Database Systems II – Exercise #9 Sheet #9 (cont'd): CSB⁺ Trees, Boolean Expressions Sheet #10: Cardinality Estimation, Parallelism, Exam Preparation

Daniel Flachs

Chair of Practical Computer Science III: Database Management Systems

15/05/2019

Created May 15, 2019

Contents

Exercise Sheet #9 Task 3

2 Exercise Sheet #10

- Task 1
- Task 2
- Task 3

3 Organizational: Exam

Contents

1 Exercise Sheet #9Task 3

2 Exercise Sheet #10

- Task 1
- Task 2
- Task 3

3 Organizational: Exam

Assume you are given the following query:

SELECT * FROM R WHERE Age > 27 and Income > 30.000 and Weight < 75;

We refer to the predicates in the query by the set

 $P = \{Age > 27, Income > 30\,000, Weight < 75\} = \{p_1, p_2, p_3\}$

Furthermore, assume you are given the following sample taken from R:

ID	Age	Income	Weight
1	28	40,000	80
2	30	55,000	50
3	27	37,000	75
4	40	60,000	60
5	42	62,000	85
6	22	15,000	55
7	70	20,000	67
8	50	80,000	57
9	55	85,000	86
10	33	42,000	58

Recap: Gamma Sampling

- **Goal**: Given a sequence of z selections $\sigma_{p_1}(\sigma_{p_2}(\ldots \sigma_{p_z}(R)\ldots))$ on a relation R, determine the optimal (cheapest) order to evaluate them.
- The cost for evaluating a selection σ_{p_i} depends on
 - the number of tuples that need to be processed
 - $(\rightarrow$ fewer tuples is better), and
 - the cost to evaluate the predicate p_i on one tuple.
- To determine the optimal order, we need a selectivity value for each subset of predicates $P' \subseteq P = \{p_1, \dots, p_z\}$.
- A subset of predicates P' corresponds to the logical conjunction $F_{\beta}(P') = \bigwedge_{p_i \in P'} p_i$. This respective selectivity is denoted by $\beta(P')$.
- Gamma sampling determines these β-selectivities indirectly using so-called γ-selectivities of logical minterms of the form

$$F_{\gamma}(P') = \bigwedge_{p_i \in P'} p_i \wedge \bigwedge_{p_i \notin P'} \neg p_i.$$

Recap: Gamma Sampling – Why Minterms?

$$F_{\beta}(P') = \bigwedge_{p_i \in P'} p_i \qquad \qquad F_{\gamma}(P') = \bigwedge_{p_i \in P'} p_i \wedge \bigwedge_{p_i \notin P'} \neg p_i$$

- In a minterm, each predicate appears exactly once, either positive or negative (negated). For z predicates, there are 2^z minterms.
- Two minterms X₁, X₂, (X₁ ≠ X₂) over the same z predicates are mutually exclusive, i. e., X₁ ∧ X₂ ≡ false. Why?

Consequences

- Each tuple from a relation *R* fulfills exactly one minterm from the set of all minterms.
- The sum over all minterm selectivities must be 1.
- We can construct the β -selectivities from the γ -selectivities. **Example**: $P = \{p_1, p_2, p_3\}, P' = \{p_2, p_3\}.$ $\beta(\{p_2, p_3\}) = \gamma(\{p_1, p_2, p_3\}) + \gamma(\{\neg p_1, p_2, p_3\})$

Task 3a

Which tuples fulfill which predicates?

 $P = \{p_1, p_2, p_3\} = \{Age > 27, Income > 30\,000, Weight < 75\}$

ID	Age	Income	Weight	\pmb{p}_1	p ₂	p ₃
1	28	40,000	80	1	1	×
2	30	55,000	50	1	1	1
3	27	37,000	75	×	1	×
4	40	60,000	60	1	1	1
5	42	62,000	85	1	1	×
6	22	15,000	55	×	×	1
7	70	20,000	67	1	×	1
8	50	80,000	57	1	1	1
9	55	85,000	86	1	1	X
10	33	42,000	58	1	1	1

Task 3a

For each $P' \subseteq P$, compute the selectivity $\gamma(P')$.

It holds: $\sum_{P' \subset P} \gamma(P') = 1 \checkmark$

Task 3b

Give the complete design matrix C that is associated with |P| = 3.

The complete design matrix can be found recursively by

$$C_{|P|} = egin{pmatrix} C_{|P|-1} & C_{|P|-1} \ 0 & C_{|P|-1} \end{pmatrix} \quad ext{ and } \quad C_0 = ig(1) \,.$$

$$C_{3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Task 3c

Compute $C\gamma$.

Contents

1 Exercise Sheet #9 ■ Task 3

2 Exercise Sheet #10

- Task 1
- Task 2
- Task 3

3 Organizational: Exam

Assume you are given the following Relation R:

R				
K	Α			
0	а			
1	а			
2	b			
3	С			
4	С			
5	С			
6	с			
7	d			
8	е			
9	е			

a) Build a frequency vector for Attribute A of relation R.
 Solution: f = ⟨2,1,4,1,2⟩ in lexical order of the values in R.A.

b) The k^{th} frequency moment of a frequency vector f is defined as

$$F_k(f) = \sum_{i=1}^n f_i^k.$$

Compute the frequency moments for $k \in \{0, 1, 2\}$. What is the logical meaning of each of the values?

Solution

(i) k = 0: ∑_{i=1}⁵ f_i⁰ = 2⁰ + 1⁰ + 4⁰ + 1⁰ + 2⁰ = 5. Gives the number of distinct values.
(ii) k = 1: ∑_{i=1}⁵ f_i¹ = 2¹ + 1¹ + 4¹ + 1¹ + 2¹ = 10. Gives the number of values.
(iii) k = 2: ∑_{i=1}⁵ f_i² = 2² + 1² + 4² + 1² + 2² = 26. Gives the self-join size.

- c) Paper "Sketches for Size of Join Estimation" by Rusu and Dobra
 - General overview on the topic of sketches for join size estimation.
 - Two examples for AGMS and Fast-AGMS.
 - Also, there are example implementations provided by the authors: faculty.ucmerced.edu/frusu/Projects/Sketches/sketches.html

Amdahl's law allows you to compute the theoretical speed-up of the execution of a task when using *n* processors/threads instead of 1:

speedup =
$$\frac{1}{(1-p)+\frac{p}{n}}$$
.

- p denotes the fraction of the task that is parallelizable, i. e., this part of the program can be (evenly) divided into n parallel threads of execution.
- 1 *p* is the part of the task that cannot be parallelized and can hence only be executed sequentially.
- The sequential and the parallelizable part (i.e., the whole task) sum up to 1: p + (1 p) = 1.
- The formula's numerator represents the whole task if it is run without any parallelization.
- The denominator represents the fraction of the task that remains if p is parallelized.

In the above example (n = 3, p = 0.6), the speedup is

$$rac{1}{(1-0.6)+rac{0.6}{3}}=rac{5}{3}=1.\overline{6}$$

i. e., parallelization is 1.6 times as fast as sequential execution.

a) Compute the speed-up for $p \in \{0.1, 0.5, 0.9\}$ and $n \in \{2, 8, 32\}$. Solution

		<i>p</i>		
		0.1	0.5	0.9
	2	1.05	1.33	1.81
п	8	1.09	1.77	4.71
	32	1.11	1.93	7.80

b) What are the implicit assumptions of Amdahl's law?

1 No Overhead

Adding another processor/thread does not result in any overhead, e.g., for thread generation or synchronization. Therefore, Amdahl's law assumes perfect scalability, which is unrealistic.

2 Arbitrarily Divisible Tasks

- The parallelizable fraction p is divisible into arbitrarily small pieces, i. e., it can be distributed across arbitrarily many processors/threads.
- In mathematical terms, we can let $n \to \infty$. This is unrealistic.
- **Example**: Consider the evaluation of a selection predicate on 1 000 000 tuples. Obviously, this can be parallelized since two arbitrary tuples are independent. However, *n* > 1 000 000 does not make sense as the 1 000 001th thread would not be assigned any work.

c) Sketch a diagram showing the speedup factor on the y-axis and the number of processors n on the x-axis.
Draw graphs for p ∈ {0.50, 0.75, 0.90, 0.95}.
To which limits do the curves converge for large n?

For large *n*, i.e., $n \to \infty$, the term $\frac{1}{(1-\rho)+\frac{\rho}{n}}$ converges to $\frac{1}{1-\rho}$.

Source:

https://commons.wikimedia.org/ wiki/File:AmdahlsLaw.svg (10/05/2019)

Daniel Flachs

- c) Discuss the difference between *inter-query parallelism* and *intra-query parallelism*.
 - inter-query parallelism: run independent queries in parallel
 - intra-query parallelism: partition relation and process partitions in parallel (within strands), process independent strands in parallel (bushy parallelism)

Task 3 How to Study for the DBS II Exam

Recall the topics covered in the lecture:

- 1 Hardware
- 2 Hashing
- 3 Compression
- 4 Storage Layout
- 5 Physical Algebra: Processing Modes & Implementation
- 6 Expression Evaluation
- 7 Indexing
- 8 Boolean Expressions
- 9 Cardinality Estimation
- 10 Parallelism

Contents

- Exercise Sheet #9Task 3
- 2 Exercise Sheet #10
 - Task 1
 - Task 2
 - Task 3

3 Organizational: Exam

Exam & Exam Preparation

Exam Date: 14/06/2019, 14:00–15:30, room O 135 – might be subject to change, please check https://www2.uni-mannheim.de/ studienbueros/pruefungen/pruefungstermine/ again!

Q&A Session

29/05/2019 (last week of lectures) or 05/06/2019 (first exam week), time: 13:45 as usual?

Please send me your questions beforehand so I can prepare an answer!