CHAIR OF APPLIED COMPUTER SCIENCE III INIVERSITY OF
Prof. Dr. Guido Moerkotte MANNHEIM

Email: moerkotte@uni-mannheim.de

Query Optimization Exercise sheet 7

Exercise 1

As we already know, the number of non-symmetric csg-cmp-pairs (#ccp) depends
on the query graph:

Feep™ ™™ (n) = 1/6 % (n® —n)
Hcep®é(n) = (n® — 2n? +n)/2
frecp™r(n) = (n — 1)2°2
fheep™ e (n) = (3" — 2 4 1)/2

Luckily, we don’t have to store all of them in our DP-table. For all DP-based algo-
rithm that don’t consider cross products, we store only the cheapest plan (seen so far)
for each connected sub graph.

Hcsg™ @™ (n) = n(n +1)/2
Hesghe(n) =n? —n+1
H#esg™ " (n) =2" 1 +n—1

#csgdzq“e(n) =2"—-1

Exercise 1 a)

For a star query with with n = 20 relations, how many plans do you have to store in
your DP-table? What about n = 307

Solution
Use the formula and plug in the values for n.

H#esg®or(20) = 524307
Hesg™lor(30) = 536870941

Exercise 1 b)

If each plan consumes 40 bytes of memory. Then how much memory consumes the
DP-table for 30 relations?



Solution
#csg*"(30) * 40B = 536870941 * 40B = 214748376408 > 21GB.
Exercise 1 c)
How to approach large problem sizes?

Solution

e Use heuristic (deterministic or probabilistic)

e Use algorithms that find the optimal solution that allow for early termination
(but find optimal solution when run to the end)

e Use algorithms that allow for pruning of the search space (memoization), thereby
reducing the number of connected sub graphs considered.

e Apply DP-algorithms to subproblems. Apply DP-algorithm on solution to sub-
problems where each solution to the subproblems is considered a single relation

Exercise 2

Exercise 2 a)

Recall the introductionary DP exercise:
Walking up the stairs. How many steps can you take at a time? Let’s say up to
three! Then how many ways are there to walk up a staircase with n steps?

... This time, use memoization to answer the question!

Solution

See code.

Exercise 2 b)

Implement MemoizationJoinOrdering. You may use the helper classes provided in the
solution code.

Solution

See code.

Exercise 3

Modify MemoizationJoinOrdering such that cross products are excluded.

2



Solution

MEMOIZATION(V')

> Input: A connected query graph with relations V' = U;{R;}
> Output: An optimal join tree for V'

1 fori<1ton

2 do BestTree({R;}) + R;

3 return MOMOIZATIONSUB(R)

MEMOIZATIONSUB(.S)

> Input: A connected (sub-)graph with relations S
> Output: An optimal join tree for S
if BestTree(S) # NULL
then return BestTree(S)
for all S; € S and S; # 0
do if ISCONNECTED(S])
then continue
Sg — S — Sl
if 11ISCONNECTED(S2)
then continue
CurrTree < createTree(MEMOIZATIONSUB(.S ), MEMOIZATIONSUB(.S2))
10 if BestTree(S) = NULL or cost(BestTree(S)) > cost(CurrTree)
11 then BestTree(S) < CurrTree
12 return BestTree(S)

O O Ul Wi+

Ne}

Exercise 3 a)
What do you observe with regard to the connection tests? Compare this to DPsub.
Solution

No need for check for connectivity of S; U Sy, is an invariant of the algorithms
input.

Exercise 3 b)
Name Pros and Cons compared to DP/ bottom-up approaches.
Solution
Cons: recursiv (each recursive call comes at a significant constant cost). Not known

algorithm similar to DPcsgCmp.
Pros: Allows for (Cost) pruning. (Or, as we can see above, Connectivity pruning.)



