
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Solution to Exercise Sheet 5
Spring Semester 2019 Created May 8, 2019

Exercise 1

In this exercise, we review some bit manipulation techniques.

Exercise 1 a)

Perform the following bit computations by hand:

(i) 0110 + 0010

(ii) 0011 * 0101

(iii) 1101 >> 2

Solution

(i) 1110
+ 0010

11

1000

(ii) 0011 * 0101

0011
+ 0011

1111

(iii) 1101 >> 2 = 0011, corresponds to an integer division by 4.

Exercise 1 b)

Explain the two’s complement. What is the sum of a positive number and its two’s
complement?

Solution

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de

In a computer, a negative number is usually represented by the two’s complement of
its unsigned value. Let’s consider the case for −3 (i. e., the representation of negative
3) using a 4-bit integer. The first bit corresponds to the sign, where a 1 is used to
represent negative numbers. In order to calculate the negative representation of 3, you
need to compute the complement of 3 with respect to 2N , where N is number of bits,
that is, in our example, 24 = 16. Therefore, the complement of 3 with respect to 16 is
13 (since 3 + 13 = 16). The binary representation of 13 is 1101. 1101 interpreted as a
4-bit signed integer is therefore −3.

Since the two’s complement encodes the negated value of an integer i, we have for
every positive integer i that i+ twoComplement(i) = i+ (−i) = 0.

Consider the example:

0011 (= 3)
+ 1101 (= -3)

10000

The carry bit is set, but ignored since we only consider N = 4 bits. Therefore,
(1)0000 = 0000 (decimal 0), which is the expected result: 3 + (−3) = 0.

Exercise 1 c)

What does the following code do, given n is an integer?
((n & (n-1)) == 0)

Solution

This expression evaluates to true if n is a power of 2, otherwise the expression
evaluates to false. To see that, note that the expression computes the bitwise and
of n and n − 1. If n and n − 1 do not share a 1 bit in any of their positions then
((n & (n-1)) == 0). However, all numbers share a 1 bit in some position with their
next smaller value, except powers of 2, since they consist of a single 1-bit and all 0s in
the lower significant bits.

Exercise 1 d)

This weeks exercise zip archive contains a file bitvector/bitvector.cc. Implement
the setBit and the hasZeroBit member functions of the Bitvector class.

Solution

See code.

Exercise 1 e)

Take a look at the built-in functions that the GCC compiler has to offer. You’ll find
useful bit manipulation instructions among them.

2

https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Exercise 2

Let us consider a database with the following schema.

• Customers: {[id:int, name:char(30), discount:double, country:int]}

• Countries: {[id:int, name:char(30), tax:double]}

• Products: {[id:int, name:char(30), price:double]}

• Orders: {[id:int, customer:int, product:int, quantity:int,
date:int, totalPrice:double]}

Exercise 2 a)

Recall the storage layout variant row store and column store from the script.

(i) Represent the database relations from the above schema in row store layout.

(ii) Represent the database relations from the above schema in column store layout.

You do not have to write C++ code. Pseudocode that shows the main difference with
respect to data organization and data structures is sufficient.

Solution

Only the solution for relation Countries follows, but the others work similarly, cf.
also solution source code.

Row store
1 s t r u c t country_t {
2 i n t _id ;
3 char _name [3 0] ;
4 double _tax ;
5 }
6 std : : vector<country_t> coun t r i e s ;

Column store
1 s t r u c t Countr ies {
2 std : : vector<int> _ids ;
3 std : : vector<std : : array<char , 30>> _names ;
4 std : : vector<double> _taxes ;
5 }

Exercise 2 b)

Download this exercise’s zip archive from the website. The folder mmdb contains code
that you are asked to complete. The following files are included:

3

https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

• In common, you find a data generator that creates data with a schema as described
above, as well as the basic classes representing customers, countries, products and
orders (common/types.hh).

• In rowStore, you find a class RSDatabase that implements a simple row store.

• Additionally, in rowStore, you find the file rsMain.cc that contains a main func-
tion and orchestrates the flow of the program for the row store.

Implement a column store for the above schema in a class CSDatabase. You may use
the RSDatabase as an orientation. You can use the provided makefile to build the row
store database. Warnings like warning: suggest braces around initialization
of subobject [-Wmissing-braces] can be ignored.

If you would only like to implement the SQL queries in the next sub-task, the zip
archive does also contain an implementation for CSDatabase.

Solution

See code.

Exercise 2 c)

Implement the following the SQL queries for both the row store and the column store.
Variables preceded by an $ represent parameters, i.e. only these parts of the query must
be changeable, the rest can be hard-coded. Hint: Implement each query as a member
function of the RSDatabase and CSDatabase class.

• select totalPrice from
orders
order by totalPrice desc
fetch first 10 rows only;

• select date, sum(totalPrice)
from orders
where date >= $date
group by date;

• select c. id , c.name, count(o.id)
from customers c, orders o
where c.id = o.customer
group by c.id , c.name;

• update orders
set totalPrice = $totalPrice
where id = $orderId;

Solution

See code.

4

