{n+1}$.

(Induktionsschritt).

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Beweis durch Abzählen.

Wir zählen die Anzahl der Umordnungen von $1, 2, \ldots, n$.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Beweis durch Abzählen.

Wir zählen die Anzahl der Umordnungen von 1, 2, ..., n. Für das erste Element 1 haben wir n Plätze

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Beweis durch Abzählen.

Wir zählen die Anzahl der Umordnungen von 1, 2, ..., n. Für das erste Element 1 haben wir n Plätze. Für das zweite Element 2 haben wir anschließend nur noch n-1 Plätze.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Beweis durch Abzählen.

Wir zählen die Anzahl der Umordnungen von 1, 2, ..., n. Für das erste Element 1 haben wir n Plätze. Für das zweite Element 2 haben wir anschließend nur noch n-1 Plätze. Usw: Für das k-te Element haben n-k+1 Plätze.

$$A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$$

Beweis durch Abzählen.

Wir zählen die Anzahl der Umordnungen von $1, 2, \ldots, n$. Für das erste Element 1 haben wir n Plätze. Für das zweite Element 2 haben wir anschließend nur noch n-1 Plätze. Usw: Für das k-te Element haben n-k+1 Plätze. Also erhalten wir als Anzahl der Umordnungen $A(n) = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$

$$\begin{cases} (a+b)^1 = a+b \\ (a+b)^2 = a^2 + 2ab + b^2 \\ (a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3 \\ \vdots \end{cases}$$

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + \frac{n(n-1)}{2}a^2b^{n-2} + nab^{n-1} + b^n$$

Für alle $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

Für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k} :=$ Anzahl der k-elementigen Teilmengen von $1, \ldots, n$

Für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

1 Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$

Für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \dots + b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{k}b^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

- Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- ② Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten

Für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

- Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- ② Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten
- 3 a^k nur im Produkt $a^k b^{n-k}$ enthalten

Für alle $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \dots + b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{k}b^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

- Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- 2 Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten
- **Solution** Solution Solution

Für alle $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

- Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- ② Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten
- a^k nur im Produkt $a^k b^{n-k}$ enthalten
- **1** Koeffizient von $a^k b^{n-k}$: wähle aus n Klammern (a+b) jeweils genau k mal a
- \bullet Das ist gerade die Anzahl der k-elementigen Teilmengen von $1, \ldots, n$

Für alle $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k} := \text{Anzahl der } k\text{-elementigen Teilmengen von } 1, \dots, n$

Beweis.

- 1 Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- ② Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten
- a^k nur im Produkt $a^k b^{n-k}$ enthalten
- **1** Koeffizient von $a^k b^{n-k}$: wähle aus n Klammern (a+b) jeweils genau k mal a
- **1** Das ist gerade die Anzahl der k-elementigen Teilmengen von $1, \ldots, n$
- **1** also: Produkt $(a+b)^n$ ist Summe über alle $k \in \{0,1,\ldots,n\}: \binom{n}{k}a^kb^{n-k}$

Für alle $a,b\in\mathbb{R}$ und $n\in\mathbb{N}$ gilt:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \dots + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}$$

 $\binom{n}{k}$:= Anzahl der k-elementigen Teilmengen von $1, \ldots, n$

Beweis.

- Produkt auf linker Seite: $(a+b)^n = (a+b) \cdot (a+b) \cdots (a+b)$
- ② Also darin für jedes $k \in \{0, 1, ..., n\}$: a^k enthalten
- a^k nur im Produkt $a^k b^{n-k}$ enthalten
- **Q** Koeffizient von $a^k b^{n-k}$: wähle aus n Klammern (a+b) jeweils genau k mal a
- **5** Das ist gerade die Anzahl der k-elementigen Teilmengen von $1, \ldots, n$
- **1** also: Produkt $(a+b)^n$ ist Summe über alle $k \in \{0,1,\ldots,n\} : \binom{n}{k} a^k b^{n-k}$
- O Damit folgt $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^2 + \dots + x^n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}.$$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^2 + \dots + x^n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}.$$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^{2} + \dots + x^{n} = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis.

• Ausmultiplizieren ergibt 1.

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^2 + \dots + x^n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis.

• Ausmultiplizieren ergibt 1.

(da alle
$$x^k$$
, $k = 1, ..., n$ mit $+$ und $-$ vorkommen)

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^{2} + \dots + x^{n} = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis.

• Ausmultiplizieren ergibt 1.

(da alle
$$x^k$$
, $k = 1, ..., n$ mit + und - vorkommen)

• 2. folgt direkt aus 1. durch Division mit $1 - x \neq 0$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^{2} + \dots + x^{n} = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis.

• Ausmultiplizieren ergibt 1.

(da alle
$$x^k$$
, $k = 1, ..., n$ mit + und - vorkommen)

• 2. folgt direkt aus 1. durch Division mit $1 - x \neq 0$

1. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$(1-x)(1+x+x^2+\cdots+x^n)=(1-x)\sum_{k=0}^n x^k=1-x^{n+1}$$

2. Insbesondere ist für alle $x \neq 1$ und $n \in \mathbb{N}$:

$$1 + x + x^{2} + \dots + x^{n} = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Beweis.

- Ausmultiplizieren ergibt 1.
 - (da alle x^k , k = 1, ..., n mit + und vorkommen)
- 2. folgt direkt aus 1. durch Division mit $1 x \neq 0$
- $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{100}} = \frac{1 (1/2)^{101}}{1 1/2} = 2 2^{-100}$

7. Beweisverfahren und Aufgaben lösen

• **Direkter Beweis** $(A \Rightarrow B)$: Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)

- Direkter Beweis (A ⇒ B): Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)
- Beweis durch Widerspruch: Man zeigt, dass die Negation der Behauptung zu einem Widerspruch führt. Also muß dann die Behauptung selbst wahr sein! (Negierte Behauptung: $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$)

- Direkter Beweis (A ⇒ B): Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)
- Beweis durch Widerspruch: Man zeigt, dass die Negation der Behauptung zu einem Widerspruch führt. Also muß dann die Behauptung selbst wahr sein! (Negierte Behauptung: $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$)
- Beweis durch Kontraposition: Man beweist die logisch äquivalente Behauptung: A ⇒ B ⇔ ¬B ⇒ ¬A

- **Direkter Beweis** $(A \Rightarrow B)$: Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)
- Beweis durch Widerspruch: Man zeigt, dass die Negation der Behauptung zu einem Widerspruch führt. Also muß dann die Behauptung selbst wahr sein! (Negierte Behauptung: $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$)
- Beweis durch Kontraposition: Man beweist die logisch äquivalente Behauptung: A ⇒ B ⇔ ¬B ⇒ ¬A
- Beweis durch vollständige Induktion

30. August 2023

- Direkter Beweis (A ⇒ B): Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)
- Beweis durch Widerspruch: Man zeigt, dass die Negation der Behauptung zu einem Widerspruch führt. Also muß dann die Behauptung selbst wahr sein! (Negierte Behauptung: $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$)
- Beweis durch Kontraposition: Man beweist die logisch äquivalente Behauptung: A ⇒ B ⇔ ¬B ⇒ ¬A
- Beweis durch vollständige Induktion
- Beweis durch Abzählen/Kombinatorik: Man zählt die Objekte unterschiedlich ab, dies ergibt eine Gleichheit

- **Direkter Beweis** $(A \Rightarrow B)$: Man zeigt, dass die Schlussfolgerung aus den Annahmen folgt (unter Verwendung von Definitionen, bereits bewiesenen Sätzen, Lemmata, Ungleichungen, etc)
- Beweis durch Widerspruch: Man zeigt, dass die Negation der Behauptung zu einem Widerspruch führt. Also muß dann die Behauptung selbst wahr sein! (Negierte Behauptung: $\neg(A \Rightarrow B) \Leftrightarrow (A \land \neg B)$)
- Beweis durch Kontraposition: Man beweist die logisch äquivalente Behauptung: A ⇒ B ⇔ ¬B ⇒ ¬A
- Beweis durch vollständige Induktion
- Beweis durch Abzählen/Kombinatorik: Man zählt die Objekte unterschiedlich ab, dies ergibt eine Gleichheit
- Beweis durch Fallunterscheidung, Schubfachpinzip, ...

• Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag

• Werden 6 Elemente auf 4 Fächer verteilt, so gibt es stets ein Fach mit 2 Elementen:

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag

• Werden 6 Elemente auf 4 Fächer verteilt, so gibt es stets ein Fach mit 2 Elementen:

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag
- Werden 6 Elemente auf 4 Fächer verteilt, so gibt es stets ein Fach mit 2 Elementen:

Schubfachprinzip

Werden n > k Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit 2 Elementen.

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag
- Werden 6 Elemente auf 4 Fächer verteilt, so gibt es stets ein Fach mit 2 Elementen:

Schubfachprinzip

Werden n > k Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit 2 Elementen.

Werden n > 2k Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit 3 Elementen.

- Von 3 zufällig gezogenen Schuhen sind entweder mindestens zwei linke oder zwei rechte dabei
- Von 25 Studierenden haben mindestens drei im gleichen Monat Geburtstag
- Werden 6 Elemente auf 4 Fächer verteilt, so gibt es stets ein Fach mit 2 Elementen:

Schubfachprinzip

Werden n > k Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit 2 Elementen.

Werden n > 2k Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit 3 Elementen.

Usw....

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n,k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n,k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Beweis.

Angenommen, in jedem Fach sind höchstens $\lceil n/k \rceil - 1$ Elemente,

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n, k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Beweis.

Angenommen, in jedem Fach sind höchstens $\lceil n/k \rceil - 1$ Elemente, so sind insgesamt erst nur $k \cdot (\lceil n/k \rceil - 1) < k \cdot (n/k + 1 - 1) = n$ Elemente verteilt,

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n, k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Beweis.

Angenommen, in jedem Fach sind höchstens $\lceil n/k \rceil - 1$ Elemente, so sind insgesamt erst nur $k \cdot (\lceil n/k \rceil - 1) < k \cdot (n/k + 1 - 1) = n$ Elemente verteilt, ein Widerspruch!

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n, k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Beweis.

Angenommen, in jedem Fach sind höchstens $\lceil n/k \rceil - 1$ Elemente, so sind insgesamt erst nur $k \cdot (\lceil n/k \rceil - 1) < k \cdot (n/k + 1 - 1) = n$ Elemente verteilt, ein Widerspruch!

• Bei einer Feier mit 30 Leuten sind mindestens $\lceil 30/7 \rceil = 5$, die am gleichen Wochentag Geburtstag haben

Allgemeines Schubfachprinzip

Werden n Elemente auf k Fächer verteilt, so gibt es mindestens ein Fach mit $\lceil n/k \rceil$ Elementen.

Beobachtung: Für alle $n, k \in \mathbb{N}$: $\lceil n/k \rceil < n/k + 1$

Beweis.

Angenommen, in jedem Fach sind höchstens $\lceil n/k \rceil - 1$ Elemente, so sind insgesamt erst nur $k \cdot (\lceil n/k \rceil - 1) < k \cdot (n/k + 1 - 1) = n$ Elemente verteilt, ein Widerspruch!

- Bei einer Feier mit 30 Leuten sind mindestens $\lceil 30/7 \rceil = 5$, die am gleichen Wochentag Geburtstag haben
- In einer Gruppe von 100 Studenten sind mindestens $\lceil 100/30 \rceil = 4$, die bei 30 Fragen gleich viele korrekt beantworten

• Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?
- Vereinfache: Spezialfall/Fallunterscheidung?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?
- Vereinfache: Spezialfall/Fallunterscheidung?
- Abstrahiere: Verallgemeinerung?

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?
- Vereinfache: Spezialfall/Fallunterscheidung?
- Abstrahiere: Verallgemeinerung?
- Studiere verwandte Probleme und Theorien!

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?
- Vereinfache: Spezialfall/Fallunterscheidung?
- Abstrahiere: Verallgemeinerung?
- Studiere verwandte Probleme und Theorien!
- Variiere die Aussagen und Aufgaben!

- Was ist die Aussage? Mache einfache Beispiele und/oder Skizzen!
- Betrachte die verwendeten Begriffe und Definitionen genauer!
- Welche Zusammenhänge gibt es in diesem Umfeld?
- Welche Zusammenhänge siehst du?
- Welche Zusammenhänge hättest du gerne?
- Führe Bezeichnungen ein!
- © Ergeben einfache Beispiele/Gegenbeispiele Beweisideen?
- Vereinfache: Spezialfall/Fallunterscheidung?
- Abstrahiere: Verallgemeinerung?
- Studiere verwandte Probleme und Theorien!
- Variiere die Aussagen und Aufgaben!
- Untersuche und rekonstruiere ähnliche Probleme!

8. Beispiele/Ausblicke

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Also sind die ersten Fibonacci-Zahlen:

$$0,1,1,2,3,5,8,13,21,\dots$$

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Also sind die ersten Fibonacci-Zahlen:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Das ist eine **rekursive** Folge.

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Also sind die ersten Fibonacci-Zahlen:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Das ist eine **rekursive** Folge.

Kann man die *n*-te Zahl direkt angeben?

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Also sind die ersten Fibonacci-Zahlen:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Das ist eine rekursive Folge.

Kann man die *n*-te Zahl direkt angeben?

Ja! - Explizite Formel:

Definition Fibonacci-Zahlen:

$$F_n := F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1.$$

Also sind die ersten Fibonacci-Zahlen:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Das ist eine rekursive Folge.

Kann man die n-te Zahl direkt angeben?

Ja! - Explizite Formel:

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Beweisidee.

• Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten:

$$(x,y) = x \cdot (1,0) + y \cdot (0,1)$$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten: $(x, y) = x \cdot (1, 0) + y \cdot (0, 1)$
- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- ullet Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten: $(x, y) = x \cdot (1, 0) + y \cdot (0, 1)$
- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)
- Wir machen den Ansatz $F_n = c^n$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- ullet Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten: $(x,y) = x \cdot (1,0) + y \cdot (0,1)$

$$(x,y) = x \cdot (1,0) + y \cdot (0,1)$$

- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)
- Wir machen den Ansatz $F_n = c^n$
- aus $F_n := F_{n-1} + F_{n-2}$ folgt $c^n = c^{n-1} + c^{n-2}$ bzw. $c^2 = c + 1$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten: $(x, y) = x \cdot (1, 0) + y \cdot (0, 1)$
- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)
- Wir machen den Ansatz $F_n = c^n$
- aus $F_n := F_{n-1} + F_{n-2}$ folgt $c^n = c^{n-1} + c^{n-2}$ bzw. $c^2 = c + 1$
- Diese Gleichung hat die zwei Lösungen $\varphi=\frac{1+\sqrt{5}}{2},\overline{\varphi}=\frac{1-\sqrt{5}}{2}$

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten: $(x,y) = x \cdot (1,0) + y \cdot (0,1)$

$$(x,y) = x \cdot (1,0) + y \cdot (0,1)$$

- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)
- Wir machen den Ansatz $F_n = c^n$
- aus $F_n := F_{n-1} + F_{n-2}$ folgt $c^n = c^{n-1} + c^{n-2}$ bzw. $c^2 = c + 1$
- Diese Gleichung hat die zwei Lösungen $\varphi=\frac{1+\sqrt{5}}{2}, \overline{\varphi}=\frac{1-\sqrt{5}}{2}$
- ullet Man sieht direkt, dass (1,arphi) und $(1,\overline{arphi})$ linear unabhängig sind

$$F_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight)$$

- Die Rekursion $F_n := F_{n-1} + F_{n-2}$ basiert auf zwei Werten.
- Seien also die ersten beiden (1,0) und (0,1) (linear unabhängig)
- Alle anderen Startwerte kann man daraus linear erhalten:

$$(x,y) = x \cdot (1,0) + y \cdot (0,1)$$

- Also ist der Raum aller rekursiven Folgen mit der Vorschrift $F_n := F_{n-1} + F_{n-2}$ zweidimensional (\rightsquigarrow Lineare Algebra)
- Wir machen den Ansatz $F_n = c^n$
- aus $F_n := F_{n-1} + F_{n-2}$ folgt $c^n = c^{n-1} + c^{n-2}$ bzw. $c^2 = c + 1$
- Diese Gleichung hat die zwei Lösungen $\varphi=\frac{1+\sqrt{5}}{2}, \overline{\varphi}=\frac{1-\sqrt{5}}{2}$
- Man sieht direkt, dass $(1, \varphi)$ und $(1, \overline{\varphi})$ linear unabhängig sind
- Also F_n als Linearkombination von φ^n und $\overline{\varphi}^n$ schreiben: Nachrechnen \leadsto Explizite Formel

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

Mengen wie

 $\mathbb{N}, \mathbb{Z}, 2\mathbb{N}, \mathbb{R}, \mathbb{R}^n$

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Eine wichtige Unterscheidung:

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Eine wichtige Unterscheidung:

• Eine Zahl $n \in \mathbb{N}$ kann **beliebig groß** sein

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Eine wichtige Unterscheidung:

• Eine Zahl $n \in \mathbb{N}$ kann **beliebig groß** sein

Jede Zahl $n \in \mathbb{N}$ ist aber immer noch endlich

Mengen wie

 \mathbb{N} , \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Eine wichtige Unterscheidung:

- Eine Zahl $n \in \mathbb{N}$ kann **beliebig groß** sein Jede Zahl $n \in \mathbb{N}$ ist aber immer noch endlich
- Die Menge ℕ ist unendlich

Mengen wie

$$\mathbb{N}$$
, \mathbb{Z} , $2\mathbb{N}$, \mathbb{R} , \mathbb{R}^n

haben nicht endlich viele Elemente

d.h. sind nicht endlich (bzw. unendlich)

(Verschiedene *Arten* von Unendlichkeit → Studium + Ausblicke später)

Eine wichtige Unterscheidung:

- Eine Zahl $n \in \mathbb{N}$ kann **beliebig groß** sein Jede Zahl $n \in \mathbb{N}$ ist aber immer noch endlich
- Die Menge ℕ ist unendlich
- Studium (v.a. Analysis) → n geht gegen Unendlich → Konvergenz

Die Mengen X und Y heißen gleichmächtig $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Mengen X und Y heißen gleichmächtig $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge *M* heißt:

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge M heißt:

• endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge *M* heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge *M* heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- überabzählbar :⇔ M ist nicht abzählbar

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge *M* heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- überabzählbar :⇔ M ist nicht abzählbar

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge M heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- **überabzählbar** :⇔ *M* ist nicht abzählbar

Die **Mächtigkeit** |M| einer Menge M ist die Anzahl der Elemente (sofern M endlich), ansonsten nur Vergleichbarkeit (z.B. $|M| \ge |\mathbb{N}|$)

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge M heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- **überabzählbar** :⇔ *M* ist nicht abzählbar

Die **Mächtigkeit** |M| einer Menge M ist die Anzahl der Elemente (sofern M endlich), ansonsten nur Vergleichbarkeit (z.B. $|M| \ge |\mathbb{N}|$)

ullet Die Mengen $\mathbb N$ und $\mathbb Z$ sind abzählbar unendlich

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge M heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- **überabzählbar** :⇔ *M* ist nicht abzählbar

Die **Mächtigkeit** |M| einer Menge M ist die Anzahl der Elemente (sofern M endlich), ansonsten nur Vergleichbarkeit (z.B. $|M| \ge |\mathbb{N}|$)

- ullet Die Mengen $\mathbb N$ und $\mathbb Z$ sind abzählbar unendlich
- Jede Menge, die eine unendliche Menge als Teilmenge enthält, ist unendlich

Die Mengen X und Y heißen **gleichmächtig** $(X \sim Y)$: \Leftrightarrow es existiert eine bijektive Fkt. $f: X \to Y$

Die Menge M heißt:

- endlich : $\Leftrightarrow \exists n \in \mathbb{N}$ und eine bijektive Fkt. $f: M \to \{1, 2, \dots, n\}$ item abzählbar : $\Leftrightarrow M \sim \mathbb{N}$
- höchstens abzählbar :⇔ M ist endlich oder abzählbar
- **überabzählbar** :⇔ *M* ist nicht abzählbar

Die **Mächtigkeit** |M| einer Menge M ist die Anzahl der Elemente (sofern M endlich), ansonsten nur Vergleichbarkeit (z.B. $|M| \ge |\mathbb{N}|$)

- ullet Die Mengen $\mathbb N$ und $\mathbb Z$ sind abzählbar unendlich
- Jede Menge, die eine unendliche Menge als Teilmenge enthält, ist unendlich
- ℝ ist überabzählbar unendlich (→ Analysis)

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

Beweis (Cantor, 1890).

• Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.
- Wir betrachten die Menge $A := \{x \in M : x \notin f(x)\}.$

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.
- Wir betrachten die Menge $A := \{x \in M : x \notin f(x)\}.$
- Weil $A \subset M$, ist also $A \in \mathcal{P}(M)$ und es existiert somit wegen der Bijektion ein eindeutiges Urbild $a \in M$ mit f(a) = A.

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.
- Wir betrachten die Menge $A := \{x \in M : x \notin f(x)\}.$
- Weil $A \subset M$, ist also $A \in \mathcal{P}(M)$ und es existiert somit wegen der Bijektion ein eindeutiges Urbild $a \in M$ mit f(a) = A.
- Für dieses Element ist nun aber nach Definition von A:
 a ∈ A ⇔ a ∈ f(a) ⇔ a ∉ A

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.
- Wir betrachten die Menge $A := \{x \in M : x \notin f(x)\}.$
- Weil $A \subset M$, ist also $A \in \mathcal{P}(M)$ und es existiert somit wegen der Bijektion ein eindeutiges Urbild $a \in M$ mit f(a) = A.
- Für dieses Element ist nun aber nach Definition von A:
 a ∈ A ⇔ a ∈ f(a) ⇔ a ∉ A
- Dies ist ein Widerspruch!

Für jede Menge M gilt: Die Potenzmenge $\mathcal{P}(M) := \{N : N \subset M\}$ ist mächtiger als M, d.h. $|M| < |\mathcal{P}(M)|$.

- Für endliche Mengen M ist $|\mathcal{P}(M)| = 2^{|M|} > |M|$ (Induktion, \rightsquigarrow LA, Ana).
- Sei M nun unendlich.
- Da $M \sim \{\{x\} : x \in M\} \subset \mathcal{P}(M)$, ist also M bereits gleichmächtig zu einer Teilmenge von $\mathcal{P}(M)$, d.h. es gilt $|M| \leq |\mathcal{P}(M)|$.
- Angenommen, $M \sim \mathcal{P}(M)$, so existiert eine Bijektion $f: M \to \mathcal{P}(M)$.
- Wir betrachten die Menge $A := \{x \in M : x \notin f(x)\}.$
- Weil $A \subset M$, ist also $A \in \mathcal{P}(M)$ und es existiert somit wegen der Bijektion ein eindeutiges Urbild $a \in M$ mit f(a) = A.
- Für dieses Element ist nun aber nach Definition von A:
 a ∈ A ⇔ a ∈ f(a) ⇔ a ∉ A
- Dies ist ein Widerspruch!
- Also sind M und $\mathcal{P}(M)$ nicht gleichmächtig.

