A Simple Plan Generator

Ouitline:

1. preliminaries

2. reorderability

3. conflict detection
4. enumeration

Preliminaries (strict predicates)

Definition

A predicate is null rejecting for a set of attributes A if it
evaluates to FALSE or UNKNOWN on every tuple in which all
attributes in A are NULL.

Synonyms for null rejecting are used: null intolerant, strong,
and strict.

Preliminaries (initial operator tree)

We assume that we have an initial operator tree, e.g., by a
canonical translation of a SQL query.

Preliminaries (accessors)

For a set of attributes A, REL(A) denotes the set of tables to
which these attributes belong. We abbreviate REL(F(e)) by
Fr(e). Let o be an operator in the initial operator tree. We
denote by left(o) (right(o)) its left (right) child. STO(o) denotes
the operators contained in the operator subtree rooted at o.
REL(o) denotes the set of tables contained in the subtree
rooted at o.

Preliminaries (SES)

Then, for each operator we define its syntactic eligibility sets as
its set of tables referenced by its predicate.
Ifp=Ra+S.b=S.c+ T.d,then F(p) ={R.a,S.b,S.c, T.d}
and sEs(op) = {R, S, T}.

Preliminaries (degenerate predicates)

Definition

Let p be a predicate associated with a binary operator o and
Fr1(p) the tables referenced by p. Then, p is called degenerate
if REL(left(o)) N Fr(p) = 0 Vv REL(right(c)) N Fr(p) = 0 holds.

Here, we exclude degenerate predicates.

Preliminaries (hypergraph)

Definition
A hypergraphis a pair H = (V, E) such that
1. Vis a non-empty set of nodes, and

2. E is a set of hyperedges, where a hyperedge is an
unordered pair (u, v) of non-empty subsets of V (u c V
and v C V) with the additional condition that un v = 0.

We call any non-empty subset of V a hypernode.

Preliminaries (Necessity of Hypergraphs)

possible join predicate: R.a+ S.b=S.c+ T.d
even without non-binary join predicates: conflict detectors
introduce hypergraphs

Preliminaries (Neighborhood)

min(S) = {s|s€ S,vs' € Ss# 5 = s < §'}

Let S be a current set, which we want to expand by adding
further relations. Consider a hyperedge (u, v) with u C S.
Then, we will add min(v) to the neighborhood of S. We thus
define

min(S) = S\ min(S)

Note: we have to make sure that the missing elements of v, i.e.
v \ min(v), are also contained in any set emitted.

Preliminaries (Neighborhood)

We define the set of non-subsumed hyperedges as the minimal
subset E | of E such that for all (u, v) € E there exists a
hyperedge (v, V') € E| with /o Cuand v/ C v.

El (S, X)={v|(u,v)e E,LucC S,vNnS=0,vnX =0}

Define E | (S, X) to be the minimal set of hypernodes such that
forall v e E]' (S, X) there exists a hypernode v’ in E| (S, X)
such that v/ C v.

Neighborhood:

NS, X)= | J min(v) (1)

VEEL(S,X)

where X is the set of forbidden nodes.

Preliminaries (csg-cmp-pair)

Definition
Let H = (V, E) be a hypergraph and S;, S, two non-empty
subsets of V with S; N S, = (. Then, the pair (Sy, S,) is called
a csg-cmp-pair if the following conditions hold:
1. S; and S, induce a connected subgraph of H, and
2. there exists a hyperedge (u, v) € E such that u C Sy and
v C Sg.

Reorderability (properties)

» commutativity (comm)
» associativity (assoc)
» |/r-asscom

Reorderability (comm)

X X% v X X X|o

Reorderability (assoc)

assoc:
(e10f, €2) 033 e3 = ey of, (e 023 €3)

Reorderability (assoc)

o

Oa

o+ o+ X
o+ +| X
[S S B v
D¢
o+ X

—
N

X
X

X

>

I e R I S
XOp - | - - |-+ |+ | -
X -

(1
(2

if pog rejects nulls on A(e2) (Eqv. 2)

)
) if p12 and po3 reject nulls on A(ez) (Eqv. 2)

Reorderability (l/r-asscom)

Consider the following truth about the semijoin:
(e1 X12 €2) X413 €3 = (€1 X13 €3) X12 €2

This is not expressible with associativity nor commutativity (in
fact the semijoin is neither).

Reorderability (l/r-asscom)

We define the left asscom property (I-asscom for short) as
follows:

b _ b
(61 05132 62) O3 €3 = (91 043 63) 0‘132 eo. (3)
We denote by I-asscom(o?, o?) the fact that Eqv. 3 holds for o2
and ob.
Analogously, we can define a right asscom property (r-asscom):
1 0, (€2 085 €3) = €5 085 (1 0, €3) (4)
1 013 (€2 023 €3) = €2 033 (€1 013 €3)-
First, note that I-asscom and r-asscom are symmetric
properties, i.e.,
l-asscom(o?,0?) « l-asscom(o?, o?),
r-asscom(o?,0?) < r-asscom(o?, 0?).

Reorderability (l/r-asscom)

o X X X > X X X
X | ++ | ++ | +- | +- | +/- ~/- +/-
M|+ |+ | | -+ -/- +/-
Xo| - | - | | - - -/- +/-
>o| - | - | | - - -/- +/-
B I S e O I Yo 7o B SR R A
B T O A A Iy A Ry P
XU+~ | - | | -+ -/- +/-
1 if p12 rejects nulls on A(e1) (Eqv. 3)

2 if pi3 rejects nulls on A(e3) (Eqv. 3)

3 if p12 and p13 rejects nulls on A(ey) (Eqv. 3)

4 if p13 and pos reject nulls on A(es) (Eqv. 4)

Conflict Detector CD-A: SES

SEs(R) = {R}

SES(T) = {T}

sEs(op) = | J SES(R)NREL(op)
ReFr(p)

SES(M'p.a:e1,....anen) = U SES(R) N REL(gj)
ReFr(p)uFr(er)

assoc (0%, o")

comim Ub
omm (&) e3 05 (e2 0% €1) —

(e2 0y e1) ofy e

comm (0%) comm (0%)

comm (0%)

(e10fy e2) oz e e3 03 (e1 0f €2)
l-asscomm (0%, o”) r-asscomm (0%, o”)

comm (o%)

(e1 0% e3) 0% €3 ez 0%y (e1 085 €3)

comm (o%) comm (0%)

comm (0%)

(e3 0y e1) ofy e e 0fy (e3 033 €1) —

assoc (0, 0%)

Conflict Detector CD-A: TES: left conflict

initially: TES(op) := SES(op)

ob o4
s N\ assoc / N
o4 €3 eq ob
/ N\ /N
e4 eo € €3
.
l-asscom s N
ob e

—assoc(o?, oP)
TES(o?) U= REL(&)

—l-asscom(o?, o)
TES(oP) U= REL(ep)

Conflict Detector CD-A:

ob
s N assoc
€3 o4
/N
e e
r-asscom
=

TES: right conflict

RN —assoc(o?, o)
/Ob\ €2 TES(oP) U= REL(eR)
€3 €4
Oa
RN —r-asscom(o?, o)
e ob TES(o?) U= REL(64)

Conflict Detector CD-A: Remarks

» correct
» not complete

Conflict Detector CD-A: applicability test

applicable(o, Sy, Sp) :=tesl(c) C Sy Atesr(o) C So.

where

tesl(o) := TES(o) NREL(left(0))
tesr(c) = TES(o) NREL(right(o))

Query Hypergraph Construction

The nodes V are the relations.

For every operator o, we construct a hyperedge (/, r) such that
r = TES(o) NREL(right(c)) = R-TES(0) and

| =TES(0) \ r = L-TES(o0).

DP-PLANGEN

> Input: a set of relations R = {Ry,...,Rn—1}
a set of operators O with associated predicates
a query hypergraph H
> Output: an optimal bushy operator tree
forall R, € R
DPTable[R;] <+ R; > initial access paths
for all csg-cmp-pairs (Sy, Sp) of H
forallo, € O
if APPLICABLE(S, Sz, 0p)
BUILDPLANS(Sy, Sz, 0p)
if op is commutative
BUILDPLANS(Sy, Sy, op)

O©oOo~NOOThWN =

return DPTable[R]

BUILDPLANS(S;, Sz, 0p)

1
2
3
4
5
6
7
8
9

OptimalCost < oo

S+ SUS

Ty « DPTable[S/]

T> < DPTable[S;]

if DPTable[S] # NULL
OptimalCost <+ CoSsT(DPTable[S])

if COST(T; 0p T2) < OptimalCost
OptimalCost <— COST(T1 op T>)
DPTable[S] — (T1 op T2)

Csg-Cmp-Enumeration: Overview

1. The algorithm constructs ccps by enumerating connected
subgraphs from an increasing part of the query graph;

2. both the primary connected subgraphs and its connected
complement are created by recursive graph traversals;

3. during traversal, some nodes are forbidden to avoid
creating duplicates. More precisely, when a function
performs a recursive call it forbids all nodes it will
investigate itself;

4. connected subgraphs are increased by following edges to
neighboring nodes. For this purpose hyperedges are
interpreted as n : 1 edges, leading from n of one side to
one (specific) canonical node of the other side (cmp.

Eqg. 1).

The last point is like selecting a representative.

Csg-Cmp-Enumeration: Complications

» “starting side” of an edge may contain multiple nodes

» neighborhood calculation more complex, no longer simply
bottom-up

» choosing representative: loss of connectivity possible

Last point: use DpTable lookup as connectivity test

Csg-Cmp-Enumeration: Routines

Eal

top-level: BuEnumCcpHyp
EnumerateCsgRec
EmitCsg

EnumerateCmpRec

Csg-Cmp-Enumeration: BuEnumCcpHyp

BuEnumCcpHyp()

for each v € V // initialize DpTable
DpTable[{v}] = plan for v

for each v € V descending according to <
EmitCsg({v}) / process singleton sets
EnumerateCsgRec({V},:B)) // expand singleton sets

return DpTable[V]

where B, = {w|w < v} U {v}.

Csg-Cmp-Enumeration: EnumerateCsgRec

EnumerateCsgRec(Sy, X)
foreach N C N(Si, X): N # 0
if DpTable[S; U NJ#
EmitCsg(Sy1 UN)
foreach N C N(Si, X): N # 0
EnumerateCsgRec(Sy UN, X U N(S;, X))

Csg-Cmp-Enumeration: EmitCsg

EmitCsg(Sy)

X = S1 UBpin(s))

N = N(S1, X)

for each v € N descending according to <
Sz = {v}
if (u,v) e E:uC S AvC S,

EmitCsgCmp(Sy, So)

EnumerateCmpRec(Sy, Sz, X U By (N))

where B, (W) = {w|w € W, w < v} is defined as in DPccp.

Csg-Cmp-Enumeration: EnumerateCmpRec

EnumerateCmpRec(Sy, So, X)

foreach N C N(S;, X): N #£ 0
if DpTable[S, U N]#£ 0 A

Hu,v)eE:uCSiAVC SSUN
EmitCsgCmp(Sy, So U N)

X =XUN(Sz, X)

foreach N C N(S2, X): N # 0
EnumerateCmpRec(Sy, So UN, X)

Csg-Cmp-Enumeration: EmitCsgCmp

The procedure EmitCsgCmp (S, Sp) is called for every S;
and S, such that (S, Sp) forms a csg-cmp-pair.
important. Since it is called for either (S1, Sz) or (Sz, Sy),
somewhere the symmetric pairs have to be considered.

Csg-Cmp-Enumeration: Neighborhood Calculation

Let G = (V, E) be a hypergraph not containing any subsumed
edges.

For some set S, for which we want to calculate the
neighborhood, define the set of reachable hypernodes as

W(S, X) = {w|(u,w) € E,uC S,wn (SuX) =0},

where X contains the forbidden nodes. Then, any set of nodes
N such that for every hypernode in W(S, X) exactly one
element is contained in N can serve as the neighborhood.

CalcNeighborhood(S, X)
N:=0
if isConnected(S)

N = simpleNeighborhood(S) \ X
else

foreachsc S

N U= simpleNeighborhood(s)

F = (SuU X U N) // forbidden since in X or already handled
foreach (u,v) € E

ifucS
ifvnF=10
N +=min(v)
Fu=N
ifvCcS
ifunF =10
N += min(u)

Fu=N

