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Exercise 1

You are given the following relations:

published(game, publisher)

designed(game, designer)

reviewed(game, reviewer)

Use relational algebra to construct a plan for each of the following queries. In addi-
tion, find a tree representation for each plan.

Exercise 1 a)

Find all designers of the game “Sokoban”.

Solution

πdesigner(σgame=′Sokoban′(Designed))

Exercise 1 b)

Find all publishers of all games designed by “Imabayashi”.

Solution

πpublisher(published 1 (σdesigner=′Imabayashi′(Designed)))

Exercise 1 c)

Find all reviewers who have reviewed at least one game that has not yet been published.

Solution

Using semi-join method:
πreviewer(reviewed− (reviewedn published))
Using anti-join method:
πreviewer(reviewed� published)

Exercise 2
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How does Select Distinct simplify the produced results?

Solution

It enables us to work with sets instead of bags.
Some notes with regard to bags/multisets:

When we don’t use distinct in SQL, we have to deal with duplicates. As a result, we
cannot apply set theory to our use case - we need a notion of bags/multisets:

The definition of a multiset is simple: A set with duplicates, e.g., {1, 1, 1, 2, 2, 3}b.
The number of times an element occurs in the multiset is called its multiplicity. For a
multiset A, the multiplicity of some element x ∈ A is denoted by mA(x). The above
multiset can also be specified using its multiplicities: {13, 22, 31}b

For two multisets A and B, defined over a Domain D, we have the following opera-
tions:

• Inclusion: A ⊆ B ⇐⇒ ∀x ∈ D,mA(x) ≤ mB(x)

• Intersection: A ∩B := {xmin(mA(x),mB(x)) | ∀x ∈ D}b

• Union: A ∪B := {xmax(mA(x),mB(x)) | ∀x ∈ D}b

• Difference: A \B := {xmax(mA(x)−mB(x),0) | ∀x ∈ D}b

• Sum:
∑

(A,B) := {xmA(x)+mB(x) | ∀x ∈ D}b
The rules of commutativity, associativity and distributivity carry over from set theory.

For further details, see https://en.wikipedia.org/wiki/Multiset

However, have you tried union all in SQL (union without duplicate elimination)?
The union all operator corresponds to the above sum operator. For this reason, in the
context of query optimization, we will refer to the sum operation as union and denote
it by ∪b. In the context of query optimization, we leave the union operator, as defined
above, undefined.

This redefinition of the union operator has a serious drawback: The properties of
the operators change. Unlike for sets, for bags we have that ∩ is not distributive over
∪b:

(A ∪b B) ∩ C 6= (A ∩ C) ∪b (B ∩ C)

To see this, consider the example A = {1}, B = {1}, C = {1}.
For further details, see the script/book building query compilers, Chapter 7.1.2:

Duplicate Data: Bags

Exercise 3

Consider the relational algebra expression

R 1 S 1 T.

Since 1 is commutative and associative, there are 12 equivalent ways to compute
the result of the above expression:

(R 1 (S 1 T ))
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((R 1 S) 1 T )

(R 1 (T 1 S))

((R 1 T ) 1 S)

(S 1 (R 1 T ))

((S 1 R) 1 T )

(S 1 (T 1 R))

((S 1 T ) 1 R)

(T 1 (R 1 S))

((T 1 R) 1 S)

(T 1 (S 1 R))

((T 1 S) 1 R)

We will soon see that, despite all expressions have the same result, their cost of
computing differs greatly.

Implement a program that prints all possible ways to join n relations.

Solution

Abstract algorithm:

• Let n be the number of relations.

• Compute all n! permutations of the relations in the expression.

• For each permutation find all possible ways to associate the join operators (by
parenthesizing them). There are Cn−1 = 1

n

(
2(n−1
n−1

)
possible associations, where

Cn−1 denotes n − 1th Catalan number, see https://en.wikipedia.org/wiki/

Catalan_number.

• Print each join order. In total there are n!Cn−1 join orders.

See code for details on how to compute all permutations and all associations.
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