
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Exercise Sheet 5
Spring Semester 2019 Created March 22, 2019

Exercise 1

In this exercise, we review some bit manipulation techniques.

Exercise 1 a)

Perform the following bit computations by hand:

(i) 0110 + 0010

(ii) 0011 * 0101

(iii) 1101 >> 2

Exercise 1 b)

Explain the two’s complement. What is the sum of a positive number and its two’s
complement?

Exercise 1 c)

What does the following code do, given n is an integer?
((n & (n-1)) == 0)

Exercise 1 d)

This weeks exercise zip archive contains a file bitvector/bitvector.cc. Implement
the setBit and the hasZeroBit member functions of the Bitvector class.

Exercise 1 e)

Take a look at the built-in functions that the GCC compiler has to offer. You’ll find
useful bit manipulation instructions among them.
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Exercise 2

Let us consider a database with the following schema.

• Customers: {[id:int, name:char(30), discount:double, country:int]}

• Countries: {[id:int, name:char(30), tax:double]}

• Products: {[id:int, name:char(30), price:double]}

• Orders: {[id:int, customer:int, product:int, quantity:int,
date:int, totalPrice:double]}

Exercise 2 a)

Recall the storage layout variant row store and column store from the script.

(i) Represent the database relations from the above schema in row store layout.

(ii) Represent the database relations from the above schema in column store layout.

You do not have to write C++ code. Pseudocode that shows the main difference with
respect to data organization and data structures is sufficient.

Exercise 2 b)

Download this exercise’s zip archive from the website. The folder mmdb contains code
that you are asked to complete. The following files are included:

• In common, you find a data generator that creates data with a schema as described
above, as well as the basic classes representing customers, countries, products and
orders (common/types.hh).

• In rowStore, you find a class RSDatabase that implements a simple row store.

• Additionally, in rowStore, you find the file rsMain.cc that contains a main func-
tion and orchestrates the flow of the program for the row store.

Implement a column store for the above schema in a class CSDatabase. You may use
the RSDatabase as an orientation. You can use the provided makefile to build the row
store database. Warnings like warning: suggest braces around initialization
of subobject [-Wmissing-braces] can be ignored.

If you would only like to implement the SQL queries in the next sub-task, the zip
archive does also contain an implementation for CSDatabase.

Exercise 2 c)

Implement the following the SQL queries for both the row store and the column store.
Variables preceded by an $ represent parameters, i.e. only this part of the query must
be changeable, the rest can be hard-coded. Hint: Implement each query as a member
function of the RSDatabase and CSDatabase class.

2

• select totalPrice from
orders
order by totalPrice desc
fetch first 10 rows only;

• select date, sum(totalPrice)
from orders
where date >= $date
group by date;

• select c. id , c.name, count(o.id)
from customers c, orders o
where c.id = o.customer
group by c.id , c.name;

• update orders
set totalPrice = $totalPrice
where id = $orderId;

3

