
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Solution to Exercise Sheet 4
Spring Semester 2019 Created March 21, 2019

Exercise 1

Download the zip archive for this exercise sheet from the website.
Compile experiment4.cc with the output name set to experiment4, e.g., by compiling
as g++ experiment4.cc -o experiment4.
Run the script runExperiment4.sh and analyze the output. runExperiment4.sh is a
bash script.
If you run Windows, you are able to run this file in case your Windows version is
10 (or newer), cf. https://www.howtogeek.com/261591/how-to-create-and-run-
bash-shell-scripts-on-windows-10/
The script runExperiment4.sh runs experiment4 for different arguments. If you’re
having trouble to run the script, you can also perform the instructions of the script by
hand.

Solution

The code illustrates the difference between predicated code and code with a branch,
cf. Script, Section 2.2.3 “(Cost of) Branch (Mis-) Prediction”, p. 21:

• The code with an if-statement (branching) runs slower if the selectivity of the
predicate is closer to 0.5. This is due to the fact that branch prediction works
worst in this case.

• The predicated code achieves the same result without a branch. It does an uncon-
ditional write in each iteration, which is more costly than doing writes only if the
predicate is fulfilled. However, there is no penalty for branch misprediction since
there is simply no branch. Therefore, the predicated code has constant runtime
which is indifferent to the selectivity of the predicate.

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de
https://www.howtogeek.com/261591/how-to-create-and-run-bash-shell-scripts-on-windows-10/
https://www.howtogeek.com/261591/how-to-create-and-run-bash-shell-scripts-on-windows-10/

Exercise 2

This exercise deals with compression.

Exercise 2 a)

In the zip file for this exercise sheet, you find a file named country_or_area.csv.
This file contains the attribute values for the column country_or_area of the In-
ternational Financial Statistics data set https://www.kaggle.com/unitednations/
international-financial-statistics.
Implement a dictionary that allows you to compress the country_or_area attribute
values given in country_or_area.csv.
You are free to choose on the implementation details. Your dictionary may be based
on a hash table, a tree, or something simple (= inefficient), like an unsorted vector.

Solution

See code.

Exercise 2 b)

What is the compression rate and the percentage of space savings of your compression?
The compression ratio is computed as

compRatio =
uncompressedSize

compressedSize
,

where compressedSize is the size of the data plus the size of the dictionary.
The space savings is computed as

spaceSavings = 1− compressedSize

uncompressedSize
.

Solution

Numbers for the provided solutions:

• compRatio = 10.2689

• spaceSavings = 0.902 618 = 90.2%

Raw output:

Size in bytes of uncompressed data: 36 462 713

Size in bytes of compressed data: 3 536 976

Size in bytes of dictionary: 13 825

Size of compressed data and dictionary: 3 550 801

Compression ratio: 10.2689

Percentage space savings: 0.902 618

2

https://www.kaggle.com/unitednations/international-financial-statistics
https://www.kaggle.com/unitednations/international-financial-statistics

Exercise 3

This exercise deals with the difference in memory access costs for cache-aligned and
unaligned accesses. It simulates tuples of a database relation that are stored in row
store format, cf. Script, p. 53 ff. (especially the figure on p. 56).

Consider the following piece of code. The sum function sums up m elements of integer
array B, starting at B[0] in steps of s integers, i. e., s = 3 would sum up B[0], B[3],
B[6] etc. The main method uses the sum function to sum up the same array A with
different access patters (step size and offset), denoted by (0), (1) and (2) in the code.

1 int32_t sum (int32_t ∗ B, const u int m, const i n t s) {
2 int32_t lSum = 0 ;
3 f o r (uint32_t i = 0 ; i < m; ++i) { // m: number o f e lements
4 lSum += ∗B;
5 B += s ; // s : s tep s i z e
6 }
7 r e turn lSum ;
8 }
9

10

11 i n t main () {
12 const uint32_t n = 1000∗1000∗100;
13 // number o f i n t s in array
14 const uint32_t m = (n − 16) / 16 ;
15 // 16∗4 = 64 = s i z e o f (c a ch e l i n e)
16

17 void ∗ A = 0 ;
18 i n t lRc = posix_memalign(&A, 64 , (n ∗ s i z e o f (int32_t))) ;
19 i f (lRc) {
20 p r i n t f ("memalign f a i l e d . ") ;
21 r e turn 1 ;
22 }
23

24 int32_t ∗ B = nu l l p t r ;
25

26 // ∗∗∗ (0) ∗∗∗
27 B = (int32_t ∗) A;
28 f o r (uint32_t i = 0 ; i < n ; ++i) { B[i] = 1 ; }
29 const int32_t lSum0 = sum(B, m, 1) ;
30

31 // ∗∗∗ (1) ∗∗∗
32 B = (int32_t ∗) A;
33 f o r (uint32_t i = 0 ; i < n ; ++i) { B[i] = 1 ; }
34 const int32_t lSum1 = sum(B, m, 16) ;
35

36 // ∗∗∗ (2) ∗∗∗
37 B = (int32_t ∗) (A + 62) ;

3

38 f o r (uint32_t i = 0 ; i < n − 15 ; ++i) { B[i] = 1 ; }
39 const int32_t lSum2 = sum(B, m, 16) ;
40

41 p r i n t f ("sum0/1/2 : %d , %d , %d\n" , lSum0 , lSum1 , lSum2) ;
42

43 a s s e r t ((void ∗) B < A + n) ;
44 f r e e (A) ;
45 }

Exercise 3 a)

In the following figure, for each access pattern (0), (1) and (2), indicate the location
of the first array element that is summed up when calling the sum function. Suppose
that int* A points to the leftmost integer in cache line 0.

64 B

4 B = sizeof(int) 1B

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

...

Solution

• (0) and (1) both start at the first element of A, i. e., A[0]. They only differ in the
step size.

• (2) is shifted by 62B, i. e., the first two bytes of the four-byte integer are still in
cache line 0, the other two bytes are in the subsequent cache line.

64 B

4 B = sizeof(int)

(0)+(1) (2)
...

1B

...
(2)

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

...

4

Exercise 3 b)

Use your findings of the previous subtask to determine which of the access patterns is
cache-aligned and which is not.

Solution

(0) and (1) are cache-aligned, (2) is not. Note that unaligned access is more expen-
sive (or even impossible on some architectures) than aligned access.

Note also that an offset of 2B would be unaligned as well with respect to the data
type int32_t: B = (int32_t ∗) (A + 2) ; However, a step size of 16 would mean
summing up the integers at bytes 2 to 5 of each cache line, so none of the accesses would
span more than one cache line. Such accesses are cheaper than those crossing a cache
line boundary (like (2)), so the effect might not be measurable in this case.

Exercise 4

Note: This exercise was discussed in class, but was originally not on the sheet. It was
taken from Cormen et al., 3e, p. 277, Ex. 11.4-1.

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m = 11 using open addressing with the auxiliary hash function h′(k) := k. For
inserting, use

a) linear probing,

b) quadratic probing with c1 := 1, c2 := 3,

c) double hashing with the two auxiliary hash functions h1(k) := k and
h2(k) := (k mod (m− 1)) + 1.

Solution

The hash functions for the three probing variants linear probing (LP), quadratic
probing (QP) and double hashing (DH) are

• hLP(k, i) := (h′(k) + i) mod m,

• hQP(k, i) := (h′(k) + i+ 3i2) mod m,

• hDH(k, i) := (h1(k) + i · h2(k)) mod m.

The following two tables show the state of the three hash tables after the last insert
and the probing sequences for each key insertion under each probing variant.

5

Hash Table

LP QP DH

0 22 22 22
1 88
2 88 59
3 17 17
4 4 4 4
5 15 15
6 28 28 28
7 17 59 88
8 59 15
9 31 31 31

10 10 10 10

Probing Sequences

Key LP QP DH

10 10 10 10
22 0 0 0
31 9 9 9
4 4 4 4
15 4, 5 4, 8 4, 10, 5
28 6 6 6
17 6, 7 6, 10, 9, 3 6, 3
88 0, 1 0, 4, 3, 8, 8, 3, 4, 0, 2 0, 9, 7
59 4, 5, 6, 7, 8 4, 8, 7 4, 3, 2

6

