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1 Introduction
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1.0 General Remarks

I Query languages like SQL or OQL are declarative.
I The task of the query compiler is to generate a query

evaluation plan.
(query execution plan, QEP)

I The QEP is an operator tree with physical algebraic
operators as nodes.

I The QEP is interpreted by the runtime system.
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1.1 DBMS Architecture
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1.2 Interpretation versus Compilation

There are two approaches to process a query:
I interpretation
I compilation
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1.2 Interpretation
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1.2 Interpretation

interprete(SQLBlock x) {
/* possible rewrites go here */
s := x .select();
f := x .from();
w := x .where();
R := ∅; /* result */
t := []; /* empty tuple */
eval(s, f , w , t , R);
return R;

}
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eval(s, f , w , t , R) {
if(f .empty())

if(w(t))
R += s(t);

else
foreach(t ′ ∈ first(f ))

eval(s, tail(f ), w , t ◦ t ′, R);
}
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1.2 Compilation
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1.2 Compiler Architecture
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1.2 Compiler Tasks

1. Parser
2. NFST: normalization, factorization, semantic analysis,

translation
3. Rewrite I: simple rewrites, deriving new predicates, view

resolution and merging, unnesting nested queries
4. Plan Generation: find cheapest QEP (include e.g. join

ordering)
5. Rewrite II: polishing
6. Code Generation
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1.2 TPC-D Query 1

SELECT RETURNFLAG, LINESTATUS,
SUM(QUANTITY) as SUM QTY,
SUM(EXTENDEDPRICE) as SUM EXTPR,
SUM(EXTENDEDPRICE * (1 - DISCOUNT)),
SUM(EXTENDEDPRICE * (1 - DISCOUNT)*

(1 + TAX)),
AVG(QUANTITY),
AVG(EXTENDEDPRICE),
AVG(DISCOUNT),
COUNT(*)

FROM LINEITEM
WHERE SHIPDDATE <= DATE ’1998-12-01’
GROUP BY RETURNFLAG, LINESTATUS
ORDER BY RETURNFLAG, LINESTATUS
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1.2 Query Evaluation Plan

(group
(tbscan

{segment ’lineitem.C4Kseg’ 0 4096}
{nalslottedpage 4096}
{ctuple ’lineitem.cschema’}
[ 20

LOAD_PTR 1
LOAD_SC1_C 8 1 2 // L_RETURNFLAG
LOAD_SC1_C 9 1 3 // L_LINESTATUS
LOAD_DAT_C 10 1 4 // L_SHIPDATE
LEQ_DAT_ZC_C 4 ’1998-02-09’ 1

] 2 1 // number of help-registers and selection-register
) 10 22 // hash table size, number of registers
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[ // init
MV_UI4_C_C 1 0 // COUNT(*) = 0
LOAD_SF8_C 4 1 6 // L_QUANTITY
LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE
LOAD_SF8_C 6 1 8 // L_DISCOUNT
LOAD_SF8_C 7 1 9 // L_TAX
MV_SF8_Z_C 6 10 // SUM/AVG(L_QUANTITY)
MV_SF8_Z_C 7 11 // SUM/AVG(L_EXTENDEDPRICE)
MV_SF8_Z_C 8 12 // AVG(L_DISCOUNT)
SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT
ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX
MUL_SF8_ZZ_C 7 13 15 // SUM(L_EXTDPRICE * (1 - L_DISC))
MUL_SF8_ZZ_C 15 14 16 // SUM((...) * (1 + L_TAX))

]
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[ // advance
INC_UI4 0 // inc COUNT(*)
MV_PTR_Y 1 1
LOAD_SF8_C 4 1 6 // L_QUANTITY
LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE
LOAD_SF8_C 6 1 8 // L_DISCOUNT
LOAD_SF8_C 7 1 9 // L_TAX
MV_SF8_Z_A 6 10 // SUM/AVG(L_QUANTITY)
MV_SF8_Z_A 7 11 // SUM/AVG(L_EXTENDEDPRICE)
MV_SF8_Z_A 8 12 // AVG(L_DISCOUNT)
SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT
ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX
MUL_SF8_ZZ_B 7 13 17 15 // SUM(L_EXTDPRICE * (1 - L_DISC))
MUL_SF8_ZZ_A 17 14 16 // SUM((...) * (1 + L_TAX))

]
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[ // finalize
UIFC_C 0 18
DIV_SF8_ZZ_C 10 18 19 // AVG(L_QUANTITY)
DIV_SF8_ZZ_C 11 18 20 // AVG(L_EXTENDEDPRICE)
DIV_SF8_ZZ_C 12 18 21 // AVG(L_DISCOUNT)

] [ // hash program
HASH_SC1 2 HASH_SC1 3

] [ // compare program
CMPA_SC1_ZY_C 2 2 0
EXIT_NEQ 0
CMPA_SC1_ZY_C 3 3 0

])



17/528

1.2 Query’s Result

RETURNFLAG LINESTATUS SUM QTY SUM EXTPR . . .
A F 3773034 5319329289.68 . . .
N F 100245 141459686.10 . . .
N O 7464940 10518546073.98 . . .
R F 3779140 5328886172.99 . . .
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1.2 Abstracted Operator Tree
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1.3 What to Optimize?

Cost function:
I Minimize resource consumption
I Maximize throughput
I Minimize response time
I Minimize time to first tuple

Which one? At least two of them.
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1.4 Requirements for a Query Compiler

1. Correctness
2. Completeness
3. Generate optimal plan (viz avoid the worst case)
4. Efficiency, generate the plan fast, do not waste memory
5. Graceful degradation
6. Robustness, maintainability, and all the other general

requirements for software
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1.5 Search Space
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1.6 Transformation vs. Generation

a) Generative Approach b) Transformational Approach
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2 Textbook Query Optimization

I repeat basics
I pinpoint problems
I reveal gaps
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2.1 Example Query and Outline

Sample schema:

Student(SNo, SName, SAge, SYear)
Attend(ASNo, ALNo, AGrade)
Lecture(LNo, LTitle, LPNo)
Professor(PNo, PName)

Keys are underlined
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2.1 Example Query and Outline

Sample query:

select distinct s.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LPNo = p.PNo and p.PName = ‘Larson’
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2.1 Example Query and Outline

I Review relational algebra
I Translation into the algebra
I Logical query optimization
I Physical query optimization
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2.2 Relational Algebra

I Set operators: union (∪), intersection (∩), and
setdifference (\)

I Algebraic operators
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2.2 Relational Algebra

Tuples and relations:
I Tuple: mapping from attribute names to values of a domain

(Unordered!)
I Sample tuple: [name: ‘‘Anton’’, age: 2]

I Schema: set of attributes (with domain)
I Relation: set of tuples with the same schema
I Schema of a relation R: schema of the tuples in R,

sometimes denoted by sch(R), we use A(R)

The argument relations of the set operators must have the
same schema.



29/528

2.2 Relational Algebra

Tuple concatenation:
I Tuple concatentation: ‘◦’
I Example:

[name: ‘‘Anton’’, age: 2] ◦ [toy:
‘‘digger’’]
results in
[name: ‘‘Anton’’, age: 2, toy:
‘‘digger’’]
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2.2 Relational Algebra

Tuple projection:
I Let A′ ⊆ A be sets of attributes and t a tuple with schema A
I Then t .A′ is the tuple that contains only the attributes in A′;

others are discarded.
I Example:

Let t be [name: ‘‘Anton’’, age: 2, toy:
‘‘digger’’] and
A = {name,age}
Then: t .A = [name: ‘‘Anton’’, age: 2]
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2.2 Relational Algebra

Free attributes (variables)
I Consider the predicate: age = 2

where age is an attribute name
I age behaves like a free variable
I We must provide a value for age before the predicate can

be evaluated
I Set of free attributes/variables of an expression e: F(e)
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2.2 Relational Algebra

Abbreviation of predicates:

I Let A = 〈a1, . . . ,ak 〉 and B = 〈b1, . . . ,bk 〉 be two attribute
sequences.

I Then for any comparison operator
θ ∈ {=,≤, <,≥, >, 6=},
the expression AθB abbreviates
a1θb1 ∧ a2θb2 ∧ . . . ∧ akθbk .
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2.2 Relational Algebra

Algebraic operators:

σp(R) := {r |r ∈ R,p(r)}
ΠA(R) := {r .A|r ∈ R}

R1 A R2 := {r1 ◦ r2|r1 ∈ R1, r2 ∈ R2}
R1 Bp R2 := σp(R1 A R2)
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2.2 Relational Algebra

Natural join:
I Consider two relations R1 and R2.
I Define Ai := A(Ri) for i ∈ {1,2}, and A := A1 ∩ A2.
I Assume that A is non-empty and A = 〈a1, . . . ,an〉.

If A is non-empty, the natural join is defined as

R1 B R2 := ΠA1∪A2(R1 Bp ρA:A′(R2))

where ρA:A′ renames the attributes ai in A to a′i in A′ and the
predicate p has the form A = A′, i.e. a1 = a′1 ∧ . . . ∧ an = a′n.
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2.2 Relational Algebra

Equivalences:

σp1∧...∧pk (R) ≡ σp1(. . . (σpk (R)) . . .) (1)
σp1(σp2(R)) ≡ σp2(σp1(R)) (2)

ΠA1(ΠA2(. . . (ΠAk (R)) . . .)) ≡ ΠA1(R)

if Ai ⊆ Aj for i < j (3)
ΠA(σp(R)) ≡ σp(ΠA(R))

if F(p) ⊆ A (4)
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2.2 Relational Algebra

(R1 A R2) A R3 ≡ R1 A (R2 A R3) (5)
(R1 Bp1,2 R2) Bp2,3 R3 ≡ R1 Bp1,2 (R2 Bp2,3 R3)

if F(p1,2) ⊆ A(R1) ∪ A(R2)

and F(p2,3) ⊆ A(R2) ∪ A(R3) (6)
R1 A R2 ≡ R2 A R1 (7)

R1 Bp R2 ≡ R2 Bp R1 (8)
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2.2 Relational Algebra

σp(R1 A R2) ≡ σp(R1) A R2

if F(p) ⊆ A(R1) (9)
σp(R1 Bq R2) ≡ σp(R1) Bq R2

if F(p) ⊆ A(R1) (10)
ΠA(R1 A R2) ≡ ΠA1(R1) A ΠA2(R2)

if A = A1 ∪ A2, Ai ⊆ A(Ri) (11)
ΠA(R1 Bp R2) ≡ ΠA1(R1) Bp ΠA2(R2)

if F(p) ⊆ A, A = A1 ∪ A2,
and Ai ⊆ A(Ri) (12)
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2.2 Relational Algebra

σp(R1θR2) ≡ σp(R1)θσp(R2)

where θ is any of ∪, ∩, \ (13)
ΠA(R1 ∪ R2) ≡ ΠA(R1) ∪ ΠA(R2) (14)
σp(R1 A R2) ≡ R1 Bp R2 (15)
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2.2 Relational Algebra

Remarks on validity/conditions:
I Relations joined must have disjoint attribute sets

Attribute names must be unique.
Means: notation R.a for a relation R or v .a for a variable
ranging over tuples with an attribute a.
Another possibility is to use the renaming operator ρ.

I Consumer/producer relationship must be o.k.
Attributes must be provided before they are used
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2.3 Canonical Translation

I Only: select distinct
Reason: sets, not bags

I Not: group by, order by, union, intersection, except
I Only: attributes in select clause (no other expressions)
I Not: disjunction, negation
I Not discussed: NULL-values
I Not allowed: nested queries, views
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2.3 Canonical Translation

Canonical translation:
1. Let R1 . . .Rk be the entries in the from clause of the query.

Construct the expression

F :=

{
R1 if k = 1
((. . . (R1 A R2) A . . .) A Rk ) else

2. The where clause is optional in SQL. Therefore, we
distinguish the cases that there is no where clause and
that the where clause exists and contains a predicate p.
Construct the expression

W :=

{
F if there is no where clause
σp(F ) if the where clause contains p
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2.3 Canonical Translation

3. Let s be the content of the from clause. For the canonical
translation it must be of either ’*’ or a list a1, . . . ,an of
attribute names. Construct the expression

S :=

{
W if s = ’*’
Πa1,...,an (W ) if s = a1, . . . ,an

4. Return S.
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2.3 Canonical Translation

Sample query:

select distinct s.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LPNo = p.PNo and p.PName = ‘Larson’

Translation:

Πs.SName(σp(((Student [s]AAttend [a])ALecture[l])AProfessor [p]))

where p equals

s.SNo = a.ASNo and a.ALNo = l.LNo and l.LPNo = p.PNo and
p.PName = ‘Larson’.
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2.3 Canonical Translation

Remarks:
I We used the notation R[r ] to say that a relation named R

has the correlation name r .
I Another interpretation:

r is a variable successively bound to the elements (tuples)
in R
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2.3 Canonical Translation

Graphically:

Professor[p]Attend[a] Lecture[l]Student[s]

Πs.SName

l.LPNo= p.PNo∧ p.PName= ′Larson′

σs.SNo= a.ASNo∧ a.ALNo= l.LNo∧

A

A

A
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2.4 Logical Query Optimization

Steps of textbook query optimization:
1. translate query into its canonical algebraic expression
2. perform logical query optimization
3. perform physical query optimization
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2.4 Logical Query Optimization

I Foundation: algebraic equivalences
I Algebraic equivalences span the potential search space
I Given an initial algebraic expression: apply algebraic

equivalences to derive new (equivalent) algebraic
expressions

I Note: algebraic equivalences can be applied in two
directions:
from left to right and from right to left.

I Care has to be taken that the conditions attached to the
equivalences are obeyed.

New equivalences increase the potential search space:
+ better plans
- larger search space
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2.5 Logical Query Optimization

Better(?!):
I Plans can only be compared if there is a cost function
I Cost functions need details not available at the level of the

logical algebra
I Consequence: logical query optimization remains a

heuristic
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2.5 Logical Query Optimization

Most algorithms for logical query optimization require
I organization of equivalences into groups
I directing equivalences

A directed equivalence is called rewrite rule. The groups of
rewrite rules are then successively applied to the initial
algebraic expression.
General idea behind: reduce intermediate result sizes.
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2.5 Logical Query Optimization

1. break up conjunctive selection predicates
(Eqv. 1: →)

2. push down selections
(Eqv. 2: →), (Eqv. 9: →)

3. introduce joins
(Eqv. 15: →)

4. determine join order
Eqv. 8, Eqv. 6, Eqv. 5, Eqv. 7

5. introduce and push down projections
(Eqv. 3: ←), (Eqv. 4: →),
(Eqv. 11: →), (Eqv. 12: →)
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2.5 Logical Query Optimization

Step 1:
I Break up conjunctive selection predicates.
I Motivation: selections with simple predicates can be

moved around easier
For our example query Step 1 results in
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Professor[p]Lecture[l]

σs.SNo = a.ASNo

σa.ALNo = l.LNo

Student[s] Attend[a]
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2.5 Logical Query Optimization

Step 2:
I Push selections down
I Motivation: reduce number of tuples early, especially

inputs to expensive operators like join
For our example query Step 2 results in
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2.5 Logical Query Optimization

Step 3:
I Convert cross products to joins
I Motivation: joins are cheaper than cross products

For our example query Step 3 results in
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l.PNo = p.PNo

a.ALNo = l.LNo

Professor[p]

..........................

����
PPPP

����
PPPP

s.SNo =a.ASNo..........................

..........................

Student[s] Attend[a]

Πs.SName

σp.PName = ′Larson′

Lecture[l]

................................
................................

................................
................................

................................
................................



57/528

2.5 5ogical Query Optimization

Step 4:
I Reorder joins (exploit associativity and commutativity)
I Motivation: find cheap join order

Remarks:
I Cost differ vastly for different orders
I Difficult problem (many alternatives, NP-hard)
I next chapter discusses only join ordering

Next slide: different join plans
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2.5 Logical Query Optimization

Step 4 (Join Ordering) for example query:
I Currently, the bottom-most expression is

Student [s] Bs.SNo=a.ASNo Attend [a].

I Result is huge: all students, all lectures
I On the other hand: only one professor selected by

σp.PName=‘Larson′(Professor [p])

I Join this with Lectures: only lectures by ‘Larson’: few
compared to all lectures

Result of join ordering:
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a.ASNo = s.SNo

l.LNo = a.ALNo

����
PPPP
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p.PNo = l.LPNo
�� QQ
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Lecture[l]σp.PName = ′Larson′
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Attend[a]

................................
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................................
................................
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................................
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2.5 Logical Query Optimization

Step 5:
I Push down projections
I Motivation: eliminate irrelevant attributes
I Do the elimination just before pipeline breakers
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2.5 Logical Query Optimization: Excursion

We might encounter problems when pushing down selections:

select distinct s.SName
from Student s, Lecture l, Attend a
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LTitle = ‘Databases I’

After translation and Steps 1 and 2 the algebraic expression
looks like

Πs.SName(
σs.SNo=a.ASNo(

σa.ALNo=l.LNo(
(Student [s] A σl.LTitle=‘Databases I′(Lecture[l])) A Attend [a]))).

Neither of σs.SNo=a.ASNo and σa.ALNo=l.LNo can be pushed down
further.
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2.5 Logical Query Optimization: Excursion

Only after reordering the cross products such as in

Πs.SName(
σs.SNo=a.ASNo(
σa.ALNo=l.LNo(

(Student [s] A Attend [a])
Aσl.LTitle=‘Databases I′(Lecture[l]))))

can σs.SNo=a.ASNo be pushed down:

Πs.SName(
σa.ALNo=l.LNo(
σs.SNo=a.ASNo(Student [s] A Attend [a])

Aσl.LTitle=‘Databases I′(Lecture[l])))

Lesson learned: Steps 2 and 4 are highly interdependent.
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2.6 Physical Query Optimization

I Add more execution information to plan
I Select index structures/access paths
I Specify operator implementations
I Property enforcers

(e.g. sort-merge join requires both inputs to be sorted)
(e.g. in distributed databases the argument relations of a
join must be at the side where the join is executed)

I DAG’s
(tmp-Operator)
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QEP for example query

Πs.SName(
Sorta.ASNo(Πa.ASNo(

Sortl.LNo(Πl.LNO(
Sortp.PNo(Πp.PNo(IdxScanp.PName=‘Larson′(Professor [p])))

B
smj
p.PNo=l.LPNo

Sortl.LPNo(Πl.LPno,l.LNo(Lecture[l])))

B
smj
l.LNo=a.ALNo

Sorta.ALNo(Πa.ALNo,a.ASNo(Attend [a]))))

B
smj
a.ASno=s.SNo

Sorts.SNo(Πs.SNo,s.SName(Student [s])))



66/528

smj
a.ASno = s.SNo

Πs.SNo,s.SName

smj
l.LNo=a.ALNo�� HH

��� PPP

Πl.LPNo,l.LNo

smj
p.PNo=l.LPNo

��

��

��

Πa.ASNo

Sortl.LNo

Πl.LNo

Sortl.LPNoSortp.PNo

Professor[p]

Πp.PNo

IdxScanp.PName=′Larson′ Lecture[l]

Sorta.ALNo

Πa.ALNo,a.ASNo

Attend[a]

�� HH

��

Πs.SName

Sorts.SNo

Student[s]

Sorta.ASNo

......................
......................

......................
......................

......................
......................
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2.7 Discussion

I Only a small fraction of SQL discussed
(see omissions at beginning of this chapter)

I Separation into two phases (looses optimality)
I Join ordering
I Query rewrite (views, nested queries)

Outline:
I Join ordering (algorithms)
I Physical query optimization (details, costs)
I Rewrite (views, nested queries)
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Join Ordering
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Queries Considered

I conjunctive queries, i.e.
I conjunctions of simple predicates
I predicates of the form e1θe2

e1 is an attribute, e2 is either an attribute or a constant
I join predicates: θ must be ‘=’

(equi-joins only)

We join relations R1, . . . ,Rn where Ri can be
I a base relation
I a base relation to which a selection has been applied
I a more complex building block or access path
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Query Graph

A query graph is an undirected graph with nodes R1, . . . ,Rn.
For every join predicate in the conjunction P whose attributes
belong to the relations Ri and Rj , we add an edge between Ri
and Rj .
This edge is labeled by the join predicate.
For simple predicates applicable to a single relation, we add a
self-edge.
However, our algorithms will not consider simple selection
predicates. They have to be pushed down before.
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Example Query Graph

Student Attend

LectureProfessor

a.ALNo = l.LNo

l.LPNo = p.PNo

p.PName = ’Larson’

s.SNo = a.ASNo
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Shapes of Query Graphs

chain queries star queries tree query

cyclic query cycle queries grid query clique queries
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Join Trees

are binary trees
I with relation names attached to leaf nodes and
I join operators as inner nodes.

Some algorithms will produce ordered binary trees, others
unordered binary trees.
Distinguish whether cross products are allowed or not.
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Join Tree Shapes

I left-deep join trees
I right-deep join trees
I zig-zag trees
I bushy trees

Left-deep, right-deep, and zig-zag trees can be summarized
under the notion of linear trees
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Simple Cost Functions

Input:
I cardinalities: |Ri |
I selectivities: fi,j of pi,j is then defined as

fi,j =
|Ri Bpi,j Rj |
|Ri | ∗ |Rj |

Calculate:
I result cardinality:

|Ri Bpi,j Rj | = fi,j |Ri ||Rj |
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Result Cardinalities of Join Trees

Consider a join tree T = T1 B T2.
Then, |T | can be calculated as follows:

I If T is a leaf Ri , then |T | = |Ri |.
I Otherwise,

|T | = (
∏

Ri∈T1,Rj∈T2

fi,j) |T1| |T2|.

This formula assumes independence.
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Example

The table

|R1| = 10
|R2| = 100
|R3| = 1000
f1,2 = 0.1
f2,3 = 0.2

implicitly defines the query graph R1 −−R2 −−R3.
(We assume fi,j = 1 for all i , j for which fi,j is not explicitly given.)
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The cost function Cout

Cout(T ) =

{
0 if T is a single relation
|T |+ Cout(T1) + Cout(T2) if T = T1 B T2
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Other cost functions
For single join operators:

Cnlj(e1 Bp e2) = |e1||e2|
Chj(e1 Bp e2) = h|e1|

Csmj(e1 Bp e2) = |e1|log(|e1|) + |e2|log(|e2|)

For sequences of join operators (relations):

Chj(s) =
n∑

i=2

1.2|s1, . . . , si−1|

Csmj(s) =
n∑

i=2

|s1, . . . , si−1| log(|s1, . . . , si−1|) +
n∑

i=2

|si | log(|si |)

Cnlj(s) =
n∑

i=2

|s1, . . . , si−1| ∗ si
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Remarks on Cost Functions

I cost functions are simplistic
I cost functions designed for left-deep trees
I Chj and Csmj do not work for cross products

(Fix: define them to be equal to the output cardinality which
happens to be the costs of the nested-loop cost function)

I in reality: other parameters besides cardinality play a role
I the above cost functions assume that the same join

algorithm is chosen throughout the whole plan
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Example Calculations

Cout Cnlj Chj Csmj
R1 B R2 100 1000 12 697.61
R2 B R3 20000 100000 120 10630.26
R1 A R3 10000 10000 10000 10000.00
(R1 B R2) B R3 20100 101000 132 11327.86
(R2 B R3) B R1 40000 300000 24120 32595.00
(R1 A R3) B R2 30000 1010000 22000 143542.00
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Observations

I Costs differ vastly
I different cost functions result in different costs
I the cheapest join tree is the cheapest one under all cost

functions
I join trees with cross products are expensive
I the order in which relations are joined is essential under all

(and other) cost functions
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Another Example

Query: |R1| = 1000, |R2| = 2, |R3| = 2, f1,2 = 0.1, f1,3 = 0.1
For Cout we have costs

Join Tree Cout
R1 B R2 200
R2 A R3 4
R1 B R3 200
(R1 B R2) 1 R3 240
(R2 A R3) 1 R1 44
(R1 B R3) 1 R2 240

Plan with cross product is best.
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Yet Another Example

Query: |R1| = 10, |R2| = 20, |R3| = 20, |R4| = 10, f1,2 = 0.01,
f2,3 = 0.5, f3,4 = 0.01

Join Tree Cout
R1 B R2 2
R2 B R3 200
R3 B R4 2
((R1 B R2) B R3) B R4 24
((R2 B R3) B R1) B R4 222
(R1 B R2) B (R3 B R4) 6

Bushy tree better than any left-deep tree
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Properties of Cost Functions: Symmetry and ASI

A cost function Cimpl is called symmetric, if
Cimpl(R1 B

impl R2) = Cimpl(R2 B
impl R1) for all relations R1 and

R2.
For symmetric cost functions, it does not make sense to
consider commutativity.
ASI: adjacent sequence interchange (see below)

ASI ¬ ASI
symmetric Cout Csmj
¬ symmetric Chj (listen)
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Classification of Join Ordering Problems

Query Graph Classes × Possible Join Tree Classes ×
Cost Function Classes

I Query Graph Classes: chain, star , tree, and cyclic
I Join trees: left-deep, zig-zag, or bushy trees: w/o cross

products
I Cost functions: w/o ASI property

In total, we have 4 ∗ 3 ∗ 2 ∗ 2 = 48 different join ordering
problems.
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Search Space Size

1. with cross products
2. without cross products
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Number of Linear Trees with Cross Products

I left-deep: n!

I right-deep: n!

I zig-zag: 2n−2n!
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Remember: Catalan Numbers

For n leave nodes, the number of binary trees is given by
C(n − 1) where C(n) is defined by the recurrence

C(n) =
n−1∑
k=0

C(k)C(n − k − 1)

with C(0) = 1. They can also be computed by the following
formula:

C(n) =
1

n + 1

(
2n
n

)
.

The Catalan Numbers grow in the order of Θ(4n/n3/2).
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Number of Bushy Trees with Cross Products

n! C(n − 1) = n!
1
n

(
2(n − 1)

n − 1

)
= n!

1
n

(2n − 2)!

(n − 1)! ((2n − 2)− (n − 1))!

=
(2n − 2)!

(n − 1)!



91/528

Chain Queries, Left-Deep Join Trees, No Cross
Product

Let us denote the number of join trees for a chain query in n
relations with query graph R1 – R2 – . . . – Rn−1 – Rn as f (n).
Obvious: f (0) = 1 and f (1) = 1.
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. . . for n > 1

For larger n:
Consider the join trees for R1 – . . . – Rn−1 where
I Rn−1 is the k -th relation from the bottom

where k ranges from 1 to n − 1.
From such a join tree we can derive join trees for all n relations
by adding relation Rn at any position following Rn−1.
There are n − k such join trees.
Only for k = 1, we can also add Rn below Rn−1. Hence, for
k = 1 we have n join trees.
How many join trees with Rn−1 at position k are there?
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For k = 1, Rn−1 must be the first relation to be joined.
Since we do not consider cross products, it must be joined with
Rn−2.
The next relation must be Rn−3, and so on.
Hence, there is only one such join tree.
For k = 2, the first relation must be Rn−2 which is then joined
with Rn−1.
Then Rn−3, . . . ,R1 must follow in this order.
Again, there is only one such join tree.
For higher k , for Rn−1 to occur savely at position k (no cross
products) the k − 1 relations Rn−2, . . . ,Rn−k must occur before
Rn−1.
There are exactly f(k − 1) join trees for the k − 1 relations.
On each such join tree we just have to add Rn−1 on top of it to
yield a join tree with Rn−1 at position k .
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Recurrence

Now we can compute the f (n) as

f (n) = n +
n−1∑
k=2

f (k − 1) ∗ (n − k)

for n > 1.
Solving the recurrence gives us

f (n) = 2n−1

(Exercise)
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Chain Queries, Bushy Join Trees, No Cross Product

Let f (n) be the number of bushy trees without cross products
for a chain query in n relations with query graph R1 – R2 – . . . –
Rn−1 – Rn.
Obvious: f (0) = 1 and f (1) = 1.
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. . . for n > 1

Every subtree of the join tree must contain a subchain in order
to avoid cross products
Every subchain can be joined in either the left or the right
argument of the join.
Thus:

f (n) =
n−1∑
k=1

2f (k)f (n − k)

This is equal to
2n−1 ∗ C(n − 1)

(Exercise)
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Star Queries, No Cartesian Product

Star: R0 in the center, R1, . . . ,Rn−1 as satellites
The first join must involve R0.
The order of the remaining relations does not matter.

I left-deep trees: 2 ∗ (n − 1)!

I right-deep trees: 2 ∗ (n − 1)!

I zig-zag trees: 2 ∗ (n − 1)! ∗ 2n−2 = 2n−1 ∗ (n − 1)!
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Remark

The numbers for star queries are also upper bounds for tree
queries.
For clique queries, there is no join tree possible that does
contain a cross product.
Hence, all join trees are valid join trees and the search space
size is the same as the corresponding search space for join
trees with cross products.
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Numbers

Join Trees Without Cross Products
Chain Query Star Query

Left-Deep Zig-Zag Bushy Left-Deep Zig-Zag/Bushy
n 2n−1 22n−3 2n−1C(n − 1) 2 ∗ (n − 1)! 2n−1(n − 1)!
1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 185794560
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Numbers

With Cross Products/Clique
Left-Deep Zig-Zag Bushy

n n! 2n−2 ∗ n! n!C(n − 1)
1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 928972800 17643225600
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Complexity

Query Graph Join Tree Cross Prod. Cost Function Complexity
general left-deep no ASI NP-hard
tree/star/chain left-deep no one join method (ASI) P
star left-deep no two join methods (NLJ+SMJ) NP-hard
general/tree/star left-deep yes ASI NP-hard
chain left-deep yes — open
general bushy no ASI NP-hard
tree bushy no — open
star bushy no ASI P
chain bushy no any P
general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard
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Join Ordering Algorithms

1. Deterministic Algorithms
1.1 Heuristics
1.2 IKKBZ
1.3 MVP
1.4 Dynamic Programming (DP)
1.5 Memoization
1.6 Join Ordering by Generating Permutations
1.7 . . .

2. Probabilistic Algorithms
3. Hybrid Algorithms
4. Ordering Order-Preserving Joins
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Heuristics: Greedy Algorithms

First Algorithm:
I Left-deep trees, i.e. a permutation
I Relations are ordered according to some weight function
I W/O cross products
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Heuristics: Greedy Algorithms

GreedyJoinOrdering-1({R1, . . . ,Rn}, (*weight)(Relation))
Input: a set of relations to be joined and a weight function
Output: a join order
S = ε; // initialize S to the empty sequence
R = {R1, . . . ,Rn}; // let R be the set of all relations
while(!empty(R)) {
Let k be such that: weight(Rk) = minRi∈R(weight(Ri));
R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
return S

Examples for weight: cardinality of a relation
Remark: speed up by sorting
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Heuristics: Greedy Algorithms

Second Algorithm:
I not all heuristics fit the above scheme
I Example: smallest intermediate result size next
I The set of relations before the current one influences the

weight of a relation
The second algorithm fixes this.
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Heuristics: Greedy Algorithms

GreedyJoinOrdering-2({R1, . . . ,Rn},
(*weight)(Sequence of Relations, Relation))

Input: a set of relations to be joined and a weight function
Output: a join order
S = ε; // initialize S to the empty sequence
R = {R1, . . . ,Rn}; // let R be the set of all relations
while(!empty(R)) {
Let k be such that: weight(S,Rk) = minRi∈R(weight(S, Ri));
R \ = Rk; // eliminate Rk from R
S ◦ = Rk; // append Rk to S

}
return S
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Heuristics: Greedy Algorithms

GreedyJoinOrdering-3({R1, . . . ,Rn},
(*weight)(Sequence of Relations, Relation))

Solutions = ∅;
for (i = 1; i ≤ n; ++ i) {

S = Ri; // initialize S to a singleton sequence
R = {R1, . . . ,Rn} \ {Ri}; // let R be the set of all relations
while(!empty(R)) {
Let k be such that: weight(S,Rk) = minRi∈R(weight(S, Ri));
R \ = Rk; // eliminate Rk from R
S ◦ = Rk; // append Rk to S

}
Solutions += S;

}
return cheapest in Solutions
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Heuristics: Greedy Algorithms

Often used relative weight function:

the product of the selectivities connecting relations in
S with the new relation.

This heuristics is sometimes called MinSel .
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Heuristics: Greedy Algorithms

I The above algorithms produce left-deep trees.
I We now discuss Greedy Operator Ordering (GOO) which

produces bushy trees.

Idea:
I A set of join trees Trees is initialized such that it contains

all the relations to be joined.
I It then investigates all pairs of trees contained in Tree.
I Among all of these, the algorithm joins the two trees that

result in the smallest intermediate result.
I The two trees are then eliminated from Trees and the new

join tree joining them is added to it.
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Heuristics: Greedy Algorithms

GOO({R1, . . . ,Rn})
Input: a set of relations to be joined
Output: join tree
Trees := {R1, . . . ,Rn}
while (|Trees| != 1) {

find Ti ,Tj ∈ Trees such that |Ti B Tj | is minimal
among all pairs of trees in Trees

Trees − = Ti;
Trees − = Tj;
Trees + = Ti B Tj;

}
return the tree contained in Trees;
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IKKBZ

I Now: IKKBZ-Algorithm
I The query graph must be acyclic
I Produces optimal left-deep tree without cross products
I Cost function must have ASI property
I Join method must be fixed before hand
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Scheme for the Cost Function

The IKKBZ-Algorithm considers only join operations that have a
cost function of the form:

cost(Ri 1 Rj) = |Ri | ∗ hj(|Rj |).

where each Rj can have its own cost function hj . We denote
the set of hj by H and parameterize cost functions with it.
Example instanciations are
I hj ≡ 1.2 for main memory hash-based joins
I hj ≡ id for nested-loops joins

Let us denote by ni the cardinality of the relation Ri (ni := |Ri |).
Then, the hi(ni) represent the costs per input tuple to be joined
with Ri .
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Overview of the Algorithm

For every relation Rk it computes the optimal join order under
the assumption that Rk is the first relation in the join sequence.
The resulting subproblems then resemble job-scheduling
problems that can be solved by the Monma-Sidney-Algorithm.
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Precedence Graph

Given a query graph and a starting relation Rk , we can compute
the precedence graph G = (V ,E) rooted at Rk as follows:
I Make some relation Rk ∈ V the root node of the

precedence graph.
I As long as not all relations are included in the precedence

graph: Choose a relation Ri ∈ V , such that (Rj ,Ri) ∈ E is
an edge in the query graph and Rj is already contained in
the (partial) precedence graph constructed so far and Ri is
not. Add Rj and the edge Rj → Ri to the precedence
graph.
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Conformance to a Precedence Graph

A sequence S = v1, . . . , vk of nodes conforms to a precedence
graph G = (V ,E) if the following conditions are satisfied:

1. for all i (2 ≤ i ≤ k ) there exists a j (1 ≤ j < i) with
(vj , vi) ∈ E and

2. there is no edge (vi , vj) ∈ E for i > j .
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Notations

For non-empty sequences U and V in a precedence graph, we
write U → V if, according to the precedence graph U must
occur before V . This requires U and V to be disjoint. More
precisely, if U → V then there can only be paths from nodes in
U to nodes in V and at least one such path exists.
Define

R1,2,...,k := R1 1 R2 1 · · · 1 Rk

n1,2,...,k := |R1,2,...,k |
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Sample Query Graph
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Sample Precedence Graph and Corresponding Join
Tree
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Relations Joined Before a Given One

For a given precedence graph, let Ri be a relation and Ri be
the set of relations from which there exists a path to Ri .
Then, in any join tree adhering to the precedence graph, all
relations in Ri and only those will be joined before Ri .
Hence, we can define si =

∏
Rj∈Ri

fi,j for i > 1.
Note that for any i only one j with fi,j 6= 1 exists in the product.
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If the Precedence Graph is Totally Ordered

If the precedence graph is a chain, then the following holds:

n1,2,...,k+1 = n1,2...,k ∗ sk+1 ∗ nk+1

We define s1 = 1. Then we have

n1,2 = s2 ∗ (n1 ∗ n2) = (s1 ∗ s2) ∗ (n1 ∗ n2)

and in general

n1,2,...,k =
k∏

i=1

(si ∗ ni).

We call the si selectivities although they depend on the
precedence graph.



121/528

Costs of a Totally Ordered Precedence Graph

The costs for a totally ordered precedence graph G can be
computed as follows:

CostH(G) =
n∑

i=2

[n1,2,...,i−1 ∗ hi(ni)]

=
n∑

i=2

[(
i−1∏
j=1

sj ∗ nj) ∗ hi(ni)]

I If we define hi(ni) = sini , then CostH ≡ Cout.
I The factor sini determines by how much the input relation

to be joined with Ri changes its cardinality after the join
has been performed.

I If sini is less than one, we call the join decreasing, if it is
larger than one, we call the join increasing.
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Recursive Formulation of the Costs

Define the cost function CH as follows:

CH(ε) = 0
CH(Rj) = 0 if Rj is the root
CH(Rj) = hj(nj) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ε) = 1

T (S) =
∏

Ri∈S

(si ∗ ni)

CH is well-defined and CH(G) = CostH(G).
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ASI-Property

Let A and B be two sequences and V and U two non-empty
sequences. We say a cost function C has the adjacent
sequence interchange property (ASI property), if and only if
there exist two sequences T and S and a rank function defined
as

rank(S) =
T (S)− 1

C(S)

such that for non-empty sequences S the following holds

C(AUVB) ≤ C(AVUB) ≺� rank(U) ≤ rank(V ) (16)

if AUVB and AVUB satisfy the precedence constraints imposed
by a given precedence graph.
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The First Lemma

Lemma: The cost function CH defined has the ASI-Property.
The proof is very simple. Using the definition of CH , we have

CH(AUVB) = CH(A)

+T (A)CH(U)

+T (A)T (U)CH(V )

+T (A)T (U)T (V )CH(B)

and, hence,

CH(AUVB)− CH(AVUB) = T (A)[CH(V )(T (U)− 1)− CH(U)(T (V )− 1)]

= T (A)CH(U)CH(V )[rank(U)− rank(V )]

The lemma follows. 2
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Module

Let M = {A1, . . . ,An} be a set of sequences of nodes in a given
precedence graph.
Then, M is called a module, if for all sequences B that do not
overlap with the sequences in M one of the following conditions
holds:
I B → Ai , ∀ 1 ≤ i ≤ n
I Ai → B, ∀ 1 ≤ i ≤ n
I B 6→ Ai and Ai 6→ B, ∀ 1 ≤ i ≤ n
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The Second Lemma

Lemma: Let C be any cost function with the ASI property and
{A,B} a module. If A→ B and additionally rank(B) ≤ rank(A),
then we find an optimal sequence among those in which B
directly follows A. 2

Proof: Every optimal permutation must have the form
(U,A,V ,B,W ) since A→ B.
Assumption: V 6= ε.
If rank(V ) ≤ rank(A), then we can exchange V and A without
increasing the costs.
If rank(A) ≤ rank(V ), we have rank(B) ≤ rank(V ) due to the
transitivity of ≤.
Hence, we can exchange B and V without increasing the costs.
Both exchanges produce legal sequences obeying the
precedence graph since {A,B} is a module. 2
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Contradictory Sequence

If the precedence graph demands A→ B but
rank(B) ≤ rank(A), we speak of contradictory sequences A
and B.
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Compound Relation

Since the lemma shows that no non-empty subsequence can
occur between A and B, we will combine A and B into a new
single node replacing A and B.
This node represents a compound relation comprising of all
relations in A and B.
Its cardinality is computed by multiplying the cardinalities of all
relations occurring in A and B, and its selectivity s is the product
of all the selectivities si of the relations Ri contained in A and B.
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Normalization and Denormalization

The continued process of this step until no more contradictory
sequences exist is called normalization.
The opposite step, replacing a compound node by the
sequence of relations it was derived from, is called
denormalization.
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IKKBZ(G)
Input: an acyclic query graph G for relations R1, . . . ,Rn

Output: the best left-deep tree
R = ∅;
for (i = 1; i ≤ n; ++ i) {

Let Gi be the precedence graph derived from G
and rooted at Ri;

T = IKKBZ-Sub(Gi);
R + = T;

}
return best of R;
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IKKBZ-Sub(Gi)
Input: a precedence graph Gi for relations R1, . . . ,Rn

rooted at some Ri

Output: the optimal left-deep tree under Gi

while (Gi is not a chain) {
let r be the root of a subtree whose subtrees are chains;
IKKBZ-Normalize(r);
merge the chains under r according to the rank function
in ascending order;

}
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IKKBZ-Normalize(r)
Input: root r of a subtree T of a precedence graph G = (V ,E)
Output: a normalized subchain
while (∃ r ′, c ∈ V, r →∗ r ′, (r ′, c) ∈ E: rank(r ′) > rank(c)) {
replace r ′ by a compound relation r ′′ that represents r ′c;

};
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Sample Query Graph and One Precedence Graph
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Round One

Q
Q
Qs

....................................N
�

�
�+

��	 @@R

?

R1

R2 R3 R4

R6

R7

R5

9
10

5
6

24
25

49
50

B)

19
20

4
5

1
2

Q
Q
Qs

....................................N
�

�
�+

��	 @@R

R1

R2 R3 R4

R6,7R5

9
10

19
20

24
25

5
6

9
10

49
50

C)



135/528

Round Two
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Round Three
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Round Four and Final Result
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Maximum-Value-Precedence Algorithm

Given a conjunctive query with join predicates P.
For a join predicate p ∈ P, we denote by R(p) the relations
whose attributes are mentioned in p.
Definition The directed join graph of a conjunctive query with
join predicates P is a triple G = (V ,Ep,Ev ) where V is the set
of nodes and Ep and Ev are sets of directed edges defined as
follows.
For any two nodes u, v ∈ V , if R(u) ∩R(v) 6= ∅ then (u, v) ∈ Ep
and (v ,u) ∈ Ep.
If R(u) ∩R(v) = ∅, then (u, v) ∈ Ev and (v ,u) ∈ Ev .
The edges in Ep are called physical edges, those in Ev virtual
edges. 2

Note in G for every two nodes u, v , there is an edge (u, v) that
is either physical or virtual. Hence, G is a clique.
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Example: Query Graph and Directed Join Graph
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Extracting Join Trees from the Directed Join Graph

I Every spanning tree in the Directed Join Graph leads to a
join tree.
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Example: Spanning Tree and Join Tree
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Example: Spanning Tree and Join Tree
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Example: Spanning Tree and Join Tree
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Problems

The next example shows that problems can occur.
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Effective Spanning Trees

It can be shown that a spanning tree T = (V ,E) is effective, if it
satisfies the following conditions:

1. T is a binary tree,
2. for all inner nodes v and node u with (u, v) ∈ E :
R∗(T (u)) ∩R(v) 6= ∅, and

3. for all nodes v , u1, u2 with u1 6= u2, (u1, v) ∈ E , and
(u2, v) ∈ E one of the following conditions holds:
3.1 ((R∗(T (u1)) ∩R(v)) ∩ (R∗(T (u2)) ∩R(v))) = ∅ or
3.2 (R∗(T (u1)) = R(v)) ∨ (R∗(T (u2)) = R(v)).

Thereby, we denote by T (v) the partial tree rooted at v and by
R∗(T ′) = ∪v∈T ′R(v) the set of all relations in subtree T ′.
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Adding Weights to the Edges

For two nodes v ,u ∈ V define u u v := R(u) ∩R(v).
For simplicity, we assume that every predicate involves exactly
two relations.
Then for all u, v ∈ V , u u v contains a single relation.
Let v ∈ V be a node with R(v) = {Ri ,Rj}.
We abbreviate Ri Bv Rj by Bv .
Using these notations, we can attach weights to the edges to
define the weighted directed join graph.
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Adding Weights to the Edges

Definition Let G = (V ,Ep,Ev ) be a directed join graph for a
conjunctive query with join predicates P. The weighted directed
join graph is derived from G by attaching a weight with each
edge as follows:
I Let (u, v) ∈ Ep be a physical edge. The weight wu,v of

(u, v) is defined as

wu,v =
|Bu |
|u u v | .

I For virtual edges (u, v) ∈ Ev , we define wu,v = 1.
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Remark on Edge Weights

The weights of physical edges are equal to the si used in the
IKKBZ-Algorithm.
Assume R(u) = {R1,R2}, R(v) = {R2,R3}. Then

wu,v =
|Bu |
|u u v |

=
|R1 Bu R2|
|R2|

=
f1,2 |R1| |R2|
|R2|

= f1,2 |R1|

Hence, if the join R1 Bu R2 is executed before the join R2 Bv R3,
the input size to the latter join changes by a factor wu,v .
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Adding Weights to the Nodes

The weight of a node reflects the change in cardinality to be
expected when certain other joins have been executed before.
They depend on a (partial) spanning tree S.
Given S, we denote by BS

pi,j
the result of the join Bpi,j if all joins

preceding pi,j in S have been executed. Then the weight
attached to node pi,j is defined as

w(pi,j ,S) =
|BS

pi,j
|

|Ri Bpi,j Rj |
.

Similarily, we define the cost of a node pi,j depending on other
joins preceding it in some given spanning tree S. We denote
this by cost(pi,j ,S).
The actual cost function an be chosen arbitrarily.
If we have several join implementations: take minimum.
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MVP-Algorithm: Outline

Two phases to build an effective spanning tree:
1. Take first those edges with a weight < 1.
2. Treat other edges

Thereby take care of the effectivness.
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MVP(G)
Input: a weighted directed join graph G = (V ,Ep,Ev )
Output: an effective spanning tree
// Q1, Q2: two priority queues with
Q1.insert(V); // smallest node weights w(·) first
Q2 = ∅; // largest node weights w(·) first
G′ = (V ′,E ′) with V ′ = V and E ′ = Ep; /* working graph */
// result: effective spanning tree:
S = (VS ,ES) with VS = V and ES = ∅;
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while (!Q1.empty() && |ES | < |V | − 1) { /* Phase I */
v = Q1.head();
among all (u, v) ∈ E ′, wu,v < 1 such that

S′ = (V ,E ′S) with E ′S = ES ∪ {(u, v)} is acyclic and effective
select one that maximizes cost(Bv ,S) - cost(Bv ,S′);

if (no such edge exists) {
Q1.remove(v);
Q2.insert(v);
continue;

}
MvpUpdate((u, v));
recompute w(·) for v and its ancestors; /* rearranges Q1 */

}
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while (!Q2.empty() && |ES | < |V | − 1) { /* Phase II */
v = Q2.head();
among all (u, v), (v , u) ∈ E ′ denoted by (x , y) henceforth

such that
S′ = (V ,E ′S) with E ′S = ES ∪ {(x , y)} is acyclic and effective
select the one that minimizes cost(Bv ,S′) - cost(Bv ,S);

MvpUpdate((x , y));
recompute w(·) for y and its ancestors; /* rearranges Q2 */

}
return S;
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MvpUpdate((u, v))
Input: an edge to be added to S
Output: side-effects on S, G′,

ES ∪ = {(u, v)};
E ′ \ = {(u, v), (v , u)};
E ′ \ = {(u,w)|(u,w) ∈ E ′}; /* (1) */
E ′ ∪ = {(v ,w)|(u,w) ∈ Ep, (v ,w) ∈ Ev}; /* (3) */
if (v has two inflowing edges in S) { /* (2) */

E ′ \ = {(w , v)|(w , v) ∈ E ′};
}
if (v has one outflowing edge in S) { /* (1) */

E ′ \ = {(v ,w)|(v ,w) ∈ E ′};
}
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Dynamic Programming

I Optimality Principle
I Avoid duplicate work
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Optimality Principle

Consider the two join trees

(((R1 B R2) B R3) B R4) B R5

and
(((R3 B R1) B R2) B R4) B R5.

If we know that ((R1 B R2) B R3) is cheaper than
((R3 B R1) B R2), we know that the first join tree is cheaper
than the second join tree. Hence, we could avoid generating
the second alternative and still won’t miss the optimal join tree.
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Optimality Principle

Optimality Principle for join ordering:

Let T be an optimal join tree for relations R1, . . . ,Rn.
Then, every subtree S of T must be an optimal join
tree for the relations contained in it.

Remark: Optimality principle does not hold in the presence of
properties.
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Dynamic Programming

I Generate optimal join trees bottom up
I Start from optimal join trees of size one
I Build larger join trees for sizes n > 1 by (re-) using those of

smaller sizes
I We use subroutine CreateJoinTree that joins two (sub-)

trees
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CreateJoinTree(T1, T2)
Input: two (optimal) join trees T1 and T2.

for linear trees: assume that T2 is a single relation
Output: an (optimal) join tree for joining T1 and T2.
BestTree = NULL;
for all implementations impl do {

if(!RightDeepOnly)
Tree = T1 B

impl T2

if (BestTree == NULL || cost(BestTree) > cost(Tree))
BestTree = Tree;

if(!LeftDeepOnly)
Tree = T2 B

impl T1

if (BestTree == NULL || cost(BestTree) > cost(Tree))
BestTree = Tree;

}
return BestTree;
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Search space with sharing under Optimality Principle
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DP-Linear-1({R1, . . . ,Rn})
Input: a set of relations to be joined
Output: an optimal left-deep (right-deep, zig-zag) join tree
for (i = 1; i <= n; ++i) BestTree({Ri}) = Ri;
for (i = 1; i < n; ++i) {

for all S ⊆ {R1, . . . ,Rn}, |S| = i do {
for all Ri ∈ {R1, . . . ,Rn}, Ri 6∈ S do {

if (NoCrossProducts && !connected({Ri}, S)) { continue; }
CurrTree = CreateJoinTree(BestTree(S),Ri);
S′ = S ∪ {Ri};
if (BestTree(S′) == NULL

|| cost(BestTree(S′)) > cost(CurrTree)) {
BestTree(S′) = CurrTree;

}
}

}
}
return BestTree({R1, . . . ,Rn});
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Order in which subtrees are generated

The order in which subtrees are generated does not matter as
long as the following condition is not violated:

Let S be a subset of {R1, . . . ,Rn}. Then, before a join
tree for S can be generated, the join trees for all rele-
vant subsets of S must already be available.

Exercise: fix the semantics of relevant
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Generation in integer order

000 {}
001 {R1}
010 {R2}
011 {R1,R2}
100 {R3}
101 {R1,R3}
110 {R2,R3}
111 {R1,R2,R3}
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DP-Linear-2({R1, . . . ,Rn})
Input: a set of relations to be joined
Output: an optimal left-deep (right-deep, zig-zag) join tree
for (i = 1; i <= n; ++i) { BestTree(1 << i − 1) = Ri; }
for (S = 1; S < 2n; ++S) {

if (BestTree(S) != NULL) continue;
for all i ∈ S do {

S′ = S \ {i};
CurrTree = CreateJoinTree(BestTree(S′),Ri);
if (cost(BestTree(S)) > cost(CurrTree)) {
BestTree(S) = CurrTree;

}
}

}
return BestTree(2n − 1);
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DP-Bushy({R1, . . . ,Rn})
Input: a set of relations to be joined
Output: an optimal bushy join tree
for (i = 1; i <= n; ++i)
BestTree(1 << i − 1) = Ri;

for (S = 1; S < 2n; ++S) {
if (BestTree(S) != NULL) continue;
for all S1 ⊂ S, S1 6= ∅ do

S2 = S \ S1;
CurrTree = CreateJoinTree(BestTree(S1), BestTree(S2));
if (BestTree(S) == NULL
|| cost(BestTree(S)) > cost(CurrTree))
BestTree(S) = CurrTree;

}
return BestTree(2n − 1);
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Subset Generation for Bushy Trees

S1 = S & - S;
do {

/* do something with subset S1 */
S1 = S & (S1 - S);

} while (S1 != S);

S represents the input set. S1 iterates through all subsets of S
where S itself and the empty set are not considered.
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Number of join trees investigated by DP

without cross products with cross products
chain star any query graph

linear bushy linear linear bushy
n (n − 1)2 (n3 − n)/6 (n − 1)2n−2 n2n−1 − n(n + 1)/2 (3n − 2n+1 + 1)/2
2 1 1 1 1 1
3 4 4 4 6 6
4 9 10 12 22 25
5 16 20 32 65 90
6 25 35 80 171 301
7 36 56 192 420 966
8 49 84 448 988 3025
9 64 120 1024 2259 9330

10 81 165 2304 5065 28501
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Optimal Bushy Trees without Cross Products

Given: Connected join graph
Problem: Generate optimal bushy trees without cross

products
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Csg-Cmp-Pairs

Let S1 and S2 be subsets of the nodes (relations) of the query
graph. We say (S1,S2) is a csg-cmp-pair , if and only if

1. S1 induces a connected subgraph of the query graph,
2. S2 induces a connected subgraph of the query graph,
3. S1 and S2 are disjoint, and
4. there exists at least one edge connected a node in S1 to a

node in S2.
If (S1,S2) is a csg-cmp-pair, then (S2,S1) is a valid
csg-cmp-pair.
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Csg-Cmp-Pairs and Join Trees

Let (S1,S2) be a csg-cmp-pair and Ti be a join tree for Si . Then
we can construct two valid join tree:

T1 1 T2 and T2 1 T1
Hence, the number of csg-cmp-pairs coincides with the search
space DP explores. In fact, the number of csg-cmp-pairs is a
lower bound for the complexity of DP.
If CreateJoinTree considers commutativity of joins, the
number of calls to it is precisely expressed by the count of
non-symmetric csg-cmp-pairs. In other implementations
CreateJoinTree might be called for all csg-cmp-pairs and,
thus, may not consider commutativity.
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The Number of Csg-Cmp-Pairs

Let us denote the number of non-symmetric csg-cmp-pairs by
#ccp. Then

#ccpchain(n) =
1
6

(n3 − n)

#ccpcycle(n) = (n3 − 2n2 + n)/2
#ccpstar(n) = (n − 1)2n−2

#ccpclique(n) = (3n − 2n+1 + 1)/2

These numbers have to be multiplied by two if we want to count
all csg-cmp-pairs.
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DPsize

for all Ri ∈ R BestPlan({Ri}) = Ri;
for all 1 < s ≤ n ascending // size of plan
for all 1 ≤ s1 ≤ s/2 // size of left subplan

s2 = s − s1; // size of right subplan
for all p1 = BestPlan(S1 ⊂ R : |S1| = s1)

p2 = BestPlan(S2 ⊂ R : |S2| = s2)
++InnerCounter;
if (∅ 6= S1 ∩ S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S1 ∪ S2)) > cost(CurrPlan))
BestPlan(S1 ∪ S2) = CurrPlan;

OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . ,Rn−1});
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Analysis: DPsize

Ichain
DPsize(n) =

{
1/48(5n4 + 6n3 − 14n2 − 12n) n even
1/48(5n4 + 6n3 − 14n2 − 6n + 11) n odd

Icycle
DPsize(n) =

{ 1
4 (n4 − n3 − n2) n even
1
4 (n4 − n3 − n2 + n) n odd

Istar
DPsize(n) =

{
22n−4 − 1/4

(2(n−1)
n−1

)
+ q(n) n even

22n−4 − 1/4
(2(n−1)

n−1

)
+ 1/4

( n−1
(n−1)/2

)
+ q(n) n odd

with q(n) = n2n−1 − 5 ∗ 2n−3 + 1/2(n2 − 5n + 4)

Iclique
DPsize(n) =

{
22n−2 − 5 ∗ 2n−2 + 1/4

(2n
n

)
− 1/4

( n
n/2

)
+ 1 n even

22n−2 − 5 ∗ 2n−2 + 1/4
(2n

n

)
+ 1 n odd
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DPsub

DPsub ({R0, . . . ,Rn−1})
for all Ri ∈ R BestPlan({Ri}) = Ri;
for 1 ≤ i < 2n − 1 ascending

S = {Rj ∈ R|(bi/2jcmod 2) = 1}
if not (connected S) continue;
for all S1 ⊂ S, S1 6= ∅ do

++InnerCounter;
S2 = S \ S1;
if not (connected S1) continue;
if not (connected S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
p1 = BestPlan(S1); p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan))
BestPlan(S) = CurrPlan;

OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . ,Rn−1});
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Analysis: DPsub

Ichain
DPsub(n) = 2n+2 − n2 − 3n − 4

Icycle
DPsub(n) = n2n + 2n − 2n2 − 2

Istar
DPsub(n) = 2 ∗ 3n−1 − 2n

Iclique
DPsub(n) = 3n − 2n+1 + 1
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Sample Numbers for InnerCounter

Chain
n #ccp DPsub DPsize
5 20 84 73

10 165 3.962 1.135
15 560 130.798 5.628
20 1330 4.193.840 17.545

Cycle
#ccp DPsub DPsize

5 40 140 120
10 405 11.062 2.225
15 1470 523.836 11.760
20 3610 22.019.294 37.900
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Star
n #ccp DPsub DPsize
5 32 130 110

10 2.304 38.342 57.888
15 114.688 9.533.170 57.305.929
20 4.980.736 2.323.474.358 59.892.991.338

Clique
n #ccp DPsub DPsize
5 90 180 280

10 28.501 57.002 306.991
15 7.141.686 14.283.372 307.173.877
20 1.742.343.625 3.484.687.250 309.338.182.241
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Algorithm DPccp

for all (Ri ∈ R) BestPlan({Ri}) = Ri;
forall csg-cmp-pairs (S1,S2), S = S1 ∪ S2

++InnerCounter;
++OnoLohmanCounter;
p1 = BestPlan(S1);
p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan))

BestPlan(S) = CurrPlan;
CurrPlan = CreateJoinTree(p2, p1);
if (cost(BestPlan(S)) > cost(CurrPlan))

BestPlan(S) = CurrPlan;
CsgCmpPairCounter = 2 * OnoLohmanCounter;
return BestPlan({R0, . . . ,Rn−1});
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Notation

Let G = (V ,E) be an undirected graph.
For a node v ∈ V define the neighborhood IN(v) of v as

IN(v) := {v ′|(v , v ′) ∈ E}

For a subset S ⊆ V of V we define the neighborhood of S as

IN(S) := ∪v∈SIN(v) \ S

The neighborhood of a set of nodes thus consists of all nodes
reachable by a single edge.
Note that for all S,S′ ⊂ V we have
IN(S ∪ S′) = (IN(S) ∪ IN(S′)) \ (S ∪ S′). This allows for an
efficient bottom-up calculation of neighborhoods.
Bi = {vj |j ≤ i}
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Algorithm EnumerateCsg

EnumerateCsg
Input: a connected query graph G = (V ,E)
Output: emits all subsets of V inducing a connected subgraph
of G

for all i ∈ [n − 1, . . . ,0] descending {
emit {vi};
EnumerateCsgRec(G, {vi}, Bi );

}
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Subroutine EnumerateCsgRec

EnumerateCsgRec(G, S, X )
N = IN(S) \ X ;
for all S′ ⊆ N, S′ 6= ∅, enumerate subsets first {

emit (S ∪ S′);
}
for all S′ ⊆ N, S′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S′), (X ∪ N));
}
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Example

R0

R1 R2 R3

R4
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S X N emit/S
{4} {0,1,2,3,4} ∅
{3} {0,1,2,3} {4}

{3,4}
{2} {0,1,2} {3,4}

{2,3}
{2,4}
{2,3,4}

{1} {0,1} {4}
{1,4}

→ {1,4} {0,1,4} {2,3}
{1,2,4}
{1,3,4}
{1,2,3,4}
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Algorithm EnumerateCmp

EnumerateCmp
Input: a connected query graph G = (V ,E), a connected sub-
set S1
Output: emits all complements S2 for S1 such that (S1,S2) is a
csg-cmp-pair

X = Bmin(S1) ∪ S1;
N = IN(S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩ N));

}

where min(S1) := min({i |vi ∈ S1}).



186/528

Memoization

I Recursive generation of join trees
I Easier code
I Memoize already generated join trees in order to avoid

duplicate work
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MemoizationJoinOrdering(R)
Input: a set of relations R
Output: an optimal join tree for S
for (i = 1; i <= n; ++i) {

BestTree({Ri}) = Ri;
}
return MemoizationJoinOrderingSub(R);
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MemoizationJoinOrderingSub(S)
Input: a (sub-) set of relations S
Output: an optimal join tree for S
if(NULL == BestTree(S)) {

for all S1 ⊂ S do {
S2 = S \ S1;
CurrTree = CreateJoinTree(

MemoizationJoinOrderingSub(S1),
MemoizationJoinOrderingSub(S2));

if (cost(BestTree(S)) > cost(CurrTree)) {
BestTree(S) = CurrTree;

}
}

}
return BestTree(S);



189/528

Join Ordering by Generating Permutations

I Left-deep trees are permutations of the relations to be
joined

I Permutations can be generated directly
I Generating all permutations is too expensive
I Some permutations can be ignored:

Consider the join sequence R1R2R3R4. If we now that
R1R3R2 is cheaper than R1R2R3, then we do not have to
consider R1R2R3R4.

Idea: successively add a relation.
Thereby: an extended sequence is only explored if exchanging
the last two relations does not result in a cheaper sequence.
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ConstructPermutations(Query Specification)
Input: query specification for relations {R1, . . . ,Rn}
Output: optimal left-deep tree
BestPermutation = NULL;
Prefix = ε;
Rest = {R1, . . . ,Rn};
ConstructPermutationsSub(Prefix, Rest);
return BestPermutation
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ConstructPermutationsSub(Prefix, Rest)
Input: a prefix of a permutation, relations to be added (Rest)
Ouput: none, side-effect on BestPermutation
if (Rest == ∅)

if (cost(Prefix) < cost(BestPermutation))
BestPermutation = Prefix;

return
foreach (Ri, Rj ∈ Rest)

if (cost(Prefix ◦ 〈Ri ,Rj〉) ≤ cost(Prefix ◦ 〈Rj ,Ri〉))
ConstructPermutationsSub(Prefix ◦ 〈Ri〉, Rest \ {Ri});

if (cost(Prefix ◦ 〈Rj ,Ri〉) ≤ cost(Prefix ◦ 〈Ri ,Rj〉))
ConstructPermutationsSub(Prefix ◦ 〈Rj〉, Rest \ {Rj});

return
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Discussion

I Good: linear memory
I Good: immediatly produces plan alternatives
I Bad: worst-case if ties occur
I Bad: worst-case if no ties occur is an open problem
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Chain Queries

I Relations R1, . . . ,Rn

I Query graph is a chain: R1 — R2 — . . . — Rn

I For every edge (Ri ,Ri+1) there is an associated selectivity
fi,i+1 = |Ri B Ri+1|/|Ri × Ri+1|

I We define all other selectivities fi,j = 1 for |i − j | 6= 1.
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The Problem

I Generate optimal left-deep tree possibly containing cross
products

Hence: every permutation corresponds to a valid join tree
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Connected

I Two relations Ri and Rj are connected if they are
connected in the query graph

I Two sequences s and t are connected if there exist Ri in s
and Rj in t such that Ri and Rj are connected
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Observation

I If a (sub)sequence s′ does not contain a cross product, it
uniquely corresponds to a subchain of the query graph.

In this case we speak of (sub)chains or (sub)sequences
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Goal

I DP generates n2n−1 − n(n + 1)/2 left-deep trees when
cross products are considered

I Can we do better?
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Relativized Rank

The costs (Cout) of a sequence s relative to a sequence u are
defined follows:

Cu(ε) := 0
Cu(Ri ) := 0 if u = ε

Cu(Ri ) := (
∏

Rj<uRi

fj,i )ni if u 6= ε

Cu(s1s2) := Cu(s1) + Tu(s1) ∗ Cus1 (s2)

with

Tu(ε) := 1

Tu(s) :=
∏
Ri∈s

(
∏

Rj<usRi

fj,i ) ∗ ni

Here, Ri <s Rj is true if and only if Ri appears before Rj in s.



199/528

Observations

I Cus(t) = Cu(t) holds if there is no connection between
relations in s and t

I Tε(Ri) = |Ri | and Tε(s) = |s|
I Cu(ε) = 0 for all u but Cε(s) = 0 only if s does not contain

more than one relation

We abbreviate Cε by C.
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Remarks

I The special case that Cε(R) = 0 for a single relation R
causes some problems in the homogeneity of definitions
and proofs.
Hence, we abandon this case from all definitions and
lemmata of this section.

I Two versions for the two algorithms:
The first version is simpler and relies on a modified cost
function C′ and only the second version will apply to the
original cost function C.
C′ differs from C in exactly the problematic case in which it
is defined as C′u(Ri) := |Ri |.
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Example 1

|R1| = 1, |R2| = 100, |R3| = 10, f1,2 = f2,3 = 0.9
T (R1R2R3) = · · · = T (R3R2R1) = 100 ∗ 10 ∗ 1 ∗ 0.9 ∗ 0.9 = 810

C(R1R2R3) = 1 ∗ 100 ∗ 0.9 + 1 ∗ 100 ∗ 10 ∗ 0.9 ∗ 0.9 = 900
C(R1R3R2) = 1 ∗ 10 + 1 ∗ 10 ∗ 100 ∗ 0.9 ∗ 0.9 = 820
C(R2R3R1) = 100 ∗ 10 ∗ 0.9 + 100 ∗ 10 ∗ 1 ∗ 0.9 ∗ 0.9 = 1710
C(R2R1R3) = C(R1R2R3)
C(R3R1R2) = C(R1R3R2)
C(R3R2R1) = C(R2R3R1)
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Relativized Rank

The rank of a sequence s relative to a non-empty sequence u
is given by

ranku(s) :=
Tu(s)− 1

Cu(s)
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Observation

Let s = Ri be a singleton relation.
Let fi be the product of the selectivities between relations in u and Ri .
Then

ranku(Ri) =
fi |Ri | − 1

fi |Ri |
Hence, the rank becomes a function of the form f (x) = x−1

x . This function is
monotonously increasing in x for x > 0.
The argument is the fi |Ri |.
This is the factor by which the next intermediate result will increase (or
decrease).
Since we sum up intermediate results, this is an essential number.
Furthermore, from the monotonicity of f (x) it follows that
ranku(Ri) ≤ ranku(Rj) if and only if fi |Ri | ≤ fj |Rj | where fj is the product of all
selectivities between Rj and relations in u.
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Example 1 (cont’d)

The optimal sequence R1R3R2 gives rise to the following ranks:

rankR1(R2) =
TR1

(R2)−1
CR1

(R2) = 100∗0.9−1
100∗0.9 ≈ 0.9888

rankR1(R3) =
TR1

(R3)−1
CR1

(R3) = 10∗1.0−1
10∗1.0 = 0.9

rankR1R3(R2) =
TR1R3

(R2)−1
CR1R3

(R2) = 100∗0.9∗0.9−1
100∗0.9∗0.9 ≈ 0.9877
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Lemma I (API)

For sequences

S = r1 · · · rk−1rk rk+1rk+2 · · · rn

S′ = r1 · · · rk−1rk+1rk rk+2 · · · rn

the following holds:

C(S) ≤ C(S′)⇔ ranku(rk ) ≤ ranku(rk+1)

where u = r1 · · · rk−1. Equality only holds if it holds on both
sides.
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Lemma II (ASI, unconnected)

Let u, x and y be three subchains where x and y are not
interconnected. Then we have:

C(uxy) ≤ C(uyx)⇔ ranku(x) ≤ ranku(y)

Equality only holds if it holds on both sides.
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Contradictory Pair of Subchains

Let u, x , y be nonempty sequences. We call (x , y) a
contradictory pair of subchains if and only if

Cu(xy) ≤ Cu(yx) ∧ ranku(x) > rankux (y)

A special case occurs when x and y are single relations. Then
the above condition simplifies to

rankux (y) < ranku(x) ≤ ranku(y)
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Example 2

|R1| = 1, |R2| = |R3| = 10, f1,2 = 0.5, f2,3 = 0.2. Consider
R1R2R3 and R1R3R2

rankR1(R2) = 0.8
rankR1R2(R3) = 0.0

rankR1(R3) = 0.9
rankR1R3(R2) = 0.5

C(R1R2R3) = 15
C(R1R3R2) = 20
rankR1(R2) > rankR1R2(R3)

rankR1(R3) > rankR1R3(R2)

C(R1R2R3) < C(R1R3R2)

(R2,R3) is a contradictory pair within R1R2R3.
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Observation

If there is no connection between two subchains x and y , then
they cannot build a contradictory pair (x , y).
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Lemma 3

Let S = usvtw be a sequence.
If there is no connection between relations in s and v and
relations in v and t , and ranku(s) ≥ rankus(t), then there exists
a sequence S′ of not higher cost, where s immediately
precedes t .
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Lemma 4

Let S = x1 · · · xn and S′ = y1 · · · yn be two different rank-sorted
chains containing exactly the relations R1, . . . ,Rn, i.e.

rankx1···xi−1(xi) ≤ rankx1···xi (xi+1) for all 1 ≤ i ≤ n,
ranky1···yi−1(yi) ≤ ranky1···yi (yi+1) for all 1 ≤ i ≤ n,

then S and S′ have equal costs and, furthermore

rankx1···xi−1(xi) = ranky1···yi−1(yi) for all 1 < i ≤ n
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Compound Relation

If we tie together relations r1, . . . , rn to a new relation r1,...,n then
I we define size of r1,...,n as |r1,...,n| = |r1 B . . .B rn| and
I if some ri (1 ≤ i ≤ n) does have a connection to some

rk 6∈ {r1, . . . , rn} then we define the selectivity factor fr1,...,n,rk

between rk and r1,...,n as fr1,...,n,rk = fi,k .
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Normalization

Normalize(p,s)
while there exist subsequences u, v (u 6= ε) and

compound relations x , y such that s = uxyv
and Cpu(xy) ≤ Cpu(yx)
and rankpu(x) > rankpux (y) {

replace xy by a compound relation (x , y);
}

return (p, s);
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Maximal Contradictory Subchain

The compound relations in the result of the procedure
Normalize are called contradictory chains.
A maximal contradictory subchain is a contradictory subchain
that cannot be made longer by further tying steps.
Observation: Every chain can be decomposed into a
sequence of adjacent maximal contradictory subchains.
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Observation

The decomposition into adjacent maximal contradictory
subchains is not unique:
Given an optimal subchain r1r2r3 and a sequence u of
preceding relations:
If ranku(r1) > rankur1(r2) > rankur1r2(r3) one can easily show
that both (r1, (r2, r3)) and ((r1, r2), r3) are contradictory
subchains.
This ambiguity is not important since in the following we are
only interested in contradictory subchains which are optimal
and in this case the condition Cu(xy) ≤ Cu(yx) is certainly true
and can therefore be neglected.
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Lemma 5

Let S = s1 . . . sm be an optimal chain consisting of the maximal
contradictory subchains s1, . . . , sm (as determined by the
function normalize). Then

rank(s1) ≤ ranks1(s2) ≤ ranks1s2(s3)

≤ · · · ≤ ranks1...sm−1(sm)

In other words, the (maximal) contradictory subchains in an
optimal chain are always sorted by ascending ranks.
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Lemma 6

Let x and y be two optimal sequences of relations where x and
y are not interconnected. Then the sequence obtained by
merging the maximal contradictory subchains in x and y (as
obtained by normalize) according to their ascending rank is
optimal.
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The Cost Function C’

C′u(s) =

{
C(s) + |nR|, if u = ε and s = Rs′

Cu(s), otherwise

ranku(s) := (Tu(s)− 1)/C′u(s)
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Neighbourhood

We call the set of relations that are directly connected to a
subchain (with respect to the query graph G) the complete
neighbourhood of that subchain. A neighbourhood is a subset
of the complete neighbourhood. The complement of a
neighbourhood u of a subchain s is defined as v − u, where v
denotes the complete neighbourhood of s.
Obviously: the neighborhood that precedes a sequence
influences its rank.
Denote a pair consisting of a connected sequence s and a
neighbourhood u by [s]u.
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Contradictory Subchain, Extent

A contradictory subchain [s]u is inductively defined:
1. For a single relation s, [s]u is a contradictory subchain.
2. There is a decomposition s = vw such that (v ,w) is a

contradictory pair with respect to the preceding
subsequence u and both [v ]u and [w ]uv are themselves
contradictory subchains.

The extent of a contradictory chain [s]u is defined to be the pair
consisting of the neighbourhood u and the set of relations
occurring in s.
Since contradictory subchains are connected, the set of
occurring relations has always the form {Ri ,Ri+1, . . . ,Ri+l} for
some 1 ≤ i ≤ n, 0 ≤ l ≤ n − i .
An optimal contradictory subchain to a given extent is a
contradictory subchain with lowest cost among all contradictory
subchains of the same extent.
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Number of Extents

The number of different extents of contradictory subchains for a
chain query of n relations is

2n2 − 2n + 1
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Recursively Decomposable Subchain

A recursively decomposable subchain [s]u is inductively defined
as follows.

1. If s is a single relation then [s]u is recursively
decomposable.

2. There is a decomposition s = vw such that v is connected
to w and both [v ]u and [w ]uv are recursively decomposable
subchains.

Remark The extent of a recursively decomposable chain is
defined in the same way as for contradictory chains. Note that
every contradictory subchain is recursively decomposable.
Consequently, the set of all contradictory subchains for a
certain extent is a subset of all recursively decomposable
subchains of the same extent.
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Example

Consider the sequence of relations

s = R2R4R3R6R5R1.

Using parenthesis to indicate the recursive decompositions we
have the following two possibilities

(((R2(R4R3))(R6R5))R1)

((R2((R4R3)(R6R5)))R1)

The extent of the recursively decomposable subchain

R4R3R6R5

of s is ({R2}, {R3,R4,R5,R6})
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Number of Recursively Decomposable Chains
The number of different recursively decomposable chains
involving the relations R1, . . . ,Rn is rn, where rn denotes the
n-th Schröder number: Hence, the total number of recursively
decomposable chains is

rn + 2(n − 1)rn−1 + 4
n−2∑
i=1

(
n − 2

i

)
ri

It can be shown that

rn ≈
C(2 +

√
8)n

n3/2

where C = 1/2
√

2
√

2−4
π . Using Stirling’s formula for n! it is easy

to show that limn→∞ rn
n! = 0. Thus, the probability of a random

permutation to be recursively decomposable strives to zero for
large n.
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Optimality Principle

I An optimal recursively decomposable subchain to a given
extent is a recursively decomposable subchain with lowest
cost among all recursively decomposable subchains of the
same extent.

I Bellman’s optimality principle holds: every optimal
recursively decomposable subchain can be decomposed
into smaller optimal recursively decomposable subchains.

Hence: the optimal recursively decomposable subchains can
be computed using dynamic programming
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Example 5

In order to compute an optimal recursively decomposable subchain for the
extent

({R2,R7}, {R3,R4,R5,R6})
the algorithm makes use of optimal recursively decomposable subchains for
the extents

({R2}, {R3}) ({R7,R3}, {R4,R5,R6})
({R2}, {R3,R4}) ({R7,R4}, {R5,R6})

({R2}, {R3,R4,R5}) ({R5,R7}, {R6})
({R7}, {R4,R5,R6}) ({R2,R4}, {R3})

({R7}, {R5,R6}) ({R2,R5}, {R3,R4})
({R7}, {R6}) ({R2,R6}, {R3,R4,R5})

which have been computed in earlier steps.
The splitting of extents induces a partial order on the set of extents.
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Partial Order on Extents, M

Let E be the set of all possible extents.
We define the following partial order P = (E ,≺) on E :
For all extents e1,e2 ∈ E :
e1 ≺ e2 if and only if e1 can be obtained by splitting the extent
e2.
The set of maximal extents M then corresponds to a set of
incomparable elements in P such that for all extents e
enumerated so far, there is an extent e′ ∈ M with e ≺ e′.
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Example

({R7}, {R5,R6}) ≺ ({R2,R7}, {R3,R4,R5,R6})
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Algorithm Chain-I’

1. Use dynamic programming to determine all optimal
contradictory subchains.
This step can be made faster by keeping track of the set M
of all maximal extents (with respect to the partial order
induced by splitting extents).

2. Determine all optimal recursively decomposable subchains
for all extents included in some maximal extent in M.

3. Compare the results from steps 1 and 2 and retain only
matching subchains.

4. Sort the contradictory subchains according to their ranks.
5. Eliminate contradictory subchains that cannot be part of a

solution.
6. Use backtracking to enumerate all sequences of

rank-ordered optimal contradictory subchains and keep
track of the sequence with lowest cost.
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Algorithm Chain-II’

1. Use dynamic programming to compute an optimal
recursive decomposable chain for the whole set of
relations {R1, . . . ,Rn}.

2. Normalize the resulting chain.
3. Reorder the contradictory subchains according to their

ranks.
4. De-normalize the sequence.
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Discussion

Algorithm Runtime Optimality
Chain-I ? yes
Chain-II O(n4) ?

Questionsmarks: exercise
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Transformation-Based Approaches

Main idea:
I Use equivalences directly

(associativity, commutativity)
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Rule Set

R1 B R2 ; R2 B R1 Commutativity
(R1 B R2) B R3 ; R1 B (R2 B R3) Right Associativity
R1 B (R2 B R3) ; (R1 B R2) B R3 Left Associativity
(R1 B R2) B R3 ; (R1 B R3) B R2 Left Join Exchange
R1 B (R2 B R3) ; R2 B (R1 B R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:
I swap exchanges two arbitrary relations in a left-deep tree
I 3Cycle performs a cyclic rotation of three arbitrary relations

in a left-deep tree.
To try another join method, another rule called join method
exchange is introduced.
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Rule Set RS-0

I commutativity
I left-associativity
I right-associativity
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ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅; // contains all trees processed
ToDo = {T}; // contains all trees to be processed
while (!empty(ToDo)) {

Let T be an arbitrary tree in ToDo
ToDo \ = T;
Done + = T;
Trees = ApplyTransformations(T);
for all T ∈ Trees do { if (T 6∈ ToDo ∪ Done) { ToDo + = T; } }

}
return cheapest tree found in Done;
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ApplyTransformations(T)
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅;
Subtrees = all subtrees of T rooted at inner nodes
for all S ∈ Subtrees do {

if (S is of the form S1 B S2) { Trees + = S2 B S1; }
if (S is of the form (S1 B S2)B S3) {

Trees + = S1 B (S2 B S3);
}
if (S is of the form S1 B (S2 B S3)) {

Trees + = (S1 B S2)B S3;
}

}
return Trees;
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Remarks

I If no cross products are to be considered, extend if
conditions for associativity rules.

I Problem 1: explores the whole search space
I Problem 2: generates join trees more than once
I Problem 3: sharing of subtrees is non-trivial



238/528

a

a

c

a

c

c

c

c

a

c

c

c

c

l

p

c

c

c

c

c

c

c

c

a

a

c

c

c

c

c

c

c

c

c

a

a

l

a

c

p

a

a

a

a

a

p

a

a

a

a

c

p

p

p

p

p

a

a

a

a

p

p

p

p p

p

p

pp

l
l

l
l

l

l
l l

l

l l
l

l

l l l

l

l l l

l

l l l

l

l l l

l

p

as

p

as

l

p

as
s a

s

c

sa

a
sa

p

sa
sa

p

s

p

s s

as

s

p

s

p

s

p

s

p

s

p

c

s

p
sa

sa

p

s

p

s

p

s

s

a

s

a

s

a

s

a

c s

a

a

s

as

as

c

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B



239/528

Introducing the Memo Structure

I For any subset of relations, dynamic programming
remembers the best join tree.

I This does not quite suffice for the transformation-based
approach.

I Instead, we have to keep all join trees generated so far
including those differing in the order of the arguments of a
join operator.

I However, subtrees can be shared.
I This is done by keeping pointers into the data structure

(see below).
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Memo Structure Example

{R1,R2,R3} {R1,R2}B R3,R3 B {R1,R2},
{R1,R3}B R2,R2 B {R1,R3},
{R2,R3}B R1,R1 B {R2,R3}

{R2,R3} {R2}B {R3}, {R3}B {R2}
{R1,R3} {R1}B {R3}, {R3}B {R1}
{R1,R2} {R1}B {R2}, {R2}B {R1}
{R3} R3
{R2} R2
{R1} R1
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Remarks

I in Memo Structure: arguments are pointers to classes
I Algorithm: ExploreClass expands a class
I Algorithm: ApplyTransformation2 expands a member

of a class
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ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return best of class {R1, . . . ,Rn}
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ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure

while (not all join trees in C have been explored) {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

}
return
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ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T));
ExploreClass(right-child(T));
foreach transformation T and class member of child classes {

foreach T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}
return
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Remarks

I Applying ExhaustiveTransformation2 with a rule set
consisting of Commutativity and Left and Right
Associativity generates 4n − 3n+1 + 2n+2− n− 2 duplicates

I Contrast this with the number of join trees contained in a
completely filled MEMO structure: 3n − 2n+1 + n + 1

I Solve the problem of duplicate generation by disabling
applied rules.

I Note that this does not solve the problem that
transformation-based approaches explore the whole
search space.
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Rule Set RS-1

T1: Commutativity C1 B0 C2 ; C2 B1 C1
Disable all transformations T1, T2, and T3 for B1.

T2: Right Associativity (C1 B0 C2) B1 C3 ; C1 B2 (C2 B3 C3)
Disable transformations T2 and T3 for B2 and
enable all rules for B3.

T3: Left associativity C1 B0 (C2 B1 C3) ; (C1 B2 C2) B3 C3
Disable transformations T2 and T3 for B3 and
enable all rules for B2.

Example for chain query R1 − R2 − R3 − R4:
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Class Initialization Transformation Step

{R1, R2, R3, R4} {R1, R2} B111 {R3, R4} {R3, R4} B000 {R1, R2} 3
R1 B100 {R2, R3, R4} 4
{R1, R2, R3} B100 R4 5
{R2, R3, R4} B000 R1 8
R4 B000 {R1, R2, R3} 10

{R2, R3, R4} R2 B111 {R3, R4} 4
{R3, R4} B000 R2 6
{R2, R3} B100 R4 6
R4 B000 {R2, R3} 7

{R1, R3, R4}
{R1, R2, R4}
{R1, R2, R3} {R1, R2} B111 R3 5

R3 B000 {R1, R2} 9
R1 B100 {R2, R3} 9
{R2, R3} B000 R1 9

{R3, R4} R3 B111 R4 R4 B000 R3 2
{R2, R4}
{R2, R3}
{R1, R4}
{R1, R3}
{R1, R2} R1 B111 R2 R2 B000 R1 1
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Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are
allowed:

T1: Commutativity C1 B0 C2 ; C2 B1 C1
Disable all transformations T1, T2, T3, and T4 for B1.

T2: Right Associativity (C1 B0 C2) B1 C3 ; C1 B2 (C2 B3 C3)
Disable transformations T2, T3, and T4 for B2.

T3: Left Associativity C1 B0 (C2 B1 C3) ; (C1 B2 C2) B3 C3
Disable transformations T2, T3 and T4 for B3.

T4: Exchange (C1 B0 C2) B1 (C3 B2 C4) ; (C1 B3 C3) B4 (C2 B5 C4)
Disable all transformations T1, T2, T3, and T4 for B4.

If we initialize the MEMO structure with left-deep trees, we can strip
down the above rule set to Commutativity and Right Associativity.
Reason: from a left-deep join tree we can generate all bushy trees
with only these two rules
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Rule Set RS-3

Left-deep trees:
T1 Commutativity R1 B0 R2 ; R2 B1 R1

Here, the Ri are restricted to classes with exactly
one relation. T1 is disabled for B1.

T2 Right Join Exchange (C1 B0 C2) B1 C3 ; (C1 B2 C3) B3 C2
Disable T2 for B3.
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Generating Random Join Trees

I Randomized optimization procedures
I Basis for Simulated Annealing, Iterative Improvement
I With Cross Products first, since they are easier
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Ranking/Unranking

Let S be a set with n elements.

I a bijective mapping f : S → [0,n[ is called ranking
I a bijective mapping f : [0,n[→ S is called unranking

Given an unranking function, we can generate random
elements in S by generating a random number in [0,n[ and
unranking this number.
Challenge: making unranking fast.
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Random Permutations

Every permutation corresponds to a left-deep join tree possibly
with cross products.
Standard algorithm to generate random permutations is the
starting point for the algorithm:

for (k = n − 1; k ≥ 0; −− k)
swap(π[k ], π[random(k)]);

Array π initialized with elements [0,n[.
random(k ) generates a random number in [0, k ].
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Random Permutations

I Assume the random elements produced by the algorithm
are rn−1, . . . , r0 where 0 ≤ ri ≤ i .

I Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such
sequences and there is a one to one correspondance
between these sequences and the set of all permutations.

I Unrank r ∈ [0,n![ by turning it into a unique sequence of
values rn−1, . . . , r0.
Note that after executing the swap with rn−1 every value in
[0,n[ is possible at position π[n − 1].
Further, π[n − 1] is never touched again.

I Hence, we can unrank r as follows. We first set rn−1 = r
mod n and perform the swap. Then, we define r ′ = br/nc
and iteratively unrank r ′ to construct a permutation of n − 1
elements.
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Unrank(n, r)
Input: the number n of elements to be permuted

the rank r of the permutation to be constructed
Output: a permutation π
for (i = 0; i < n; + + i) π[i] = i;
Unrank-Sub(n, r , π);
return π;

Unrank-Sub(n, r , π)
for (i = n; i > 0; −− i)

swap(π[i − 1], π[r mod i]);
r = br/ic;
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Generating Random Bushy Trees with Cross Products

Steps of the algorithm:
1. Generate a random number b in [0,C(n − 1)[.
2. Unrank b to obtain a bushy tree with n − 1 inner nodes.
3. Generate a random number p in [0,n![.
4. Unrank p to obtain a permutation.
5. Attach the relations in order p from left to right as leaf

nodes to the binary tree obtained in Step 2.
The only step that we have still to discuss is Step 2.
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Tree Encoding

I Preordertraversal:
I Inner node: ’(’
I Leaf Node: ’)’

Skip last leaf node.
I Replace ’(’ by 1 and ’)’ by 0
I Just take positions of 1s.
I The ranks are in [0,14[

Example: all trees with four inner nodes:
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Unranking Binary Trees

Establish bijection between Dyck words and paths in a grid:

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Every path from (0,0) to (2n,0) uniquely corresponds to a
Dyck word.
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Counting Paths

The number of different paths from (0,0) to (i , j) can be
computed by

p(i , j) =
j + 1
i + 1

(
i + 1

1
2(i + j) + 1

)
These numbers are the Ballot numbers.
The number of paths from (i , j) to (2n,0) can thus be computed
as:

q(i , j) = p(2n − i , j)

Note the special case q(0,0) = p(2n,0) = C(n).
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Unranking Outline

I We open a parenthesis (go from (i , j) to (i + 1, j + 1)) as
long as the number of paths from that point does no longer
exceed our rank r .

I If it does, we close a parenthesis (go from (i , j) to
(i − 1, j + 1)).

I Assume, that we went upwards to (i , j) and then had to go
down to (i − 1, j + 1).
We subtract the number of paths from (i + 1, j + 1) from
our rank r and proceed iteratively from (i − 1, j + 1) by
going up as long as possible and going down again.

I Remembering the number of parenthesis opened and
closed along our way results in the required encoding.
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UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0,C(n − 1)]
Output: encoding of the inner nodes of a tree
lNoParOpen = lNoParClose = 0;
i = 1; // current encoding
j = 0; // current position in encoding array
while (j < n) {

k = q(lNoParOpen + lNoParClose + 1,
lNoParOpen - lNoParClose + 1);

if (k ≤ r) {
r -= k;
++lNoParClose;

} else {
aTreeEncoding[j++] = i;
++lNoParOpen;

}
++i;

}
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Generating Random Trees Without Cross Products

Tree queries only!

I query graph: G = (V ,E), |V | = n, G must be a tree.
I level: root has level 0, children thereof 1, etc.
I TG: join trees for G
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Partitioning TG

T v(k)
G ⊆ TG: subset of join trees where the leaf node (i.e.

relation) v occurs at level k .
Observations:
I n = 1: |TG| = |T v(0)

G | = 1

I n > 1: |T v(0)
G | = 0 (top is a join and no relation)

I The maximum level that can occur in any join tree is n − 1.
Hence: |T v(k)

G | = 0 if k ≥ n.

I TG = ∪n
k=0T

v(k)
G

I T v(i)
G ∩ T v(j)

G = ∅ for i 6= j

I Thus: |TG| =
∑n

k=0 |T
v(k)

G |
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The Specification

I The algorithm will generate an unordered tree with n leaf
nodes.

I If we wish to have a random ordered tree, we have to pick
one of the 2n−1 possibilities to order the (n− 1) joins within
the tree.
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The Procedure

1. List merges (notation, specification, counting, unranking)
2. Join tree construction: leaf-insertion and tree-merging
3. Standard Decomposition Graph (SDG): describes all valid

join trees
4. Counting
5. Unranking algorithm
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List Merge

I Lists: Prolog-Notation: 〈a|t〉
I Property P on elements
I A list l ′ is the projection of a list L on P, if L′ contains all

elements of L satisfying the property P.
Thereby, the order is retained.

I A list L is a merge of two disjoint lists L1 and L2, if L
contains all elements from L1 and L2 and both are
projections of L.
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Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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List Merge: Specification

A merge of a list L1 with a list L2 whose respective lengths are
l1 and l2 can be described by an array α = [α0, . . . , αl2 ] of
non-negative integers whose sum is equal to l1, i.e.∑l2

i=0 αi = |l1|.
I We obtain the merged list L by first taking α0 elements

from L1.
I Then, an element from L2 follows. Then follow α1 elements

from L1 and the next element of L2 and so on.
I Finally follow the last αl2 elements of L1.
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List Merge: Counting (1)

Non-negative integer decomposition:
I What is the number of decompositions of a non-negative

integer n into k non-negative integers αi with
∑k

i=1 αk = n.

Answer:
(n+k−1

k−1

)
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List Merge: Counting (2)

Since we have to decompose l1 into l2 + 1 non-negative
integers, the number of possible merges is M(l1, l2) =

(l1+l2
l2

)
.

The observation M(l1, l2) = M(l1 − 1, l2) + M(l1, l2 − 1) allows
us to construct an array of size n ∗ n in O(n2) that materializes
the values for M.
This array will allow us to rank list merges in O(l1 + l2).
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List Merge: Unranking: General Idea

The idea for establishing a bijection between [1,M(l1, l2)] and
the possible αs is a general one and used for all subsequent
algorithms of this section.
Assume we want to rank the elements of some set S and
S = ∪n

i=0Si is partitioned into disjoint Si .

1. If we want to rank x ∈ Sk , we first find the local rank of
x ∈ Sk .

2. The rank of x is then
∑k−1

i=0 |Si |+ local-rank(x ,Sk ).
3. To unrank some number r ∈ [1,N], we first find k such that

k = minj r ≤∑j
i=0 |Si |.

4. We proceed by unranking with the new local rank
r ′ = r −∑k−1

i=0 |Si | within Sk .
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List Merge: Unranking

We partition the set of all possible merges into subsets.

I Each subset is determined by α0.
For example, the set of possible merges of two lists L1 and
L2 with length l1 = l2 = 4 is partitioned into subsets with
α0 = j for 0 ≤ j ≤ 4.

I In each partition, we have M(l1 − j , l2 − 1) elements.
I To unrank a number r ∈ [1,M(l1, l2)] we first determine the

partition by computing k = minj r ≤∑j
i=0 M(j , l2 − 1).

Then, α0 = l1 − k .
I With the new rank r ′ = r −∑k

i=0 M(j , l2 − 1), we start
iterating all over.
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Example

k α0 (k , l2 − 1) M(k , l2 − 1) rank intervals
0 4 (0,3) 1 [1,1]
1 3 (1,3) 4 [2,5]
2 2 (2,3) 10 [6,15]
3 1 (3,3) 20 [16,35]
4 0 (4,3) 35 [36,70]
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UnrankDecomposition(r , l1, l2)
Input: a rank r, two list sizes l1 and l2
Output: a merge specification α.
for (i = 0; i ≤ l2; + + i) {
alpha[i] = 0;

}
i = k = 0;
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while (l1 > 0 && l2 > 0) {
m = M(k , l2 − 1);
if (r ≤ m) {

alpha[i + +] = l1 − k;
l1 = k;
k = 0;
−− l2;

} else {
r− = m;
+ + k;

}
}
alpha[i] = l1;
return alpha;
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Anchored List Representation of Join Trees

Definition Let T be a join tree and v be a leaf of T . The
anchored list representation L of T is constructed as follows:
I If T consists of the single leaf node v , then L = 〈〉.
I If T = (Tl B T2) and without loss of generality v occurs in

T2, then L = 〈T1|L2〉 where L2 is the anchored list
representation of T2.

We then write T = (L, v).
Observation If T = (L, v) ∈ TG then T ∈ T v(k)

G ≺� |L| = k
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Leaf-Insertion: Example

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)
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Leaf-Insertion

Definition Let G = (V ,E) be a query graph, T a join tree of G.
v ∈ V be such that G′ = G|V\{v} is connected, (v ,w) ∈ E ,
1 ≤ k < n, and

T = (〈T1, . . . ,Tk−1, v ,Tk+1, . . . ,Tn〉,w) (17)
T ′ = (〈T1, . . . ,Tk−1,Tk+1, . . . ,Tn〉,w). (18)

Then we call (T ′, k) an insertion pair on v and say that T is
decomposed into (or constructed from) the pair (T ′, k) on v .
Observation: Leaf-insertion defines a bijective mapping
between T v(k)

G and insertion pairs (T ′, k) on v , where T ′ is an
element of the disjoint union ∪n−2

i=k−1T
w(i)

G′ .
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Tree-Merging: Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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Tree-Merging

Two trees R = (LR,w) and S = (LS,w) on a common leaf w
are merged by merging their anchored list representations.
Definition. Let G = (V ,E) be a query graph, w ∈ V ,
T = (L,w) a join tree of G, V1,V2 ⊆ V such that G1 = G|V1 and
G2 = G|V2 are connected, V1 ∪ V2 = V , and V1 ∩ V2 = {w}.
For i = 1,2:
I Define the property Pi to be “every leaf of the subtree is in

Vi ”,
I Let Li be the projection of L on Pi .
I Ti = (Li ,w).

Let α be the integer decomposition such that L is the result of
merging L1 and L2 on α. Then, we call (T1,T2, α) a merge
triplet . We say that T is decomposed into (constructed from)
(T1,T2, α) on V1 and V2.
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Observation

Tree-Merging defines a bijective mapping between T w(k)
G and

merge triplets (T1,T2, α), where T1 ∈ T w(i)
G1

, T2 ∈ T w(k−i)
G2

, and
α specifies a merge of two lists of sizes i and k − i . Further, the
number of these merges (i.e. the number of possibilities for α)
is
(i+(k−i)

k−i

)
=
(k

i

)
.
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Standard Decomposition Graph (SDG)

A standard decomposition graph of a query graph describes
the possible constructions of join trees.
It is not unique (for n > 1) but anyone can be used to construct
all possible unordered join trees.
For each of our two operations it has one kind of inner nodes:
I A unary node labeled +v stands for leaf-insertion of v .
I A binary node labeled ∗w stands for tree-merging its

subtrees whose only common leaf is w .
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Constructing a Standard Decomposition Graph

The standard decomposition graph of a query graph
G = (V ,E) is constructed in three steps:

1. pick an arbitrary node r ∈ V as its root node
2. transform G into a tree G′ by directing all edges away from

r ;
3. call QG2SDG(G′, r)
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QG2SDG(G′, r)
Input: a query tree G′ = (V ,E) and its root r
Output: a standard query decomposition tree of G′

Let {w1, . . . ,wn} be the children of v;
switch (n) {

case 0: label v with "v";
case 1:

label v as "+v";
QG2SDG(G′,w1);

otherwise:
label v as "∗v";
create new nodes l, r with label +v;
E \ = {(v ,wi)|1 ≤ i ≤ n};
E ∪ = {(v , l), (v , r), (l ,w1)} ∪ {(r ,wi)|2 ≤ i ≤ n};
QG2SDG(G′, l);
QG2SDG(G′, r);

}
return G′;
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Counting (1)

For efficient access to the number of join trees in some partition
T v(k)

G in the unranking algorithm, we materialize these numbers.
This is done in the count array.
The semantics of a count array [c0, c1, . . . , cn] of a node u with
label ◦v (◦ ∈ {+, ∗}) of the SDG is that
I u can construct ci different trees in which leaf v is at level i .

Then, the total number of trees for a query can be computed by
summing up all the ci in the count array of the root node of the
decomposition tree.
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Counting (2)

To compute the count and an additional summand adornment
of a node labeled +v , we use the following lemma:
Lemma. Let G = (V ,E) be a query graph with n nodes, v ∈ V
such that G′ = G|V\v is connected, (v ,w) ∈ E , and 1 ≤ k < n.
Then

|T v(k)
G | =

∑
i≥k−1

|T w(i)
G′ |
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Counting (3)

The sets T w(i)
G′ used in the summands of the former Lemma

directly correspond to subsets T v(k),i
G (k − 1 ≤ i ≤ n − 2)

defined such that T ∈ T v(k),i
G if

1. T ∈ T v(k)
G ,

2. the insertion pair on v of T is (T ′, k), and

3. T ′ ∈ T w(i)
G′ .

Further, |T v(k),i
G | = |T w(i)

G′ |. For efficiency, we materialize the
summands in an array of arrays summands.
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Counting (4)

To compute the count and summand adornment of a node
labeled ∗v , we use the following lemma.
Lemma. Let G = (V ,E) be a query graph, w ∈ V , T = (L,w) a
join tree of G, V1,V2 ⊆ V such that G1 = G|V1 and G2 = G|V2

are connected, V1 ∪ V2 = V , and V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑
i

(
k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|
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Counting (5)

The sets T w(i)
G′ used in the summands of the previous Lemma

directly correspond to subsets T v(k),i
G (0 ≤ i ≤ k ) defined such

that T ∈ T v(k),i
G if

1. T ∈ T v(k)
G ,

2. the merge triplet on V1 and V2 of T is (T1,T2, α), and

3. T1 ∈ T v(i)
G1

.

Further, |T v(k),i
G | =

(k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|.
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Counting (6)

Observation: Assume a node v whose count array is
[c1, . . . , cm] and whose summands is s = [s0, . . . , sn] with
si = [si

0, . . . , s
i
m], then

ci =
m∑

j=0

si
j

holds.
The following algorithm has worst-case complexity O(n3).
Looking at the count array of the root node of the following
SDG, we see that the total number of join trees for our example
query graph is 18.
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Adorn(v)
Input: a node v of the SDG
Output: v and nodes below are adorned by count and summands
Let {w1, . . . ,wn} be the children of v;
switch (n) {

case 0: count(v) := [1]; // no summands for v
case 1:

Adorn(w1);
assume count(w1) = [c1

0 , . . . , c
1
m1 ];

count(v) := [0, c1, . . . , cm1+1] where ck =
∑m1

i=k−1 c1
i ;

summands(v) = [s0, . . . , sm1+1] where sk = [sk
0 , . . . , s

k
m1+1] and

sk
i =

{
c1

i if 0 < k and k − 1 ≤ i
0 else
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case 2:
Adorn(w1);
Adorn(w2);
assume count(w1) = [c1

0 , . . . , c
1
m1 ];

assume count(w2) = [c2
0 , . . . , c

2
m2 ];

count(v) = [c0, . . . , cm1+m2 ] where
ck =

∑m1
i=0

(k
i

)
c1

i c2
k−i; // c2

i = 0 for i 6∈ {0, . . . ,m2}
summands(v) = [s0, . . . , sm1+m2 ] where sk = [sk

0 , . . . , s
k
m1 ] and

sk
i =

{ (k
i

)
c1

i c2
k−i if 0 ≤ k − i ≤ m2

0 else
}
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Unranking: top-level procedure

The algorithm UnrankLocalTreeNoCross called by
UnrankTreeNoCross adorns the standard decomposition
graph with insert-at and merge-using annotations. These
can then be used to extract the join tree.

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output: adorned SDG
let count(v) = [x0, . . . , xm];

k := minj r ≤∑j
i=0 xi;

r ′ := r −∑k−1
i=0 xi;

UnrankLocalTreeNoCross(v, r ′, k);
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Unranking: Example

The following table shows the intervals associated with the
partitions T e(k)

G for our standard decomposition graph:

Partition Interval
T e(1)

G [1,5]

T e(2)
G [6,10]

T e(3)
G [11,15]

T e(4)
G [16,18]
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Unranking: the last utility function

The unranking procedure makes use of unranking
decompositions and unranking triples. For the latter and a
given X ,Y ,Z , we need to assign each member in

{(x , y , z)|1 ≤ x ≤ X ,1 ≤ y ≤ Y ,1 ≤ z ≤ Z}

a unique number in [1,XYZ ] and base an unranking algorithm
on this assignment. We call the function
UnrankTriplet(r ,X ,Y ,Z ). r is a rank and X , Y , and Z are
the upper bounds for the numbers in the triplets.



298/528

UnrankingTreeNoCrossLocal(v , r , k)
Input: an SDG node v, a rank r,

a number k identifying a partition
Output: adornments of the SDG as a side-effect
Let {w1, . . . ,wn} be the children of v
switch (n) {

case 0:
assert(r = 1 && k = 0);
// no additional adornment for v
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case 1:
let count(v) = [c0, . . . , cn];
let summands(v) = [s0, . . . , sn];
assert(k ≤ n && r ≤ ck);

k1 = minj r ≤∑j
i=0 sk

i ;

r1 = r −∑k1−1
i=0 sk

i ;
insert-at(v) = k;
UnrankingTreeNoCrossLocal(w1, r1, k1);
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case 2:
let count(v) = [c0, . . . , cn];
let summands(v) = [s0, . . . , sn];
let count(w1) = [c1

0 , . . . , c
1
n1

];
let count(w2) = [c2

0 , . . . , c
2
n2

];
assert(k ≤ n && r ≤ ck);

k1 = minj r ≤∑j
i=0 sk

i ;

q = r −∑k1−1
i=0 sk

i ;
k2 = k − k1;
(r1, r2,a) = UnrankTriplet(q, c1

k1
, c2

k2
,
(k

i

)
);

α = UnrankDecomposition(a);
merge-using(v) = α;
UnrankingTreeNoCrossLocal(w1, r1, k1);
UnrankingTreeNoCrossLocal(w2, r2, k2);

}
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Quick Pick

I build Pseudo-Random join trees fast
I Idea: randomly select an edge in the query graph
I extend join tree by selected edge
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QuickPick(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output: a bushy join tree
BestTreeFound = any join tree
while stopping criterion not fulfilled

E ′ = E;
Trees = {R1, . . . ,Rn};
while (|Trees| > 1)
choose e ∈ E ′;
E ′− = e;
if (e connects two rels in subtrees T1,T2 ∈ Trees, T1 6= T2)
Trees \= {T1,T2} ;
Trees += CreateJoinTree(T1,T2);

Tree = single tree contained in Trees;
if (cost(Tree) < cost(BestTreeFound)) BestTreeFound = Tree;

return BestTreeFound
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Iterative Improvement

I Start with random join tree
I Select rule that improves join tree
I Stop when no further improvement possible
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IterativeImprovementBase(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output: a join tree
do {
JoinTree = random tree
JoinTree = IterativeImprovement(JoinTree)
if (cost(JoinTree) < cost(BestTree)) {

BestTree = JoinTree;
}

} while (time limit not exceeded)
return BestTree
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IterativeImprovement(JoinTree)
Input: a join tree
Output: improved join tree
do {

JoinTree’ = randomly apply transformation from the rule set to the JoinTree;
if (cost(JoinTree’) < cost(JoinTree)) {

JoinTree = JoinTree’;
}

} while (local minimum not reached)
return JoinTree
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Simulated Annealing

I II: stuck in local minimum
I SA: allow moves that result in more expensive join trees
I lower the threshold for worsening
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SimulatedAnnealing(Query Graph G)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output: a join tree
BestTreeSoFar = random tree;
Tree = BestTreeSoFar;
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do {
do {

Tree’ = apply random transformation to Tree;
if (cost(Tree’) < cost(Tree)) {
Tree = Tree’;

} else {
with probability e−(cost(Tree′)−cost(Tree))/temperature

Tree = Tree’;
}
if (cost(Tree) < cost(BestTreeSoFar)) {
BestTreeSoFar = Tree’;

}
} while (equilibrium not reached)

reduce temperature;
} while (not frozen)
return BestTreeSoFar
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Tabu Search

I Select cheapest reachable neighbor (even if it is more
expensive)

I Maintain tabu set to avoid running into circles
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TabuSearch(Query Graph)
Input: a query graph G = ({R1, . . . ,Rn},E)
Output: a join tree
Tree = random join tree;
BestTreeSoFar = Tree;
TabuSet = ∅;
do {
Neighbors = all trees generated by applying

a transformation to Tree;
Tree = cheapest in Neighbors \ TabuSet; (*)
if (cost(Tree) < cost(BestTreeSoFar)) {

BestTreeSoFar = Tree;
}
if (|TabuSet| > limit) remove oldest tree from TabuSet;
TabuSet += Tree;

} while (not stopping condition satisfied)
return π;

Stop: no improvement in the last n cycles, or no tree can be derived
in (*)
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Genetic Algorithms

I Join trees seen as population
I Successor generations generated by crossover and

mutation
I Only the fittest survive

Problem: Encoding
I Chromosome←→ string
I Gene←→ character
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Encoding

We distinguish ordered list and ordinal number encodings.
Both encodings are used for left-deep and bushy trees.
In all cases we assume that the relations R1, . . . ,Rn are to be
joined and use the index i to denote Ri .
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Ordered List Encoding

1. left-deep trees
A left-deep join tree is encoded by a permutation of
1, . . . ,n. For instance, (((R1 B R4) B R2) B R3) is encoded
as “1423”.

2. bushy trees
A bushy join-tree without cartesian products is encoded as
an ordered list of the edges in the join graph. Therefore,
we number the edges in the join graph. Then, the join tree
is encoded in a bottom-up, left-to-right manner.
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Ordinal Number Encoding

In both cases, we start with the list L = 〈R1, . . . ,Rn〉.
1) left-deep trees

Within L we find the index of first relation to be joined. If
this relation be Ri then the first character in the
chromosome string is i . We eliminate Ri from L. For every
subsequent relation joined, we again determine its index in
L, remove it from L and append the index to the
chromosome string.
For instance, starting with 〈R1,R2,R3,R4〉, the left-deep
join tree (((R1 B R4) B R2) B R3) is encoded as “1311”.
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2) bushy trees
We encode a bushy join tree in a bottom-up, left-to-right
manner. Let Ri B Rj be the first join in the join tree under
this ordering. Then we look up their positions in L and add
them to the encoding. Then we eliminate Ri and Rj from L
and push Ri,j to the front of it. We then proceed for the
other joins by again selecting the next join which now can
be between relations and or subtrees. We determine their
position within L, add these positions to the encoding,
remove them from L, and insert a composite relation into L
such that the new composite relation directly follows those
already present.
For instance, starting with the list 〈R1,R2,R3,R4〉, the
bushy join tree ((R1 B R2) B (R3 B R4)) is encoded as “12
23 12”.
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Crossover

1. Subsequence exchange
2. Subset exchange
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Crossover: Subsequence exchange

The subsequence exchange for the ordered list encoding:
I Assume two individuals with chromosomes u1v1w1 and

u2v2w2.
I From these we generate u1v ′1w1 and u2v ′2w2 where v ′i is a

permutation of the relations in vi such that the order of their
appearence is the same as in u3−iv3−iw3−i .

Subsequence exchange for ordinal number encoding:
I We require that the vi are of equal length (|v1| = |v2|) and

occur at the same offset (|u1| = |u2|).
I We then simply swap the vi .
I That is, we generate u1v2w1 and u2v1w2.
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Crossover: Subset exchange

The subset exchange is defined only for the ordered list
encoding.
Within the two chromosomes, we find two subsequences of
equal length comprising the same set of relations. These
sequences are then simply exchanged.
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Mutation

A mutation randomly alters a character in the encoding.
If duplicates may not occur— as in the ordered list
encoding—swapping two characters is a perfect mutation.
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Selection

I The probability of survival is determined by its rank in the
population.

I We calculate the costs of the join trees encoded for each
member in the population.

I Then, we sort the population according to their associated
costs and assign probabilities to each individual such that
the best solution in the population has the highest
probability to survive and so on.

I After probabilities have been assigned, we randomly select
members of the population taking into account these
probabilities.

I That is, the higher the probability of a member the higher
its chance to survive.
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The Algorithm

1. Create a random population of a given size (say 128).
2. Apply crossover and mutation with a given rate.

For example such that 65% of all members of a population
participate in crossover, and 5% of all members of a
population are subject to random mutation.

3. Apply selection until we again have a population of the
given size.

4. Stop after no improvement within the population was seen
for a fixed number of iterations (say 30).
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Two Phase Optimization

1. For a number of randomly generated initial trees, Iterative
Improvement is used to find a local minima.

2. Then Simulated Annealing is started to find a better plan in
the neighborhood of the local minima.
The initial temperature of Simulated Annealing can be
lower as is its original variants.
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AB Algorithm

1. If the query graph is cyclic, a spanning tree is selected.
2. Assign join methods randomly
3. Apply IKKBZ
4. Apply iterative improvement
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Toured Simulated Annealing

The basic idea is that simulated annealing is called n times with
different initial join trees, if n is the number of relations to be
joined.
I Each join sequence in the set Solutions produced by

GreedyJoinOrdering-3 is used to start an independent
run of simulated annealing.

As a result, the starting temperature can be descreased to 0.1
times the cost of the initial plan.
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GOO-II

Append an iterative improvement step to GOO
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Iterative Dynamic Programming

I Two variants: IDP-1, IDP-2
I Here: Only IDP-1 base version

Idea:
I create join trees with up to k relations
I replace cheapest one by a compound relation
I start all over again
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IDP-1({R1, . . . ,Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output: a join tree
for (i = 1; i <= n; ++i) {
BestTree({Ri}) = Ri;

}
ToDo = {R1, . . . ,Rn};
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while (|ToDo| > 1) {
k = min(k , |ToDo|);
for (i = 2; i < k; ++i)

for all S ⊆ ToDo, |S| = i do
for all O ⊂ S do
BestTree(S) = CreateJoinTree(BestTree(S \O),

BestTree(O));
find V ⊂ ToDo, |V | = k
with cost(BestTree(V)) = min{cost(BestTree(W)) |

W ⊂ ToDo, |W | = k};
generate new symbol T;
BestTree({T}) = BestTree(V);
ToDo = (ToDo \ V) ∪ {T};
for all O ⊂ V do delete(BestTree(O));

}
return BestTree({R1, . . . ,Rn});
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Ordering Order-Preserving Joins

I Motivation: XQuery
I Order-Preserving Selection:

σ̂p(e) :=


ε if e = ε
α(e)⊕ σ̂p(τ(e)) if p(α(e))
σ̂p(τ(e)) else
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Order-Preserving Join

Order-preserving cross product:

e1×̂e2 := (α(e1)×e2)⊕ (τ(e1)× e2)

where

e1×e2 :=

{
ε if e2 = ε
(e1 ◦ α(e2))⊕ (e1×τ(e2)) else

Order-preserving join:

e1B̂pe2 := σ̂p(e1×̂e2)
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Equivalences

σ̂p1(σ̂p2(e)) = σ̂p2(σ̂p1(e))
σ̂p1(e1B̂p2e2) = σ̂p1(e1)B̂p2e2 if F(p2) ⊆ A(e1)
σ̂p1(e1B̂p2e2) = e1B̂p2 σ̂p1(e2) if F(p2) ⊆ A(e2)
e1B̂p1(e2B̂p2e3) = (e1B̂p1e2)B̂p2e3 if F(pi) ⊆ A(ei) ∪ A(ei+1)



333/528

Example

Let R1 = 〈[a : 1], [a : 2]〉 and R2 = 〈[b : 1], [b : 2]〉. Then

R1B̂trueR2 = 〈[a : 1,b : 1], [a : 1,b : 2], [a : 2,b : 1], [a : 2,b : 2]〉
R2B̂trueR1 = 〈[a : 1,b : 1], [a : 2,b : 1], [a : 1,b : 2], [a : 2,b : 2]〉

Hence, order-preserving join is not commutative.
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Algorithm

I Analogous to matrix multiply
I Algorithm also pushes selections down
I construct-bushy-tree fills arrays p,s,c,t

p remember applicable predicates
s remember statistics
c remember costs
t remember split

I extract-plan extracts plan
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construct-bushy-tree(R, P)

01 n = |R|
02 for i = 1 to n
03 B =applicable-predicates(Ri, P)
04 P = P \ B
05 p[i , i] = B
06 s[i , i] = S0(Ri ,B)
07 c[i , i] = C0(Ri ,B)
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08 for l = 2 to n
09 for i = 1 to n − l + 1
10 j = i + l − 1
11 B = applicable-predicates(Ri...j, P)
12 P = P \ B
13 p[i , j] = B
14 s[i , j] = S1(s[i , j − 1], s[j , j],B)
15 c[i , j] =∞
16 for k = i to j − 1
17 q = c[i , k ] + c[k + 1, j] + C1(s[i , k ], s[k + 1, j],B)
18 if (q < c[i,j])
19 c[i , j] = q
20 t [i , j] = k



337/528

extract-plan(R, t , p)

01 return extract-subplan(R, t , p, 1, |R|)

extract-subplan(R, t , p, i , j)

01 if (j > i)
02 X = extract-subplan(R, t , p, i , t [i , j])
03 Y = extract-subplan(R, t , p, t [i , j] + 1, j)
04 return X B̂p[i,j]Y
05 else
06 return σp[i,i](Ri)
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Database Items, Access Paths, and Building Blocks

In this chapter we go into some details:
I Deep into the (Runtime) System
I Close to the Hardware

Goal:
I Estimation and Optimization of Disk Access Costs
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Database Items, Access Paths, and Building Blocks
1. Disk Drives

2. Database Buffer

3. Physical Database Organization

4. Slotted Pages and Tuple Identifier (TID)

5. Physical Record Layouts

6. Physical Algebra

7. Simple Scan

8. Scan and Attribute Access

9. Temporal Relations

10. Table Functions

11. Indexes

12. Single Index Access Paths

13. Multi Index Access Paths

14. Indexes and Joins

15. Counting the Number of Accesses

16. Disk Drive Costs for N Uniform Accesses
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4.1 Disk Drive: Assembly
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platter

arm head spindle
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side viewa. 
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4.1 Disk Drive: Zones I

I Outer tracks/sectors longer than inner ones
I Highest density is fixed
I Results in waste in outer sectors
I Thus: cylinders organized into zones
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4.2 Disk Drive: Zones II

I Every zone contains a fixed number of consecutive
cylinders

I Every cylinder in a zone has the same number of sectors
per track

I Outer zones have more sectors per track than inner zones
I Since rotation speed is fixed: higher throughput on outer

cylinders
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4.1 Disk Drive: Track Skew

Read all sectors of all tracks of some consecutive cylinders:
I Read all sectors of one track
I Switch to next track: small adjustment of head necessary

called: head switch
I This causes tiny delay
I Thus, if all tracks start at the same angular position then

we miss the start of the first sector of the next track
I Remedy: track skew
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4.1 Disk Drive: Cylinder Skew

Read all sectors of all tracks of some consecutive cylinders:
I Read all sectors of all tracks of some cylinder
I Switching to the next cylinder causes some delay
I Again, we miss the start of the first sector, if the tracks start

all start at the same angular position
I Remedy: cylinder skew
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4.1 Disk Drive: Addressing Sectors

I Physical Address: cylinder number, head (surface)
number, sector number

I Logical Address: LBN (logical block number)
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4.2 Disk Drive: LBN to Physical Address

Mapping:

Cylinder Track LBN number of sectors per track
0 0 0 573

1 573 573
. . . . . . . . . . . .

5 2865 573
1 0 3438 573

. . . . . . . . . . . .
15041 0 35841845 253

. . . . . . . . . . . .
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4.1 Disk Drive: LBN to Physical Address

This ideal view of the mapping is disturbed by bad blocks
I due to the high density, no perfect manufacturing is

possible
I As a consequence bad blocks occur (sectors that cannot

be used)
I Reserve some blocks, tracks, cylinders for remapping bad

blocks
Bad blocks may cause hickups during sequential reads
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4.1 Disk Drive: Reading/Writing a Block

Host sends
command

Controller
decodes it

Rotational
latency

Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time
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4.1 Disk Drive: Reading/Writing a Block

1. The host sends the SCSI command.

2. The disk controller decodes the command and calculates the physical
address.

3. During the seek the disk drive’s arm is positioned such that the
according head is correctly placed over the cylinder where the
requested block resides. This step consists of several phases.

3.1 The disk controler accelerates the arm.
3.2 For long seeks, the arm moves with maximum velocity

(coast).
3.3 The disk controler slows down the arm.
3.4 The disk arm settles for the desired location.

Note: settle times differ for reads and writes
4. The disk has to wait until the sector where the requested block resides

comes under the head (rotation latency).

5. The disk reads the sector and transfers data to the host.

6. Finally, it sends a status message.
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4.2 Disk Drive: Optimizing Round Trip Time

I caching
I read-ahead
I command queuing
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4.1 Disk Drive: Seek Time

A good approximation of the seek time where d cylinders have
to be travelled is given by

seektime(d) =

{
c1 + c2

√
d d <= c0

c3 + c4d d > c0

where the constants ci are disk specific. The constant c0
indicates the maximum number cylinders where no coast takes
place: seeking over a distance of more than c0 cylinders results
in a phase where the disk arm moves with maximum velocity.
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4.1 Disk Drive: Cost model: initial thoughts

Disk access costs depend on
I the current position of the disk arm and
I the angular position of the platters

Both are not known at query compilation time
Consequence:
I Estimating the costs of a single disk access at query

compilation time may result in large estimation error
Better: costs of many accesses
Nonetheless: First Simplistic Cost Model to give a feeling for
disk drive access costs
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4.1 Disk Drive: Simplistic Cost Model

We introduce some disk drive parameters for out simplistic cost
model:
I average latency time: average time for positioning

(seek+rotational delay)
I use average access time for a single request
I Estimation error can (on the average) be as “low” as 35%

I sustained read/write rate:
I after positioning, rate at which data can be delivered using

sequential read
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4.1 Disk Drive: Model 2004

A hypothetical disk (inspired by disks available in 2004) then
has the following parameters:

Model 2004
Parameter Value Abbreviated Name

capacity 180 GB Dcap
average latency time 5 ms Dlat
sustained read rate 100 MB/s Dsrr
sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfer n bytes is then
approximated by Dlat + n/Dsrr.
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4.1 Disk Drive: Sequential vs. Random I/O

Database management system developers distinguish between

I sequential I/O and
I random I/O.

In our simplistic cost model:
I For sequential I/O, there is only one positioning at the

beginning and then, we can assume that data is read with
the sustained read rate.

I For random I/O, one positioning for every unit of
transfer—typically a page of say 8 KB—is assumed.
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4.2 Disk Drive: Simplistic Cost Model

Read 100 MB
I Sequential read: 5 ms + 1 s
I Random read (8K pages): 65 s
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4.1 Disk Drive: Simplistic Cost Model

Problems:
I other applications
I other transactions
I other read operations in the same QEP

may request blocks from the same disk and move away the
head(s) from the current position
Further: 100 MB sequential search poses problem to buffer
manager



358/528

4.1 Disk Drive: Time to Read 100 MB (x: number of
8 KB chunks)
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4.1 Disk Drive: Time to Read n Random Pages
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4.1 Disk Drive: Simplistic Cost Model

100 MB can be stored on 12800 8 KB pages.
In our simplistic cost model, reading 200 pages randomly costs
about the same as reading 100 MB sequentially.
That is, reading 1/64th of 100 MB randomly takes as long as
reading the 100 MB sequentially.
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4.1 Disk Drive: Simplistic Cost Model

Let us denote by a the positioning time, s the sustained read
rate, p the page size, and d some amount of consecutively
stored bytes. Let us calculate the break even point

n ∗ (a + p/s) = a + d/s
n = (a + d/s)/(a + p/s)

= (as + d)/(as + p)

a and s are disk parameters and, hence, fixed. For a fixed d ,
the break even point depends on the page size.
Next Figure: x-axis: is the page size p in multiples of 1 K;
y-axis: (d/p)/n for d = 100 MB.
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4.2 Disk Drive: Break Even Point (depending on page
size)
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4.1 Disk Drive: Two Lessons Learned

I sequential read is much faster than random read
I the runtime system should secure sequential read

The latter point can be generalized:
I the runtime system of a database management system

has, as far as query execution is concerned, two equally
important tasks:
I allow for efficient query evaluation plans and
I allow for smooth, simple, and robust cost functions.
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4.1 Disk Drive: Measures to Achieve the Above

Typical measures on the database side are
I carefully chosen physical layout on disk

(e.g. cylinder or track-aligned extents, clustering)
I disk scheduling, multi-page requests
I (asynchronous) prefetching,
I piggy-back scans,
I buffering (e.g. multiple buffers, replacement strategy) and

last but not least
I efficient and robust algorithms for algebraic operators
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4.1 Disk Drive: Parameters

Dcyl total number of cylinders
Dtrack total number of tracks
Dsector total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch
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DZone total number of zones
DZcyl(i) number of cylinders in zone i
DZspt(i) number of sectors per track in zone i
DZspc(i) number of sectors per cylinder in zone i (= DtpcDZspt(i))
DZscan(i) time to scan a sector in zone i (= Drot/Dzspti)
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Davgseek average seek costs
Dc0 parameter for seek cost function
Dc1 parameter for seek cost function
Dc2 parameter for seek cost function
Dc3 parameter for seek cost function
Dc4 parameter for seek cost function

Dseek(d) cost of a seek of d cylinders

Dseek(d) =

{
Dc1 + Dc2

√
d if d ≤ Dc0

Dc3 + Dc4d if d > Dc0

Drot(s, i) rotation cost for s sectors of zone i (= sDZscan(i))
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4.1 Disk Drive: Extraction of Disk Drive Parameters

I Documentation: often not sufficient
I Mapping: Interrogation via SCSI-Mapping command (disk

drives lie)
I Use benchmarking tools, e.g.:

I Diskbench
I Skippy (Microbenchmark)
I Zoned
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4.1 Disk Drive: Seek Curve Measured with Diskbench
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4.1 Disk Drive: Skippy Benchmark Example
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4.2 Disk Drive: Interpretation of Skippy Results

I x-axis: distance (sectors)
I y-axis: time
I difference topmost/bottommost line: rotational latency
I difference two lowest ‘lines’: head switch time
I difference lowest ‘line’ topmost spots: cylinder switch time
I start lowest ‘line’: minimal time to media
I plus other parameters
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4.1 Disk Drive: Upper bound on Seek Time

Theorem (Qyang)
If the disk arm has to travel over a region of C cylinders, it is
positioned on the first of the C cylinders, and has to stop at
s − 1 of them, then sDseek(C/s) is an upper bound for the seek
time.
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4.2 Database Buffer

The database buffer
1. is a finite piece of memory,
2. typically supports a limited number of different page sizes

(mostly one or two),
3. is often fragmented into several buffer pools,
4. each having a replacement strategy (typically enhanced by

hints).
Given the page identifier, the buffer frame is found by a
hashtable lookup.
Accesses to the hash table and the buffer frame need to be
synchronized.
Before accessing a page in the buffer, it must be fixed.
These points account for the fact that the costs of accessing a
page in the buffer are therefore greater than zero.
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4.3 Physical Database Organization

1. partition: sequence of pages (consecutive on disk)
2. extent: subsequence of a partition
3. segment (file): logical sequence of pages (implemented

e.g. as set of extents)
4. record: sequence of bytes stored on a page

Mapping of a relation’s tuples onto records stored on pages in
segments:
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4.3 Access to Database Items

I database item: something stored in DB
I database item can be set (bag, sequence) of items
I access to a database item then produces stream of

smaller database items
I the operation that does so is called scan
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4.3 Example

Using a relation scan rscan, the query

select *
from Student

can be answered by rscan(Student)
(segments? extents?): Assumption:
I segment scans and each relation stored in one segment
I segment and relation name identical

Then fscan(Student) and Student denote scans of all
tuples in a relation



378/528

4.3 Model of a Segment

I For our cost model, we need a model of segments.
I We assume an extent-based segment implementation.
I Every segment then is a sequence of extents.
I Every extent can be described by a pair (Fj ,Lj) containing

its first and last cylinder.
(For simplicity, we assume that extents span whole
cylinders.)

I An extent may cross a zone boundary.
I Hence: split extents to align them with zone boundaries.
I Segment can be described by a sequence of triples

(Fi ,Li , zi) ordered on Fi where zi is the zone number in
which the extent lies.
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4.3 Model of a Segment

Sext number of extents in the segment
Sfirst(i) first cylinder in extent i (Fi )
Slast(i) last cylinder in extent i (Li )
Szone(i) zone of extent i (zi )
Scpe(i) number of cylinders in extent i (= Slast(i)− Sfirst(i) + 1)
Ssec total number of sectors in the segment (=

∑Sext
i=1 Scpe(i)DZspc(Szone(i)))
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4.4 Slotted Page

-

-

-

-

- 827

273 827

1

273 2
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4.4 Tuple Identifier (TID)

TID is conjunction of
I page identifier (e.g. partition/segment no, page no)
I slot number

TID sometimes called Row Identifier (RID)
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4.5 Record Layout

size size size

offset offsetoffset

fixed−length variable−length variable−length variable−length

fixed−length variable−lengthvariable−length

strings

codes data

fixed−length variable−length

encoding for dictionary−based compression

length and offset encoding
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4.5 Record Layout

Consequence:

I Accessing an attribute value has non-zero cost
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4.6 Physical Algebra (Iterator Concept)

Remember from DBS I:
I open
I next
I close

Interface for iterators.
All physical algebraic operators are implemented as iterators.
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4.7 Simple Scan

I An rscan operation is rarely supported.

I Instead: scans on segments (files).

I Since a (data) segment is sometimes called file, the correct plan
for the above query is often denoted by fscan(Student).

Several assumptions must hold:

I the Student relation is not fragmented, it is stored in a single
segment,

I the name of this segment is the same as the relation name, and

I no tuples from other relations are stored in this segment.

Until otherwise stated, we assume that these assumptions hold.
Instead of fscan(Student), we could then simply use Student to
denote leaf nodes in a query execution plan.
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4.8 Attributes/Variables and their Binding

select *
from Student

can be expressed as Student[s] instead of Student.
Result type: set of tuples with a single attribute s.
s is assumed to bind a pointer
I to the physical record in the buffer holding the current tuple

or
I a pointer to the slot pointing to the record holding the

current tuple
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4.8 Building Block

I scan
I a leaf of a query execution plan

Leaf can be complex.
But: Plan generator does not try to reorder within building
blocks
Nonetheless:
I building block organized around a single database item

If more than a single database item is involved: access path
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4.8 Scan and Attribute Access

Strictly speaking, the plan

σage>30(Student[s])

is incorrect (age is not bound!)
We have a choice:
I implicit attribute access
I make attribute accesses explicit
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4.8 Scan and Attribute Access

Explicit attribute access:

σs.age>30(Student[s])

Advantage: makes attribute access costs explicit
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4.8 Scan and Attribute Access

Consider:
σs.age>30∧s.age<40(Student[s])

Problem: accesses age twice
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4.8 Scan and Attribute Access

Map operator:

χa1:e1,...,an :en (e) := {t ◦ [a1 : c1, . . . , an : cn]|t ∈ e, ci = ei(t) ∀ (1 ≤ i ≤ n)}
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Scan and Attribute Access

The above problem can now be solved by

σage>30∧age<40(χage:s.age(Student[s])).

In general, it is beneficial to load attributes as late as possible.
The latest point at which all attributes must be read from the
page is typically just before a pipeline breaker.
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4.8 Scan and Attribute Access

select name
from Student
where age > 30

The plan

Πn(χn:s.name(σa>30(χa:s.age(Student[s]))))

is better than

Πn(σa>30(χn:s.name,a:s.age(Student[s])))
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4.8 Scan and Attribute Access

Alternative to this selective successive attribute access:
I scan has list of attributes to be projected (accessed,

copied)
I predicate is applied before processing the projection list
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4.8 Scan and Attribute Access

predicate evaluable on disk representation is called SARGable
(search argument)
I boolean expression in simple predicates of the form Aθc

If a predicate can be used for an index lookup: index SARGable
Other predicates: residual predicates
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4.8 Scan and Attribute Access

R[v ; p] equivalent to σp(R[v]) but cheaper to evaluate
Remark
I if p is conjunct, order by (fi − 1)/ci

Example:

Student[s;age > 30,name like ‘%m%′]
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4.9 Temporal Relations

select e.name, d.name
from Emp e, Dept d
where e.age > 30 and e.age < 40 and e.dno = d.dno

can be evaluated by

Dept[d ] Bnl
e.dno=d .dno σe.age>30∧e.age<40(Emp[d ]).

Better:

Dept[d ] Bnl
e.dno=d .dno Tmp(σe.age>30∧e.age<40(Emp[d ])).

Or:
1. Rtmp = σe.age>30∧e.age<40(Emp[d ]);

2. Dept[d ] Bnl
e.dno=d .dno Rtmp[e]
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4.10 Table Functions

A table function is a function that returns a relation.
Example query:

select *
from TABLE(Primes(1,100)) as p

Translation:
Primes(1,100)[p]

Looks the same as regular scan, but is of course computed
differently.
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4.10 Table Functions

Special birthdays of Anton:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

where f.name = ‘Anton’

Note: The result of the table function depends on our friend
Anton.
Translation: uses d-join
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4.10 Table Functions

Definition d-join:

R C S = {r ◦ s|r ∈ R, s ∈ S(t)}.
Translation of the above query:

χb:XTRY (f .birthday)+100(σf.name=‘Anton′(Friends[f ]))CPrimes(c,b)[p]

where we assume that some global entity c holds the value of
CURRENT YEAR.
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4.10 Table Functions

The same for all friends:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

Better:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, (select max(birthday) from Friends) + 100)) as p

where p.prime ≥ f.birthday

At the algebraic level: this optimization requires some
knowledge
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4.11 Indexes

We consider B-Trees only
I key attributes: a1, . . . ,an

I data attributes: d1, . . . ,dm

I Often: one special data attribute holding the TID of a tuple
Some notions:
I simple/complex key
I unique/non-unique index
I index-only relation (no TIDs available!)
I clustered/non-clustered index
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4.11 Indexes
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4.12 Single Index Access Path

Exact match query:

select name
from Emp
where eno = 1077

Translation:

Πname(χe:∗(x .TID),name:e.name(Empeno[x ;eno = 1077]))

Alternative translation using d-join:

Πname(Empeno[x ;eno = 1077] C χe:∗(x .TID),name:e.name(2))

(x: holds ptr to index entry; *: dereference TID)
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4.12 Single Index Access Path

Range query:

select name
from Emp
where age ≥ 25 and age ≤ 35

Translation:

Πname(χe:∗(x .TID),name:e.name(Empage[x ; 25 ≤ age;age ≤ 35]))

(Start and Stop condition)
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4.12 Single Index Access Path

Turning random I/O into sequential I/O:

Πname(χe:∗(TID),name:e.name(SortTID(Empage[x ; 25 ≤ age;age ≤ 35; TID])))

Note: explicit projection the TID attribute of the index within the
index scan.
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4.12 Single Index Access Path

Query demanding ordered output:

select name, age
from Emp
where age ≥ 25 and age ≤ 35
order by age

Translation:

Πname,age(χe:∗(x .TID),name:e.name(Empage[x ; 25 ≤ age;age ≤ 35]))

Note: output of index scan ordered on its key attributes
This order can be exploited in many ways: e.g.: subsequent
merge join
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4.12 Single Index Access Path

Turning random I/O into sequential I/O requires resort:

Πname,age(Sortage(χe:∗(TID),name:e.name(
SortTID(Empage[x ; 25 ≤ age;age ≤ 35; TID]))))

Possible speedup of sort by dense numbering:

Πname,age(
Sortrank(
χe:∗(TID),name:e.name(

SortTID(
χrank:counter++(

Empage[x ; 25 ≤ age;age ≤ 35; TID])))))
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4.12 Single Index Access Path

Some predicates not index sargable but still useful as residual
predicates:

select name
from Emp
where age ≥ 25 and age ≤ 35 and age 6= 30

Translation:

Πname(χt :x.TID,e:∗t,name:e.name(Empage[x ; 25 ≤ age;age ≤ 35;age 6= 30]))
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4.12 Single Index Access Path

Non-inclusive bounds:

select name
from Emp
where age > 25 and age < 35

Supported by index:

Πname(χt :x .TID,e:∗t ,name:e.name(Empage[x ; 25 < age;age < 35]))

Unsupported:

Πname(χt :x.TID,e:∗t,name:e.name(
Empage[x ; 25 ≤ age;age ≤ 35;age 6= 25,age 6= 35]))

Especially for predicates on strings this might be expensive.
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4.12 Single Index Access Path

Start and stop conditions are optional:

select name
from Emp
where age ≥ 60

or

select name
from Emp
where age ≤ 20
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4.12 Single Index Access Path

Full index scan also useful:

select count(*)
from Emp

Also works for sum/avg.
(notion: index only query)
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4.12 Single Index Access Path

Min/max even more efficient:

select min/max(salary)
from Emp
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4.12 Single Index Access Path

select name
from Emp
where salary = (select max(salary)

from Emp)

Alternatives: one or two descents into the index.
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4.12 Single Index Access Path

Full index scan:

select salary
from Emp
order by salary

Translation:
Empsalary
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4.12 Single Index Access Path

Predicate on string attribute:

select name, salary
from Emp
where name ≥ ’Maaa’

Start condition: ′Maaa′ ≤ name

select name, salary
from Emp
where name like ’M%’

Start condition: ′M′ ≤ name
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4.12 Single Index Access Path

An access path is a plan fragment with building blocks
concerning a single database item.
Hence, every building block is an access path.
The above plans mostly touch two database items: a relation
and an index on some attribute of that relation.
If we say that an index concerns the relation that it indexes,
such a fragment is an access path.
For relational systems, the most general case of an access path
uses several indexes to retrieve the tuples of a single relation.
We will see examples of these more complex access paths in
the following section.
A query that can be answered solely by accessing indexes is
called an index only query .
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4.12 Single Index Access Path

Query with IN:

select name
from Emp
where age in {28, 29, 31, 32}

Take min/max value for start/stop key plus one of the following
as the residual predicate:
I age = 28 ∨ age = 29 ∨ age = 31 ∨ age = 32
I age 6= 30
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4.12 Single Index Access Path

A case for the d-join:

select name
from Emp
where salary in {1111, 11111, 111111}

With Sal = {[s : 1111], [s : 11111], [s : 111111]}:

Sal[S] C χe:∗TID,name:e.name(Empsalary[x ;salary = S.s; TID])

(explain: gap skipping/zig-zag skipping)
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4.12 Single Index Access Path

In general an index can have a complex key comprising of key
attributes k1, . . . , kn and data attributes d1, . . . ,dm.
Besides a full index scan, the index can be descended to
directly search for the desired tuple(s):
If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constants ci and some j <= n, we can generate the
start and stop condition

k1 = c1 ∧ . . . ∧ kj = cj .
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4.12 Single Index Access Path

With ranges things become more complex and highly
dependent on the implementation of the facilities of the B-Tree:

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3

Obviously, we can generate the start condition
k1 = c1 ∧ k2 ≥ c2 and the stop condition k1 = c1.
Here, we neglected the condition on k3 which becomes a
residual predicate.
However, with some care we can extend the start condition to
k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3:
we only have to keep k3 = c3 as a residual predicate since for
k2 values larger than c2 values different from c3 can occur for
k3.
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4.12 Single Index Access Path

If closed ranges are specified for a prefix of the key attributes
as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

we can generate the start key k1 = a1 ∧ . . . ∧ kj = aj , the stop
key k1 = b1 ∧ . . . ∧ kj = bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate.
If for some search key attribute kj the lower bound aj is not
specified, the start condition can not contain kj and any kj+i .
If for some search key attribute kj the upper bound bj is not
specified, the stop condition can not contain kj and any kj+i .
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4.12 Single Index Access Path

Two further enhancements of the B-Tree functionality possibly
allow for alternative start/stop conditions:
I The B-Tree implemenation allows to specify the order

(ascending or descending) for each key attribute
individually.

I The B-Tree implementation implements forward and
backward scans
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4.12 Single Index Access Path

Consider search predicate:

haircolor = ’blond’ and height between 180 and 190

and index on

sex, haircolor, height

There are only the two values male and female available for sex.
Rewrite:

(sex = ’m’ and haircolor = ’blond’
and height between 180 and 190)

or
(sex = ’f’ and haircolor = ’blond’

and height between 180 and 190)

Improvement: determine rewrite at query execution time in
conjunction with gap skipping.
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4.13 Multi Index Access Path

Query:

select *
from Camera
where megapixel > 5 and distortion < 0.05

and noise < 0.01
zoomMin < 35 and zoomMax > 105

Indexes on all attributes
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4.13 Multi Index Access Path

Translation:

((((
Cameramegapixel[c;megapixel > 5; TID]
∩
Cameradistortion[c;distortion < 0.05; TID])
∩
Cameranoise[c;noise < 0.01; TID])
∩
CamerazoomMin[c;zoomMin < 35; TID])
∩
CamerazoomMax[c;zoomMax > 105; TID])

Then dereference
(Notion: index and-ing/and merge) (bitmap index)
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4.13 Multi Index Access Path

Questions:

I In which order do we intersect the TID sets resulting from the
index scans?

I Do we really apply all indexes before dereferencing the TIDs?

The answer to the latter question is clearly “no”, if the next index scan
is more expensive than accessing the records in the current TID list.
It can be shown that the indexes in the cascade of intersections are
ordered on increasing (fi − 1)/ci terms where fi is the selectivity of
the index and ci its access cost.
Further, we can stop as soon as accessing the original tuples in the
base relation becomes cheaper than intersecting with another index
and subsequently accessing the base relation.
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4.13 Multi Index Access Path

Index-oring (or merge):

select *
from Emp
where yearsOfEmployment ≥ 30

or age ≥ 65

Translation:

EmpyearsOfEmployment[c;yearsOfEmployment ≥ 30; TID]
∪ Empage[c;age ≥ 65; TID]

Attention: duplicates
Optimal translation of complex boolean expressions?
Factorization?
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4.13 Multi Index Access Path

Index differencing:

select *
from Emp
where yearsOfEmployment 6= 10

and age ≥ 65

Translation:

Empage[c;age ≥ 65; TID]
\
EmpyearsOfEmployment[c;yearsOfEmployment = 10; TID]
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4.13 Multi Index Access Path

Non-restrictive index sargable predicates (more than half of the
index has to be read):

select *
from Emp
where yearsOfEmployment ≤ 5

and age ≤ 60

Then

EmpyearsOfEmployment[c;yearsOfEmployment ≤ 5; TID]
\ Empage[c;age > 60; TID]

could be more efficient than

EmpyearsOfEmployment[c;yearsOfEmployment ≤ 5; TID]
∩ Empage[c;age ≤ 60; TID]
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4.14 Indexes and Join

1. speed up joins by index exploitation
2. make join a general index processing operation

(intersection is similar to join (for sets))
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4.14 Indexes and Join

Turn map

χe:∗TID,name:e.name(Empsalary[x ; 25 ≤ age ≤ 35; TID])

into d-join

Empsalary[x ; 25 ≤ age ≤ 35; TID] C χe:∗TID,name:e.name(2)

or even join

Empsalary[x ; 25 ≤ age ≤ 35] Bx .TID=e.TID Emp[e]

Variants: sorting at different places (by plan generator)
I pro: flexibility
I contra: large search space
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4.14 Indexes and Join

Query:

select name,age
from Person
where name like ’R%’ and age between 40 and 50

Translation:

Πname,age(
Empage[a; 40 ≤ age ≤ 50;TIDa,age]

BTIDa=TIDn

Empname[n;name ≥′ R′;name ≤′ R′;TIDn,name])
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4.14 Indexes and Join

The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=‘Maier′(Emp[e]) Be.dno=d .dno Dept[d ]
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4.14 Indexes and Join

If there are indexes on Emp.name and Dept.dno, we can
replace σe.name=‘Maier′(Emp[e]) by an index scan as we have
seen previously:

χe:∗(x .TID),A(Emp):e.∗(Empname[x ;name = ‘Maier′])
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4.14 Indexes and Join

With a d-join:

Empname[x ;name = ‘Maier′] C χt :∗(x .TID),A(e)t .∗(2)

Abbreviate Empname[x ;name = ‘Maier′] by Ei
Abbreviate χt :∗(x .TID),A(e)t .∗(2) by Ea.
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4.14 Indexes and Join

Use index on Dept.dno:

Ei C Ea C Deptdno[y ; y .dno = dno]

Dereference TIDs (index nested loop join):

Ei C Ea
CDeptdno[y ; y .dno = dno;dTID : y .TID]

Cχu:∗dTID,A(Dept)u.∗(2)

Abbreviate Deptdno[y ; y .dno = dno;dTID : y .TID] by Di
Abbreviate χu:∗dTID,A(Dept)u.∗(2) by Da
Fully abbreviated, the expression then becomes

Ei C Ea C Di C Da
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4.14 Indexes and Join

Optimizations: sorting the outer of a d-join is useful under
several circumstances since it may
I turn random I/O into sequential I/O and/or
I avoid reading the same page twice.

In our example expression:
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I We can sort the result of expression Ei on TID in order to
turn random I/O into sequential I/O, if there are many
employees named “Maier”.

I We can sort the result of the expression Ei C Ea on dno for
two reasons:
I If there are duplicates for dno, i.e. there are many

employees named “Maier” in each department, then this
guarantees that no index page (of the index Dept.dno)
has to be read more than once.

I If additionally Dept.dno is a clustered index or Dept is an
index-only table contained in Dept.dno then large parts of
the random I/O can be turned into sequential I/O.

I If the result of the inner is materialized (see below), then
only one result needs to be stored. Note that sorting is not
necessary but grouping would suffice to avoid duplicate
work.

I We can sort the result of the expression Ei C Ea C Di on
dTID for the same reasons as mentioned above for sorting
the result of Ei on TID.



440/528

4.14 Indexes and Join: Temping the Inner

Typically, many employees will work in a single department and
possibly several of them are called “Maier”.
For everyone of them, we can be sure that there exists at most
one department.
Let us assume that referential intregrity has been specified.
Then there exists exactly one department for every employee.
We have to find a way to rewrite the expression

Ei C Ea C Deptdno[y ; y .dno = dno;dTID : y .TID]

such that the mapping dno−−→dTID is explicitly materialized
(or, as one could also say, cached).
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4.14 Indexes and Join: Temping the Inner

Use χmat:

Ei C Ea C χmat
dTID:(IdxAccDept

dno [y ;y .dno=dno]).TID
(2)
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4.14 Indexes and Joins: Temping the Inner

If we further assume that the outer (Ei C Ea) is sorted on dno,
then it suffices to remember only the TID for the latest dno.
We define the map operator χmat,1 to do exactly this.
A more efficient plan could thus be

Sortdno(Ei C Ea) C χmat,1
dTID:(IdxAccDept

dno [y ;y .dno=dno]).TID
(2)

where, strictly speaking, sorting is not necessary: grouping
would suffice.
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4.14 Indexes and Joins: Temping the Inner

Consider: e1 C e2
The free variables used in e2 must be a subset of the variables
(attributes) produced by e1, i.e. F(e2) ⊆ A(e1).
Even if e1 does not contain duplicates, the projection of e1 on
F(e2) may contain duplicates.
If so, materialization could pay off.
However, in general, for every binding of the variables F(e2),
the expression e2 may produce several tuples.
This means that using χmat is not sufficient.
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4.14 Indexes and Joins: Temping the Inner

The query

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

has the usual suspects as plans.
Assume we have only wines from a few years.
Then, it might make sense to consider the following alternative:

Wine[w ] C σe.yearOfBirth=w .year(Emp[e])

Problem: scan Emp once for each Wine tuple
Duplicates in Wine.year: scan Emp only once per
Wine.year value
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4.14 Indexes and Joins: Temping the Inner

The memox operator performs caching:

Wine[w ] CM(σe.yearOfBirth=w.year(Emp[e]))

Sorting still beneficial:

Sortw .yearOfBirth(Wine[w ])CM1(σe.yearOfBirth=w.year(Emp[e]))
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4.14 Indexes and Join

Things can become even more efficient if there is an index on
Emp.yearOfBirth:

Sortw.yearOfBirth(Wine[w])

C(M1(EmpyearOfBirth[x;x.yearOfBirth = w.year]
C(χe:∗(x .TID),A(Emp):∗e(2))))
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4.14 Indexes and Join

Indexes on Emp.yearOfBirth and Wine.year.
Join result of index scans.
Since the index scan produces its output ordered on the key
attributes, a simple merge join suffices (and we are back at the
latter):

EmpyearOfBirth[x ] Bmerge
x .yearOfBirth=y .year Wineyear[y ]
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4.15 Remarks on Access Path Generation

Side-ways information passing
Consider R BR.a=S.b S
I min/max for restriction on other join argument
I full projection on join attributes (leads to semi-join)
I bitmap representation of the projection
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Cardinalities and Costs

Given: number of TIDs to dereference
Question: disk access costs?
Two step solution:

1. estimate number of pages to be accessed
2. estimate costs for accessing these pages
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4.16 Counting the Number of Accesses

Given a set of k TIDs after an index access:
How many pages do we have to access to dereference them?

Let R be the relation for which we have to retrieve the tuples. Then we use
the following abbreviations

N |R| number of tuples in the relation R
m ||R|| number of pages on which tuples of R are stored
B N/m number of tuples per page
k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformely distributed among the m pages.
Then, each page stores B = N/m tuples. B is called blocking factor .
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4.16 Counting the Number of Accesses

Let us consider some border cases.
If k > N − N/m or m = 1, then all pages are accessed.
If k = 1 then exactly one page is accessed.
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4.16 Counting the Number of Accesses

The answer to the general question will be expressed in terms
of
I buckets (pages in the above case) and
I items contained therein (tuples in the above case).

Later on, we will also use extents, cylinders, or tracks as
buckets and tracks or sectors/blocks as items.
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4.16 Counting the Number of Accesses

Outline:
1. random/direct access

1.1 items uniformly distributed among the buckets
1.1.1 request k distinct items
1.1.2 request k non-distinct items

1.2 non-uniform distribution of items among buckets

2. sequential access
Always: uniform access probability
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4.16 Direct, Uniform, Distinct

Additional assumption:
The probability that we request a set with k items is

1(N
k

)
for all of the (

N
k

)
possibilities to select a k -set.
[Every k -set is accessed with the same probability.]
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4.16 Direct, Uniform, Distinct

Theorem [Waters/Yao]
Consider m buckets with n items each. Then there is a total of
N = nm items. If we randomly select k distinct items from all
items then the number of qualifying buckets is

YN,m
n (k) = m ∗ YN

n (k) (19)

where YN
n (k) is the probability that a bucket contains at least

one item. This probability is equal to

YN
n (k) =

{
[1− p] k ≤ N − n
1 k > N − n

where p is the probability that a bucket contains none of the k
items.
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The following alternative expressions can be used to calculate
p:

p =

(N−n
k

)(N
k

) (20)

=
k−1∏
i=0

N − n − i
N − i

(21)

=
n−1∏
i=0

N − k − i
N − i

(22)
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4.16 Direct, Uniform, Distinct

Proof (1): The total number of possibilities to pick the k items
from all N items is (

N
k

)
The number of possibilities to pick k items from all items not
contained in a fixed single bucket is(

N − n
k

)
Hence, the probability p that a bucket does not qualify is

p =

(
N − n

k

)
/

(
N
k

)
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4.16 Direct, Uniform, Distinct

Proof (2):

p =

(N−n
k

)(N
k

)
=

(N − n)! k !(N − k)!

k !((N − n)− k)! N!

=
k−1∏
i=0

N − n − i
N − i
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4.16 Direct, Uniform, Distinct

Proof(3):

p =

(N−n
k

)(N
k

)
=

(N − n)! k !(N − k)!

k !((N − n)− k)! N!

=
(N − n)! (N − k)!

N! ((N − k)− n)!

=
n−1∏
i=0

N − k − i
N − i
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4.16 Direct, Uniform, Distinct

Implementation remark:

The fraction m = N/n may not be an integer.
For these cases, it is advisable to have a Gamma-
function based implementation of binomial coeffcients
at hand

Evaluation of Yao’s formula is expensive. Approximations are
more efficient to calculate.
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4.16 Direct, Uniform, Distinct

Special cases:

If then YN
m(k) =

n = 1 k/N
n = N 1
k = 0 0
k = 1 B/N
k = N 1
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4.16 Direct, Uniform, Distinct

Let N items be distributed over N buckets such that every
bucket contains exactly one item.
Further let us be interested in a subset of m buckets
(1 ≤ m ≤ N).
If we pick k items then the number of buckets within the subset
of size m that qualify is

mYN
1 (k) = m

k
N

(23)

qualify.
Proof:
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YN
1 (k) = (1−

(N−1
k

)(N
k

) )

= (1−
(N−1)!

k!((N−1)−k)!

N!
k!(N−k)!

)

= (1− (N − 1)!k !(N − k)!

N!k !((N − 1)− k)!
)

= (1− N − k
N

)

= (
N
N
− N − k

N
)

=
N − N + k

N

=
k
N
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4.16 Direct, Uniform, Distinct

Approximation of Yao’s formula (1):

p ≈ (1− k/N)n

[Waters]
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4.16 Direct, Uniform, Distinct

Approximation of Yao’s formula (2):
YN,m

n (k) can be approximated by:

m ∗ [ (1− (1− 1/m)k )+

(1/(m2b) ∗ k(k − 1)/2 ∗ (1− 1/m)k−1)+

(1.5/(m3p4) ∗ k(k − 1)(2k − 1)/6 ∗ (1− 1/m)k−1) ]

[Whang, Wiederhold, Sagalowicz]
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4.16 Direct, Uniform, Distinct

Approximation of Yao’s formula (3):

YN,m
n (k) ≈


k if k < m

2
k+m

2 if m
2 ≤ k < 2m

m if 2m ≤ k

[Bernstein, Goodman, Wong, Reeve, Rothnie]
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4.16 Direct, Uniform, Distinct

Upper and lower bounds for p:

plower = (1− k
N − n−1

2

)n

pupper = ((1− k
N

) ∗ (1− k
N − n + 1

))n/2

for n = N/m.
Dihr and Saharia claim that the maximal difference resulting
from the use of the lower and the upper bound to compute the
number of page accesses is 0.224—far less than a single page
access.
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4.16 Direct, Uniform, Non-Distinct

Lemma
Let S be a set with |S| = N elements. Then, the number of
multisets with cardinality k containing only elements from S is(

N + k − 1
k

)

Proof: For a prove we just note that there is a bijection between
the k -multisets and the k -subsets of a N + k − 1-set.
We can go from a multiset to a set by f with

f ({x1 ≤ . . . ≤ xk}) = {x1 + 0 < x2 + 1 < . . . < xk + (k − 1)}

and from a set to a multiset via g with

g({x1 < . . . < xk}) = {x1 − 0 < x2 − 1 < . . . < xk − (k − 1)}
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4.16 Direct, Uniform, Non-Distinct

Theorem [Cheung] Consider m buckets with n items each.
Then there is a total of N = nm items. If we randomly select k
not necessarily distinct items from all items, then the number of
qualifying buckets is

Cheung
N,m
n (k) = m ∗ CheungN

n (k) (24)

where
CheungN

n (k) = [1− p̃] (25)
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with the following equivalent expressions for p̃:

p̃ =

(N−n+k−1
k

)(N+k−1
k

) (26)

=
k−1∏
i=0

N − n + i
N + i

(27)

=
n−1∏
i=0

N − 1− i
N − 1 + k − i

(28)
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Proof(1):
Eq. 26 follows from the observation that the probability that
some bucket does not contain any of the k possibly duplicate

items is (N−n+k−1
k )

(N+k−1
k )

.
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Proof(2):
Eq. 27 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k !((N + k − 1)− k)!

k !((N − n + k − 1)− k)! (N + k − 1)!

=
(N − n − 1 + k)! (N − 1)!

(N − n − 1)! (N − 1 + k)!

=
k−1∏
i=0

N − n + i
N + i
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Proof(3):
Eq. 28 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k !((N + k − 1)− k)!

k !((N − n + k − 1)− k)! (N + k − 1)!

=
(N + k − 1− n)! (N − 1)!

(N + k − 1)! (N − 1− n)!

=
n−1∏
i=0

N − n + i
N + k − n + i

=
n−1∏
i=0

N − 1− i
N − 1 + k − i
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4.16 Direct, Uniform, Non-Distinct

Approximation for p̃:

(1− n/N)k

[Cardenas]
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4.16 Direct, Uniform, Non-Distinct

Estimate for the number of distinct values in a bag:

Corollary
Let S be a k-multiset containing elements from an N-set T .
Then the number of distinct items contained in S is

D(N, k) =
Nk

N + k − 1
(29)

if the elements in T occur with the same probability in S.
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4.16 Direct, Uniform, Non-Distinct

Model switching:

YN,m
n (Distinct(N, k)) ≈ Cheung

N,m
n (k)

[for n ≥ 5]
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4.16 Direct, Non-Uniform, Distinct

So far:
1. every page contains the same number of records, and
2. every record is accessed with the same probability.

Now:
Model the distribution of items to buckets by m numbers
ni (for 1 ≤ i ≤ m) if there are m buckets.
Each ni equals the number of records in some bucket
i.
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4.16 Direct, Non-Uniform, Distinct

The following theorem is a simple application of Yao’s formula:

Theorem (Yao/Waters/Christodoulakis)
Assume a set of m buckets. Each bucket contains nj > 0 items
(1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj . If we

lookup k distinct items, then the probability that bucket j
qualifies is

WN
nj

(k , j) = [1−
(N−nj

k

)(N
k

) ] (= YN
nj

(k)) (30)

and the expected number of qualifying buckets is

WN,m
nj

(k) :=
m∑

j=1

WN
nj

(k , j) (31)



479/528

4.16 Direct, Non-Uniform, Distinct

The product formulation in Eq. 22 of Theorem 455 results in a
more efficient computation:

Corollary
If we lookup k distinct items, then the expected number of
qualifying buckets is

WN,m
nj

(k) =
m∑

j=1

(1− pj) (32)

with

pj =

{ ∏nj−1
i=0

N−k−i
N−i k ≤ nj

0 N − nj < k ≤ N
(33)
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4.16 Direct, Non-Uniform, Distinct

If we compute the pj after we have sorted the nj in ascending
order, we can use the fact that

pj+1 = pj ∗
nj+1−1∏

i=nj

N − k − i
N − i

.
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4.16 Direct, Non-Uniform, Distinct

Many buckets: statistics too big. Better: Histograms

Corollary
For 1 ≤ i ≤ L let there be li buckets containing ni items. Then,
the total number of buckets is m =

∑L
i=1 li and the total number

of items in all buckets is N =
∑L

i=1 lini . For k randomly selected
items the number of qualifying buckets is

WN,m
nj

(k) =
L∑

i=1

liYN
nj

(k) (34)
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4.16 Direct, Non-Uniform, Distinct
Distribution function. The probability that x ≤ nj items in a
bucket j qualify, can be calculated as follows:
I The number of possibilities to select x items in bucket nj is(

nj

x

)
I The number of possibilites to draw the remaining k − x

items from the other buckets is(
N − nj

k − x

)
I The total number of possibilities to distributed k items over

the buckets is (
N
k

)
This shows the following:
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4.16 Direct, Non-Uniform, Distinct

Theorem
Assume a set of m buckets. Each bucket contains nj > 0 items
(1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj . If we

lookup k distinct items, then the probability that x items in
bucket j qualify is

XN
nj

(k , x) =

(nj
x

) (N−nj
k−x

)(N
k

) (35)

Further, the expected number of qualifying items in bucket j is

XN,m
nj

(k) =

min(k ,nj )∑
x=0

xXN
nj

(k , x) (36)

In standard statistics books the probability distribution XN
nj

(k , x)
is called hypergeometric distribution.
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4.16 Direct, Non-Uniform, Distinct

Let us consider the case where all nj are equal to n. Then, we
can calculate the average number of qualifying items in a
bucket. With y := min(k ,n) we have

XN,m
nj

(k) =

min(k ,n)∑
x=0

xXN
n (k , x)

=

min(k ,n)∑
x=1

xXN
n (k , x)

=
1(N
k

) y∑
x=1

x
(

n
x

)(
N − n
k − x

)
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X N,m
nj

(k) =
1(N
k

) y∑
x=1

x

(
n
x

)(
N − n
k − x

)

=
1(N
k

) y∑
x=1

(
x
1

)(
n
x

)(
N − n
k − x

)

=
1(N
k

) y∑
x=1

(
n
1

)(
n − 1
x − 1

)(
N − n
k − x

)

=

(n
1

)(N
k

) y−1∑
x=0

(
n − 1
0 + x

)(
N − n

(k − 1)− x

)

=

(n
1

)(N
k

)(n − 1 + N − n
0 + k − 1

)

=

(n
1

)(N
k

)(N − 1
k − 1

)

= n
k
N

=
k
m
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4.16 Direct, Non-Uniform, Distinct

Let us consider the even more special case where every bucket
contains a single item. That is, N = m and ni = 1. The
probability that a bucket contains a qualifying item reduces to

XN
1 (k , x) =

(1
x

) (N−1
k−1

)(N
k

)
=

(N−1
k−1

)(N
k

)
=

k
N

(=
k
m

)

Since x can then only be zero or one, the average number of
qualifying items a bucket contains is also k

N .
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4.16 Sequential: Vector of Bits

When estimating seek costs, we need to calculate the
probability distribution for the distance between two subsequent
qualifying cylinders.
We model the situation as a bitvector of length B with b bits set
to one.
Then, B corresponds to the number of cylinders and a one
indicates that a cylinder qualifies.
[Later: Vector of Buckets]
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4.16 Sequential: Vector of Bits

Theorem
Assume a bitvector of length B. Within it b ones are uniformly
distributed. The remaining B − b bits are zero. Then, the
probability distribution of the number j of zeros

1. between two consecutive ones,
2. before the first one, and
3. after the last one

is given by

BB
b (j) =

(B−j−1
b−1

)(B
b

) (37)
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Proof: To see why the formula holds, consider the total number
of bitvectors having a one in position i followed by j zeros
followed by a one.
This number is (

B − j − 2
b − 2

)
We can chose B − j − 1 positions for i .
The total number of bitvectors is(

B
b

)
and each bitvector has b − 1 sequences of the form that a one
is followed by a sequence of zeros is followed by a one.
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Hence,

BB
b (j) =

(B − j − 1)
(B−j−2

b−2

)
(b − 1)

(B
b

)
=

(B−j−1
b−1

)(B
b

)
Part (1) follows.
To prove (2), we count the number of bitvectors that start with j
zeros before the first one.
There are B − j − 1 positions left for the remaining b − 1 ones.
Hence, the number of these bitvectors is

(B−j−1
b−1

)
and part (2)

follows.
Part (3) follows by symmetry.
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4.16 Sequential: Vector of Bits

We can derive a less expensive way to calculate formula for
BB

b (j) as follows.
For j = 0, we have BB

b (0) = b
B .

If j > 0, then

BB
b (j) =

(B−j−1
b−1

)(B
b

)
=

(B−j−1)!
(b−1)!((B−j−1)−(b−1))!

B!
b!(B−b)!

=
(B − j − 1)! b!(B − b)!

(b − 1)!((B − j − 1)− (b − 1))! B!
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BB
b (j) =

(B − j − 1)! b!(B − b)!

(b − 1)!((B − j − 1)− (b − 1))! B!

= b
(B − j − 1)! (B − b)!

((B − j − 1)− (b − 1))! B!

= b
(B − j − 1)! (B − b)!

(B − j − b)! B!

=
b

B − j
(B − j)! (B − b)!

(B − b − j)! B!

=
b

B − j

j−1∏
i=0

(1− b
B − i

)

This formula is useful when BB
b (j) occurs in sums over j .
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4.16 Sequential: Vector of Bits

Corollary
Using the terminology of Theorem 0.8, the expected value for
the number of zeros

1. before the first one,
2. between two successive ones, and
3. after the last one

is

BB
b =

B−b∑
j=0

jBB
b (j) =

B − b
b + 1

(38)
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Proof:
B−b∑
j=0

j

(
B − j − 1

b − 1

)
=

B−b∑
j=0

(B − (B − j))

(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
B − j − 1

b − 1

)
−

B−b∑
j=0

(B − j)

(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
b − 1 + j

b − 1

)
− b

B−b∑
j=0

(
B − j

b

)

= B
B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j

b

)
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B−b∑
j=0

j

(
B − j − 1

b − 1

)
= B

B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j

b

)

= B

(
(b − 1) + (B − b) + 1

(b − 1) + 1

)
− b

(
b + (B − b) + 1

b + 1

)

= B

(
B
b

)
− b

(
B + 1
b + 1

)

= (B − b
B + 1
b + 1

)

(
B
b

)

With

B − b
B + 1
b + 1

=
B(b + 1)− (Bb + b)

b + 1

=
B − b
b + 1

the claim follows.
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4.16 Sequential: Vector of Bits

Corollary
Using the terminology of Theorem 0.8, the expected total
number of bits from the first bit to the last one, both included, is

Btot(B,b) =
Bb + b
b + 1

(39)
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4.16 Sequential: Vector of Bits

Proof:
We subtract from B the average expected number of zeros
between the last one and the last bit:

B − B − b
b + 1

=
B(b + 1)

b + 1
− B − b

b + 1

=
Bb + B − B + b

b + 1

=
Bb + b
b + 1
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4.16 Sequential: Vector of Bits

Corollary
Using the terminology of Theorem 0.8, the number of bits from
the first one and the last one, both included, is

B1-span(B,b) =
Bb − B + 2b

b + 1
(40)
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Proof (alternative 1):
Subtract from B the number of zeros at the beginning and the
end:

B1-span(B,b) = B − 2
B − b
b + 1

=
Bb + B − 2B + 2b

b + 1

=
Bb − B + 2b

b + 1
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Proof (alternative 2):
Add the number of zeros between the first and the last one and
the number of ones:

B1-span(B,b) = (b − 1)BB
b + b

= (b − 1)
B − b
b + 1

+
b(b + 1
b + 1

=
Bb − b2 − B + b + b2 + b

b + 1

=
Bb − B + 2b

b + 1
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4.16 Sequential: Applications for Bitvector Model

I If we look up one record in an array of B records and we
search sequentially, how many array entries do we have to
examine on average if the search is successful?

I Let a file consist of B consecutive cylinders. We search for
k different keys all of which occur in the file. These k keys
are distributed over b different cylinders. Of course, we can
stop as soon as we have found the last key. What is the
expected total distance the disk head has to travel if it is
placed on the first cylinder of the file at the beginning of the
search?

I Assume we have an array consisting of B different entries.
We sequentially go through all entries of the array until we
have found all the records for b different keys. We assume
that the B entries in the array and the b keys are sorted.
Further all b keys occur in the array. On the average, how
many comparisons do we need to find all keys?
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4.16 Sequential: Vector of Buckets
Theorem (Yao)
Consider a sequence of m buckets. For 1 ≤ i ≤ m, let ni be the
number of items in a bucket i. Then there is a total of
N =

∑m
i=1 ni items. Let ti =

∑i
l=0 ni be the number of items in

the first i buckets. If the buckets are searched sequentially, then
the probability that j buckets that have to be examined until k
distinct items have been found is

CN,m
ni

(k , j) =

(tj
k

)
−
(tj−1

k

)(N
k

) (41)

Thus, the expected number of buckets that need to be
examined in order to retrieve k distinct items is

CN,m
ni

(k) =
m∑

j=1

jCN,m
ni

(k , j) = m −
∑m

j=1
(tj−1

k

)(N
k

) (42)
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4.16 Sequential: Vector of Buckets

The following theorem is very useful for deriving estimates for
average sequential accesses under different models
[Especially: the above theorem follows].

Theorem (Lang/Driscoll/Jou)
Consider a sequence of N items. For a batched search of k
items, the expected number of accessed items is

A(N, k) = N −
N−1∑
i=1

Prob[Y ≤ i] (43)

where Y is a random variable for the last item in the sequence
that occurs among the k items searched.
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4.17 Disk Drive Costs for N Uniform Accesses

The goal of this section is to derive estimates for the costs
(time) for retrieving N cache-missed sectors of a segment S
from disk.
We assume that the N sectors are read in their physical order
on disk.
This can be enforced by the DBMS, by the operating system’s
disk scheduling policy (SCAN policy), or by the disk drive
controler.
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4.17 Disk Drive Costs for N Uniform Accesses

Remembering the description of disk drives, the total costs can
be described as

Cdisk = Ccmd + Cseek + Csettle + Crot + Cheadswitch (44)

For brevity, we omitted the parameter N and the parameters
describing the segment and the disk drive on which the
segment resides.
Subsequently, we devote a (sometimes tiny) section to each
summand.
Before that, we have to calculate the number of qualifying
cylinders, tracks, and sectors.
These numbers will be used later on.
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4.17 Disk Costs: Number of Qualifying Cylinder

I N sectors are to be retrieved.
I We want to find the number of cylinders qualifying in extent

i .
I Ssec denotes the total number of sectors our segment

contains.
I Assume: The N sectors we want to retrieve are uniformly

distributed among the Ssec sectors of the segment.
I Scpe(i) = Li − Fi + 1 denotes the number of cylinders of

extent i .
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4.17 Disk Costs: Number of Qualifying Cylinder

The number of qualifying cylinders in extent i is:

Scpe(i) * (1 - Prob(a cylinder does not qualify))
The

probability that a cylinder does not qualify can be computed by
deviding the total number of possibilities to chose the N sectors
from sectors outside the cylinder by the total number of
possibilities to chose N sectors from all Ssec sectors of the
segment.
Hence, the number of qualifying cylinders in the considered
extent is:

Qc(i) = Scpe(i)YSsec
DZspc(i)(N) = Scpe(i)(1−

(Ssec−DZspc(i)
N

)(Ssec
N

) ) (45)
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4.17 Disk Costs: Number of Qualifying Tracks

Let us also calculate the number of qualifying tracks in a partion
i .
It can be calculated by

Scpe(i)Dtpc(1− Prob(a track does not qualify))

The probability that a track does not qualify can be computed
by dividing the number of ways to pick N sectors from sectors
not belonging to a track divided by the number of possible ways
to pick N sectors from all sectors:

Qt (i) = Scpe(i)DtpcYSsec
DZspt(i)(N) = Scpe(i)Dtpc(1−

(Ssec−DZspt(i)
N

)(Ssec
N

) )

(46)
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4.17 Disk Costs: Number of Qualifying Tracks

Just for fun, we calculate the number of qualifying sectors of an
extent in zone i . It can be approximated by

Qs(i) = Scpe(i)DZspc(i)
N

Ssec
(47)

Since all Scpe(i) cylinders are in the same zone, they have the
same number of sectors per track and we could also use
Waters/Yao to approximate the number of qualifying cylinders
by

Qc(i) = YScpe(i)DZspc(Szone(i)),Scpe(i)
DZspc(Szone(i)) (Qs(i)) (48)

If Qs(i) is not too small (e.g. > 4).
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4.17 Disk Costs: Command Costs

The command costs Ccmd are easy to compute. Every read of a
sector requires the execution of a command. Hence

Ccmd = NDcmd

estimates the total command costs.
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4.17 Disk Costs: Seek Costs

We look at several alternatives from less to more precise
models.



512/528

4.17 Disk Costs: Seek Costs: Upper Bound

The first cylinder we have to visit requires a random seek with
cost Davgseek. (Truely upper bound: Dseek(Dcyl − 1))
After that, we have to visit the remaining Qc(i)− 1 qualifying
cylinders.
The segment spans a total of Slast(Sext)− Sfirst(1) + 1 cylinders.
Let us assume that the first qualifying cylinder is the first
cylinder and the last qualifying cylinder is the last cylinder of the
segment.
Then, applying Qyang’s Theorem 0.1 gives us the upper bound

Cseek(i) ≤ (Qc(i)− 1)Dseek(
Slast(Sext)− Sfirst(1) + 1

Qc(i)− 1
)

after we have found the first qualifying cylinder.
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4.17 Disk Costs: Seek Costs: Illustration

︸︷︷︸
Ξ

︸︷︷︸
Ξ

︸︷︷︸
Ξ

︸ ︷︷ ︸
Scpe

︸ ︷︷ ︸
Scpe

︸ ︷︷ ︸
Scpe

? ? ?

...

...seek ∆gap ...
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4.17 Disk Costs: Seek Costs

Steps:
1. Estimate for Cseekgap

2. Estimates for Cseekext(i)
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4.17 Disk Costs: Seek Costs: Interextent Costs
The average seek cost for reaching the first qualifying cylinder
is Davgseek. How far within the first extent are we now? We use
Corollary 0.9 to derive that the number of non-qualifying
cylinders preceding the first qualifying one in some extent i is

BScpe(i)
Qc(i) =

Scpe(i)−Qc(i)
Qc(i) + 1

.

The same is found for the number of non-qualifying cylinders
following the last qualifying cylinder. Hence, for every gap
between the last and the first qualifying cylinder of two extents i
and i + 1, the disk arm has to travel the distance

∆gap(i) := BScpe(i)
Qc(i) + Sfirst(i + 1)− Slast(i)− 1 + BScpe(i+1)

Qc(i+1)

Using this, we get

Cseekgap = Davgseek +

Sext−1∑
i=1

Dseek(∆gap(i))
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4.17 Disk Costs: Seek Costs: Intraextent Costs

Let us turn to Cseekext(i). We first need the number of cylinders
between the first and the last qualifying cylinder, both included,
in extent i . It can be calculated using Corollary 0.11:

Ξext(i) = B1-span(Scpe(i),Qc(i))

Hence, Ξ(i) is the minimal span of an extent that contains all
qualifying cylinders.
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4.17 Disk Costs: Seek Costs: Intraextent Costs

Using Ξ(i) and Qyang’s Theorem 0.1, we can derive an upper
bound for Cseekext(i):

Cseekext(i) ≤ (Qc(i)− 1)Dseek(
Ξ(i)

Qc(i)− 1
) (49)

Alternatively, we could formulate this as

Cseekext(i) ≤ (Qc(i)− 1)Dseek(BScpe(i)
Qc(i) ) (50)

by applying Corollary 0.9.
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4.17 Disk Costs: Seek Costs: Intraextent Costs

A seemingly more precise estimate for the expected seek cost
within the qualifying cylinders of an extent is derived by using
Theorem 0.8:

Cseekext(i) = Qc(i)
Scpe(i)−Qc(i)∑

j=0

Dseek(j + 1)BScpe(i)
Qc(i) (j) (51)
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4.17 Disk Costs: Settle Costs

The average settle cost is easy to calculate. For every
qualifying cylinder, one head settlement takes place:

Csettle(i) = Qc(i)Drdsettle (52)
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4.17 Disk Costs: Rotational Delay

Let us turn to the rotational delay.
For some given track in zone i ,
we want to read the Qt (i) qualifying sectors contained in it.
On average, we would expect that the read head is ready to
start reading in the middle of some sector of a track.
If so, we have to wait for 1

2DZscan(Szone(i)) before the first whole
sector ocurs under the read head.
However, due to track and cylinder skew, this event does not
occur after a head switch or a cylinder switch.
Instead of being overly precise here, we igore this half sector
pass by time and assume we are always at the beginning of a
sector.
This is also justified by the fact that we model the head switch
time explicitly.
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4.17 Disk Costs: Rotational Delay

Assume that the head is ready to read at the beginning of some
sector of some track.
Then, in front of us is a — cyclic, which does not matter —
bitvector of qualifying and non-qualifying sectors.
We can use Corollary 0.10 to estimate the total number of
qualifying and non-qualifying sectors that have to pass under
the head until all qualifying sectors have been seen.
The total rotational delay for the tracks of zone i is

Crot(i) = Qt (i) DZscan(Szone(i)) Btot(DZspt(Szone(i)),Qspt(i))

where Qspt(i) =WSsec,DZspt(Szone(i))

1 (N) = DZspt(Szone(i)) N
Ssec

is
the expected number of qualifying sectors per track in extent i .
In case Qspt(i) < 1, we set Qspt(i) := 1.
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4.17 Disk Costs: Rotational Delay

A more precise model is derived as follows.
We sum up for all j the product of (1) the probability that j sectors in a track
qualify and (2) the average number of sectors that have to be read if j sectors
qualify.
This gives us the number of sectors that have to pass the head in order to
read all qualifying sectors.
We only need to multiply this number by the time to scan a single sector and
the number of qualifying tracks.
We can estimate (1) using Theorem 0.7. For (2) we again use Corollary 0.10.

Crot(i) = Scpe(i) Dtpc DZscan(Szone(i))

∗
min(N,DZspt(Szone(i)))∑

j=1

X Ssec
DZspt(Szone(i))(N, j) Btot(DZspt(Szone(i)), j)
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4.17 Disk Costs: Rotational Delay

Yet another approach:
Split the total rotational delay into two components:

1. Crotpass(i) measures the time needed to skip unqualifying
sectors

2. Crotread(i) that for scanning the qualifying sectors
Then

Crot =

Sext∑
i=1

Crotpass(i) + Crotread(i)

where the total transfer cost of the qualifying sectors can be
estimated as

Crotread(i) = Qs(i) DZscan(Szone(i))
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4.17 Disk Costs: Rotational Delay

Let us treat the first component (Crotpass(i)).
Assume that j sectors of a track in extent i qualify.
The expected position on a track where the head is ready to
read is the middle between two qualifying sectors.
Since the expected number of sectors between two qualifying
sectors is DZspt(Szone(i))/j , the expected number of sectors
scanned before the first qualifying sector comes under the head
is

DZspt(Szone(i))

2j
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The expected positions of j qualifying sectors on the same track
is such that the number non-qualifying sectors between two
successively qualifying sectors is the same.
Hence, after having read a qualifying sector DZspt(Szone(i))

j
unqualifying sectors must be passed until the next qualifying
sector shows up.
The total number of unqualifying sectors to be passed if j
sectors qualify in a track of zone i is

Ns(j , i) =
DZspt(Szone(i))

2j
+ (j − 1)

DZspt(Szone(i))− j
j
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Using again Theorem 0.7, the expected rotational delay for the
unqualifying sectors then is

Crotpass(i) = Scpe(i) Dtpc DZscan(Szone(i))

∗
min(N,DZspt(Szone(i)))∑

j=1

X Ssec
DZspt(Szone(i))(N, j)Ns(j , i)
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4.17 Disk Costs: Head Switch Costs

The average head switch cost is equal to the average number
of head switches that occur times the average head switch cost.
The average number of head switch is equal to the number of
tracks that qualify minus the number of cylinders that qualify
since a head switch does not occur for the first track of each
cylinder.
Summarizing

Cheadswitch =

Sext∑
i=1

(Qt (i)−Qc(i)) Dhdswitch (53)

where Qt is the average number of tracks qualifying in an
extent.
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4.17 Disk Costs: Discussion

We neglected many problems in our disk access model:
I partially filled cylinders,
I pages larger than a block,
I disk drive’s cache,
I remapping of bad blocks,
I non-uniformly distributed accesses,
I clusteredness,
I and so on.

Whereas the first two items are easy to fix, the rest is not so
easy.


