
Database Systems II – Exercise #7
Sheet #7: Lambda Expressions, Physical Algebra Implementation

Daniel Flachs

Chair of Practical Computer Science III:
Database Management Systems

10/04/2019

Created April 10, 2019

Exercise Sheet #7

Contents

1 Exercise Sheet #7
Task 1
Task 2

Daniel Flachs DBS II – Exercise #7 10/04/2019 2 / 9

Exercise Sheet #7 Task 1

Lambda Expressions

Source: https://blog.feabhas.com/2014/03/demystifying-c-lambdas/

Daniel Flachs DBS II – Exercise #7 10/04/2019 3 / 9

https://blog.feabhas.com/2014/03/demystifying-c-lambdas/

Exercise Sheet #7 Task 1

Task 1

You are given a std::vector<int> called vec, i. e., a vector of integers.

b) Using std::for_each, write a lambda expression to print the vector
element-wise.

c) Use std::for_each and a lambda expression to modify each value of
vec such that it is replaced by its absolute value, e. g., −7→ 7, and
11→ 11.

d) Implement a lambda function that calculates the sum of all elements
in the vector.

Daniel Flachs DBS II – Exercise #7 10/04/2019 4 / 9

Exercise Sheet #7 Task 2

Task 2

This exercise builds upon the physical algebra implementation from exercise
sheet 6 and uses the same simple main-memory database implementation.
Sheet 6 was concerned with table scans, selections and projections, whereas
this sheet deals with different implementations for joins.

Daniel Flachs DBS II – Exercise #7 10/04/2019 5 / 9

Exercise Sheet #7 Task 2

Task 2a

Recap how the Nested Loop Join (NLJ) and the Hash Join (HJ) algorithm
work. Write down their pseudocode.

Remarks
The following join algorithms compute the join R �p S .
For the Hash Join, the join predicate p is restricted to equality.
By convention, for R �hj S , the right relation S denotes the build
relation (usually the smaller relation), the left relation R the probe
relation.
For two tuples x , y from some relation(s), x ◦ y denotes tuple
concatenation.

Daniel Flachs DBS II – Exercise #7 10/04/2019 6 / 9

Exercise Sheet #7 Task 2

Task 2a
Nested Loop Join

Input: two relations R and S ; a join predicate p
Output: the tuples in R × S that satisfy p

1 for each tuple r ∈ R
2 for each tuple s ∈ S
3 if p(r , s)
4 output the tuple r ◦ s

Daniel Flachs DBS II – Exercise #7 10/04/2019 7 / 9

Exercise Sheet #7 Task 2

Task 2a
Hash Join

Input: a build relation S , a probe relation R ;
a join predicate p; a hash function h

Output: the tuples in R × S that satisfy p
1 Initialize H to be an empty hash table with h as a hash function.
2 for each tuple s ∈ S // Build
3 Insert s into H[h(s)].
4 for each tuple r ∈ R // Probe
5 for each t ∈ H[h(r)]
6 if p(r , t)
7 Output the tuple r ◦ t.

Daniel Flachs DBS II – Exercise #7 10/04/2019 8 / 9

Exercise Sheet #7 Task 2

Task 2b

List the pros and cons of both the Nested Loop Join and the Hash Join.

Nested Loop Join
+ Can handle arbitrary join predicates.
+ No materialization of intermediate results (tuples) necessary.
− Slow runtime: O(|R| · |S |)

Hash Join
+ Fast runtime: O(|R|+ |S |)
− In general, only equi-joins are possible.
− Pipeline breaker: Tuples must be materialized in hash table.

Daniel Flachs DBS II – Exercise #7 10/04/2019 9 / 9

	Exercise Sheet #7
	Task 1
	Task 2

