
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Solution to Exercise Sheet 7
Spring Semester 2019 Created April 10, 2019

Exercise 1

In this exercise, you should familiarize yourself with lambda expressions in C++. They
are used for the implementation of certain SQL queries in the subsequent exercise.

Exercise 1 a)

A lambda expression is an ad-hoc, locally scoped functor, i. e., an anonymous class that
overrides the operator() member function. It behaves more or less like an anonymous
inline function. Inform yourself about lambdas by reading the following blog article:
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/.

Exercise 1 b)

You are given a std::vector<int> called vec, i. e., a vector of integers, which you
would like to print element-wise.

With std::for_each (included in the algorithm header), you can apply a function
to all entries of a vector. It has the following signature:
Function for_each(InputIterator first , InputIterator last , Function fn);

where first and last are iterators of the first element and the element beyond the
last element to be processed. fn is a unary function that accepts an element in the
range as an argument. This can either be a function pointer or a function object (like
a lambda). Its return value, if any, is ignored.

Complete the following code snippet such that it prints
-7, 5, 13, 8, -19, -1, -8, 128, 9, 4,

1 std :: vector<int> vec = { −7, 5, 13, 8, −19, −1, −8, 128, 9, 4 };
2 std :: for_each(vec.cbegin(), vec.cend(), /∗ Put your lambda here ∗/);

Solution

1 std :: vector<int> vec = { −7, 5, 13, 8, −19, −1, −8, 128, 9, 4 };
2 std :: for_each(vec.cbegin(), vec.cend(),
3 [] (const int& elem) −> void { std::cout << elem << ", "; });

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/

Exercise 1 c)

As before, you are given a std::vector<int> called vec, i. e., a vector of integers, but
this time, you would like to modify it.

Use std::for_each and a lambda expression to modify each value of vec such that
it is replaced by its absolute value, e. g., −7→ 7, and 11→ 11. Use your ‘print lambda’
from the previous subtask to print the now modified vector.

Solution

1 std :: vector<int> vec = { −7, 5, 13, 8, −19, −1, −8, 128, 9, 4 };
2 std :: for_each(vec.begin(), vec.end(),
3 [] (int& elem) −> void { elem = std::abs(elem); });

Exercise 1 d)

With so-called captures, variables outside the lambda expression can be passed to the
lambda’s body either by value or by reference, without the need to supply them as
parameters. All variables that should be passed to the lambda need to be listed in the
capture list at the beginning of the lambda definition: [<comma-separated list of
variables>]. Putting just the variable name passes the variable by constant value,
adding a & symbol passes the respective variable by reference.

Implement a lambda function that calculates the sum of all elements in the vector.

Solution

1 int sum = 0;
2 std :: for_each(vec.cbegin(), vec.cend(),
3 [&sum] (const int& elem) −> void { sum += elem; });

Exercise 2

This exercise builds upon the physical algebra implementation from exercise sheet 6 and
uses the same simple main-memory database implementation. Sheet 6 was concerned
with table scans, selections and projections, whereas this sheet deals with different
implementations for joins.

Exercise 2 a)

Recap how the Nested Loop Join (NLJ) and the Hash Join (HJ) algorithm work1.
Write down their pseudocode.

1For instance, read https://en.wikipedia.org/wiki/Nested_loop_join and https://en.
wikipedia.org/wiki/Hash_join.

2

https://en.wikipedia.org/wiki/Nested_loop_join
https://en.wikipedia.org/wiki/Hash_join
https://en.wikipedia.org/wiki/Hash_join

Solution

The following join algorithms compute the join R�p S. For the Hash Join, the join
predicate p is restricted to equality. By convention, for R �hj S, the right relation S
denotes the build relation (usually the smaller relation), the left relation R the probe
relation. For two tuples x, y, x ◦ y denotes tuple concatenation.

NestedLoopJoin
Input: two relations R and S; a join predicate p
Output: the tuples in R× S that satisfy p

1 for each tuple r ∈ R
2 for each tuple s ∈ S
3 if p(r, s)
4 output the tuple r ◦ s

HashJoin
Input: a build relation S, a probe relation R;

a join predicate p; a hash function h
Output: the tuples in R× S that satisfy p

1 Initialize H to be an empty hash table with h as a hash function.
2 for each tuple s ∈ S // Build
3 Insert s into H[h(s)].
4 for each tuple r ∈ R // Probe
5 for each t ∈ H[h(r)]
6 if p(r, t)
7 Output the tuple r ◦ t.

Exercise 2 b)

List the pros and cons of both the Nested Loop Join and the Hash Join.

Solution

Pros Cons

NLJ Can handle arbitrary join predicates. Slow runtime: O(|R| · |S|)
No materialization of intermediate re-
sults (tuples) necessary.

HJ Fast runtime: O(|R|+ |S|) In general, only equi-joins are possible.
Pipeline breaker: Tuples must be ma-
terialized in hash table.

Exercise 2 c)

Download the zip archive from the website. Compared to the previous exercise sheet,

3

only two classes for the Nested Loop Join and two classes for the Hash Join were added
to PhysAlgebra.hh.

(i) Complete the step() member function of the NestedLoopJoinInner operator of
the physical algebra.

(ii) Complete the step() member function of the HashJoinProbe operator of the
physical algebra.

Solution

See code.

Exercise 2 d)

In the database subdirectory, you can find the two relations persondb_persons and
persondb_hometowns with both their schema and their data. The former stores a
person with an ID and a name, the latter assigns 0, 1 or more than 1 hometowns
(rather: cities of residence) to a person using a foreign-key on the persons’ IDs.

Implement the following query, which lists the hometowns of each person, once using
a nested loop join and once using a hash join.

SELECT ∗
FROM persondb_persons AS p, persondb_hometowns AS h
WHERE p.ID == h.PERSON_ID;

Solution

See code.

4

