
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Solution to Exercise Sheet 8
Spring Semester 2019 Created May 7, 2019

Exercise 1

Building an operator tree is one possibility to interpret a program. Every operator
is encapsulated in a class and all operators share a common interface. In our case, this
is the eval function. In the files provided on the website, you can find a simple im-
plementation of operators to build an operator tree for expressions in Boolean algebra.
You can also find a small example. So far, the following operations exist:

• Literal which just creates a literal like a := true,

• Not, which negates an expression, e.g. Not(a),

• Or, the logical or operator, to evaluate disjunctions,

• Implication, which evaluates an implication, like a⇒ b.

Exercise 1 a)

Implement the logical And operator.

Exercise 1 b)

Construct and evaluate the following expression:

(a ∧ b) ∨ c

You can choose values for a, b, c ∈ {true, false}.

Solution

See code.

Exercise 2

Another possibility to interprete a program is to run it in a virtual machine. In the files
provided on the website, you can find a simple implementation of a virtual machine
that supports only integer operations. The virtual machine is inspired by the IJVM
(https://en.wikipedia.org/wiki/IJVM).

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de
https://en.wikipedia.org/wiki/IJVM


Exercise 2 a)

Look at the implementation.

Exercise 2 b)

The following example program is given in the code.

PUSH, 111,
DUPLICATETOP,
PRINTTOP, // JMP jumps here
DUPLICATETOP,
PUSH, 122,
SUB,
JMPIFFALSE, 16,
PUSH, 1,
ADD,
JMP, 3,
POP, // JMPIFFALSE jumps here
HALT

Give C++ code that is equivalent to the above series of instructions.

Solution

for (int i = 111; i <= 122; ++i) {
std::cout << i << std::endl;

}

Exercise 2 c)

(i) Implement a multiplication operation MUL that takes the last two elements from
the stack, removes them, and pushes their product onto the stack.

(ii) Implement an integer division operation DIV, that takes the last two elements
from the stack, removes them, and pushes their quotient onto the stack. Make
sure that the order of the operands is consistent with how the SUB operations
handles its operands.

(iii) Also implement a conditional jump operation JMPIFTRUE that removes the last
element from the stack and jumps to a specified location in the program if the
element evaluates to true, i. e., a number unequal to zero.

Solution

See code.

2



Exercise 2 d)

Replace program with a program that computes

(5 + 3 · 4)÷ 2

and outputs the result.

Solution

int program [] = {
PUSH, 2,
PUSH, 5,
PUSH, 3,
PUSH, 4,
MUL,
ADD,
DIV,
PRINTTOP,
POP,
HALT

};

3


