
Chair of applied computer science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Query Optimization Exercise sheet 7

Exercise 1

As we already know, the number of non-symmetric csg-cmp-pairs (#ccp) depends
on the query graph:

#ccpchain(n) = 1/6 ∗ (n3 − n)

#ccpcycle(n) = (n3 − 2n2 + n)/2

#ccpstar(n) = (n− 1)2n−2

#ccpclique(n) = (3n − 2n+1 + 1)/2

Luckily, we don’t have to store all of them in our DP-table. For all DP-based algo-
rithm that don’t consider cross products, we store only the cheapest plan (seen so far)
for each connected sub graph.

#csgchain(n) = n(n + 1)/2

#csgcycle(n) = n2 − n + 1

#csgstar(n) = 2n−1 + n− 1

#csgclique(n) = 2n − 1

Exercise 1 a)

For a star query with with n = 20 relations, how many plans do you have to store in
your DP-table? What about n = 30?

Solution

Use the formula and plug in the values for n.
#csgstar(20) = 524307
#csgstar(30) = 536870941

Exercise 1 b)

If each plan consumes 40 bytes of memory. Then how much memory consumes the
DP-table for 30 relations?

1



Solution

#csgstar(30) ∗ 40B = 536870941 ∗ 40B = 21474837640B > 21GB.

Exercise 1 c)

How to approach large problem sizes?

Solution

• Use heuristic (deterministic or probabilistic)

• Use algorithms that find the optimal solution that allow for early termination
(but find optimal solution when run to the end)

• Use algorithms that allow for pruning of the search space (memoization), thereby
reducing the number of connected sub graphs considered.

• Apply DP-algorithms to subproblems. Apply DP-algorithm on solution to sub-
problems where each solution to the subproblems is considered a single relation

Exercise 2

Exercise 2 a)

Recall the introductionary DP exercise:
Walking up the stairs. How many steps can you take at a time? Let’s say up to
three! Then how many ways are there to walk up a staircase with n steps?

... This time, use memoization to answer the question!

Solution

See code.

Exercise 2 b)

Implement MemoizationJoinOrdering. You may use the helper classes provided in the
solution code.

Solution

See code.

Exercise 3

Modify MemoizationJoinOrdering such that cross products are excluded.

2



Solution

memoization(V )

� Input: A connected query graph with relations V = ∪i{Ri}
� Output: An optimal join tree for V

1 for i← 1 to n
2 do BestTree({Ri})← Ri

3 return momoizationSub(R)

memoizationSub(S)

� Input: A connected (sub-)graph with relations S
� Output: An optimal join tree for S

1 if BestTree(S) 6= null
2 then return BestTree(S)
3 for all S1 ⊂ S and S1 6= ∅
4 do if !isConnected(S1)
5 then continue
6 S2 ← S − S1

7 if !isConnected(S2)
8 then continue
9 CurrTree← createTree(memoizationSub(S1),memoizationSub(S2))

10 if BestTree(S) = null or cost(BestTree(S)) > cost(CurrTree)
11 then BestTree(S)← CurrTree
12 return BestTree(S)

Exercise 3 a)

What do you observe with regard to the connection tests? Compare this to DPsub.

Solution

No need for check for connectivity of S1 ∪ S2, is an invariant of the algorithms
input.

Exercise 3 b)

Name Pros and Cons compared to DP/ bottom-up approaches.

Solution

Cons: recursiv (each recursive call comes at a significant constant cost). Not known
algorithm similar to DPcsgCmp.

Pros: Allows for (Cost) pruning. (Or, as we can see above, Connectivity pruning.)

3


