
Chair of applied computer science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Query Optimization Exercise sheet 4

Exercise 1

Exercise 1 a)

Read about Dynamic Programming. I recommend the book Algorithms by Dasgupta,
Papadimitriou and Vazirani. If you follow my recommendation, you should read at least
until the end of chapter 6.3, edit distance.

Exercise 1 b)

Walking up the stairs. How many steps can you take at a time? Let’s say up to
three! Then how many ways are there to walk up a staircase with n steps? Use dynamic
programming to answer this question!

Solution

See code.

Exercise 1 c)

What conditions must be satisfied in order for dynamic programming to be applicable?

Solution

Optimal Substructure: We must be able to construct an optimal solution from opti-
mal solution of subproblems.
Overlapping subproblems : The same subproblems must occur multiple times. Otherwise
dynamic programming yields no gain in efficiency.

Exercise 1 d)

What conditions must be satisfied when enumerating plan alternatives using dynamic
programming?

Solution

We must know the optimal sub-plans and we must be able to access them via a
DPtable.
Note: This does not apply to Memoization. Memoization is different!

1



Exercise 2

The number of full binary rooted trees with n+1 leaf nodes is given by the n-th Catalan
number

Cn =
n−1∑
k=0

Ck ∗ Cn−k−1

where C0 = 1 is the base case.
However, why is that? Find a proof-style explanation for the above recurrence rela-

tion!

Remarks:

• Full binary tree means each node has either 0 or 2 children.

• Rooted tree means there is a vertex that serves as the root.

Solution

Notation. Denote the number of full binary rooted trees with k + 1 leaf nodes by Ck.
For brevity, we use the terms tree and full binary rooted tree interchangeably.

Statement. We show that

Cn =
n−1∑
k=0

Ck ∗ Cn−k−1

is the number of full binary rooted trees with n + 1 leaf nodes.

Proof. Assume we know C0, . . . , Cn−1.
Observe that, given a root node, we only require that there are k ∈ {1, . . . n} leaf nodes
on the left side of the root and n + 1 − k leaf nodes on the right side of the root. No-
te that we need at least one leaf node on either side for the root node to have 2 children.

Then, how many trees are there on the left side of the root? Clearly the answer is
Ck−1.
Equivavently we have Cn−k trees on the right side of the root.
Since, for a given k, the trees on the left side of the root don’t affect the trees on the
right side of the root, there are Ck−1 ∗ Cn−k possible combinations.
We can choose any k ∈ {1, . . . , n} and therefore we have

Cn =
n∑

k=1

Ck−1 ∗ Cn−k

By index shifting we can rewrite the sum to

Cn =
n−1∑
k=0

C(k+1)−1 ∗ Cn−(k+1) =
n−1∑
k=0

Ck ∗ Cn−k−1

2



It remains to show why we choose C0 = 1 as the base case.
Recall that C0 is the number of trees with 1 leaf node. Clearly, there is only one tree
with a single node.

Follow-up question. Proof the closed form expression of the Catalan numbers. Feel free
to hand in your solution.

3


