
Chair of applied computer science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Query Optimization Exercise sheet 8

Exercise 1

Exercise 1 a)

Read about computer algebra, also known as symbolic computation.
Wikipedia is your friend:
https://en.wikipedia.org/wiki/Computer_algebra

Exercise 1 b)

Implement ExhaustiveTransformation. You may use the helper classes provided in
the solution code.

Solution

See Code.

Exercise 1 c)

Discuss ways implement non-exhaustive termination criteria for ExhaustiveTransformation.

Solution

Introduce counters for number of trees in Done, number of calls to ApplyTransformations,
number of trees returned returned by all ApplyTransformations executions so far.
Terminate when (combination of) counters hit a defined maximum.

Exercise 1 d)

Discuss how to adjust ExhaustiveTransformation to avoid cross products. (See script.)

Solution

Applying associativity can lead to cross products. If we do not want to consider cross
products, we only apply any of the two associativity rules if the resulting expression
does not contain a cross product. It is easy to extend ApplyTransformations to cover
this by extending the if conditions with
and (ConsiderCrossProducts||connected(·)
where the argument of connected is the result of applying a transformation.

1

https://en.wikipedia.org/wiki/Computer_algebra

Exercise 1 e)

BONUS
Read and present in the next exercise session:
https://pdfs.semanticscholar.org/5d91/f42e767c167ecf188a46608802ba5fe52347.

pdf

Exercise 2

Update the classification table for join algorithms from one of the previous exercises
with the following algorithms:

• Transformation-based approach

• Memoization

• Generate permutations

• Quick Pick

• Iterative Improvement

• Simulated Annealing

• TabuSearch

Solution

Name Query Graph Join-Tree Cross products Cost functions Complexity optimal Remarks

Permutations arbitrary left-deep yes arbitrary O(2n) yes
Memoization arbitrary bushy optional bleiebig O(2n) . . . O(3n) yes complexity de-

pends on query
graph

Transformation depends on rule set arbitrary O(2n) . . . O(3n) yes complexity de-
pends on rule
set

QuickPick connected bushy no arbitrary O(n) no complexity per
iteration

IterImp depends on rule set arbitrary O(n) no complexity per
iteration

SimAnn depends on rule set arbitrary O(n) no complexity per
iteration

TabuSearch depends on rule set arbitrary O(n) no complexity per
iteration

Exercise 3

Find reasonable plans for the following using queries using indices. Explicitly state
the assumptions you make regarding the indices.

Exercise 3 a)

2

https://pdfs.semanticscholar.org/5d91/f42e767c167ecf188a46608802ba5fe52347.pdf
https://pdfs.semanticscholar.org/5d91/f42e767c167ecf188a46608802ba5fe52347.pdf

select a.v

from a a

where a.w > 10

and a.w < 30

Solution

• Index-scan based on lower bound (10) and upper bound (30).

• (B-tree) index on attribute w must exist.

Exercise 3 b)

select *

from a

where exists (select *

from b

where a.v = b.key)

Solution

• Index-scan on relation b. Index for key attribute b.key must exist.

• Since the join predicate is a comparison based on the keys of b, we can efficiently
apply an Index-Nested-Loop-Join or a D-Join. Ideally, Relation a is sorted by a.v
in ascending order before the join.

σ0<count(σa.v=b.key(B[b]))(A[a])

σ0<count(χcount:count(σa.v=b.key(B[b])))(A[a])

σcount>0(A[a] < χcount:count(Bkey [x;key=a.v])(2) >)

Exercise 3 c)

select a.b, min(a.c)

from a

group by a.b

Solution

3

• Index-scan on attributes a.b, a.c of relation a must exist.

• Start with a minimal value for a.b. Then use gap-skipping to find the next value
of a.b. Each time, The first value found is the min(a.c) for the current a.b.

Gap skipping (taken from the script): Sometimes also called zig-zag skipping, con-
tinues the search for keys in a new keyrange from the latest position visited. The
implementation details vary but the main idea of it is that after one range has been
completely scanned, the current (leaf) page is checked for its highest key. If it is not
smaller than the lower bound of the next range, the search continues in the current
page. If it is smaller than the lower bound of the next range, alternative implemen-
tations are described in the literature. The simplest is to start a new search from
theroot for the lower bound. Another alternative uses parent pointers to go up a pa-
ge as long as the highest key of the current page is smaller than the lowerbound of
the next range. If this is no longer the case, the search continues downwards again.

Exercise 4

For each of the following queries, write down one plans with explicit attribute ac-
cesses and another one with implicit attribute accesses.

Exercise 4 a)

select s.name, s.matrnr

from studenten s

where s.age>27 and

count(s.hoert)=0

Solution

implicit : Πmatrnr(σcount(hoert)=0(studenten[s; age > 27]))

explicit : χmatrnr:s.matrnr(σcount=0(χcount:count(hoert)(χhoert:s.hoert(σage>27(χage:s.age(studenten[s]))))))

Exercise 4 b)

select s.name, s.matrnr

from studenten s

where s.age>27 and

count(s.hoert)<5 and

exists v in s.hoert:

v.name="AO"

4

Solution

implicit : Πmatrnr(σ∃v∈hoert:v.name=′′AO′′(σcount(hoert)<5(studenten[s; age > 27])))

explicit : χmatrnr:s.matrnr(σ∃v∈hoert:v.name=′′AO′′(σcount<5(χcount:count(hoert)(χhoert:s.hoert(
σage>27(χage:s.age(studenten[s])))))))

5

