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Exercise Sheet #4 Task 1

Task 1

1 size_t selectBranch(int* aInput, int* aOutput, size_t aSize, int aValue) {
2 size_t j = 0;
3 for (size_t i = 0; i < aSize; ++i) {
4 if (aInput[i ] <= aValue) {
5 aOutput[j++] = aInput[i];
6 }
7 }
8 return j ;
9 }

10

11 size_t selectPredicated(int* aInput, int* aOutput, size_t aSize, int aValue) {
12 size_t j = 0;
13 for (size_t i = 0; i < aSize; ++i) {
14 aOutput[j] = aInput[i ];
15 j += (aInput[i] <= aValue);
16 }
17 return j ;
18 }
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Exercise Sheet #4 Task 1

Task 1

The code illustrates the difference between predicated code and code with
a branch, cf. Script, Section 2.2.3 “(Cost of) Branch (Mis-) Prediction”,
p. 21:

1 The code with an if-statement (branching) runs slower if the
selectivity of the predicate is closer to 0.5. This is due to the fact that
branch prediction works worst in this case.

2 The predicated code achieves the same result without a branch. It
does an unconditional write in each iteration, which is more costly
than doing writes only if the predicate is fulfilled. However, there is no
penalty for branch misprediction since there is simply no branch.
Therefore, the predicated code has constant runtime which is
indifferent to the selectivity of the predicate.
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Exercise Sheet #4 Task 1

Task 1

Which alternative is better?

This is determined by

1 selectivity of the predicate (i. e., the fraction of cases in which the
condition becomes true),

2 cost for executing the conditional code (in the example, this was
aOutput[j] = aInput[i ]; )

Rule of thumb:

The more selective the predicate/condition, the better the performance
of branch prediction and the lower the total penalty of branch
misprediction. Branching might therefore be better in this case.
If the cost for executing the conditional code is high, branching might
be better suited than predicated code.

Note that transforming branching code into predicated code might not
always be possible, especially for more sophisticated conditions and
statements.
Exercise: Write a function that sums up all element in an int array
that are greater than a certain value. Avoid branching.
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Exercise Sheet #4 Task 2

Task 2

Implement a dictionary that allows you to compress the country_or_area
attribute values given in country_or_area.csv.

You are free to choose on the implementation details. Your dictionary may
be based on a hash table, a tree, or something simple (= inefficient), like
an unsorted vector.
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Exercise Sheet #4 Task 2

Hash Table Implementations

1 Hashing by Chaining
2 Open Addressing1

← used by the solution

Insert a key k at some free slot in case slot h(k) is already occupied
(i. e., there is a collision). ⇒ No collision chain is built.
Consequence: Can insert at most as many keys as there are slots in the
table, i. e., n ≤ m. ⇒ Load factor α can never exceed 1.
Probing sequence determines which slots are probed when inserting and
searching. For this, extend the hash function h by a probe number i .

1 Linear Probing: h(k, i) := (h′(k) + i) mod m
2 Quadratic Probing: h(k, i) := (h′(k) + c1i + c2i

2) mod m (c1, c2 ≥ 0)
3 Double Hashing: h(k, i) := (h1(k) + i · h2(k)) mod m

Linear and quadratic probing only generate m instead of the m!
possible distinct probing sequences. They suffer from a problem called
clustering (collisions in one part of the HT lead to even more collisions).
Double hashing can generate up to m2 distinct probing sequences for
well-chosen h1, h2,m.

1See Cormen et al., 3e, p. 269ff.
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Exercise Sheet #4 Task 2

Exercise

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash
table of length m = 11 using open addressing with the auxiliary hash
function h′(k) := k .

For inserting, use
a) linear probing,
b) quadratic probing with c1 := 1, c2 := 3,
c) double hashing with the two auxiliary hash functions h1(k) := k and

h2(k) := (k mod (m − 1)) + 1.

Taken from Cormen et al., 3e, p. 277, Ex. 11.4-1.
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Exercise Sheet #4 Task 2

Exercise

Keys to insert: 10, 22, 31, 4, 15, 28, 17, 88, 59
Linear and quadratic probing

Auxiliary hash function: h′(k) := k
hLP(k , i) := (h′(k) + i) mod m
hQP(k , i) := (h′(k) + i + 3i2) mod m
Pre-computation of i + 3i2

i 0 1 2 3 4 5 6 7 8

i + 3i2 0 4 14 ≡ 3 30 ≡ 8 52 ≡ 8 80 ≡ 3 114 ≡ 4 154 ≡ 0 200 ≡ 2

Double Hashing
Auxiliary hash functions:
h1(k) := k
h2(k) := (k mod (m − 1)) + 1
hDH(k , i) := (h1(k) + i · h2(k)) mod m

Solutions: see exercise sheet solution
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Exercise Sheet #4 Task 2

Task 2

What is the compression rate and the percentage of space savings of your
compression?
The compression ratio is computed as

compRatio =
uncompressedSize
compressedSize

,

where compressedSize is the size of the data plus the size of the dictionary.
The space savings is computed as

spaceSavings = 1− compressedSize
uncompressedSize

.

Numbers for the provided solutions:
compRatio = 10.2689
spaceSavings = 0.902 618 = 90.2%
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Exercise Sheet #4 Task 3

Task 3

This exercise deals with the difference in memory access costs for
cache-aligned and unaligned accesses. It simulates tuples of a database
relation that are stored in row store format, cf. Script, p. 53 ff. (especially
the figure on p. 56).

The sum function sums up m elements of integer array B, starting at B[0]
in steps of s integers, i. e., s = 3 would sum up B[0], B[3], B[6] etc. The
main function uses the sum function to sum up the same array A with
different access patters (step size and offset), denoted by (0), (1) and (2)
in the code.
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Exercise Sheet #4 Task 3

Task 3

In the following figure, indicate the location of the first array element that
is summed up when calling the sum function. Suppose that int* A points
to the leftmost integer in cache line 0.

64 B

4 B = sizeof(int) 1B

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

...

Which of the access patterns is cache-aligned, which is not?
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64 B

4 B = sizeof(int)

(0)+(1) (2) 
...

1B

... 
(2)

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

...

(0) and (1) are cache-aligned,
(2) is not.
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