
Chair of Applied Computer Science III
Prof. Dr. Guido Moerkotte
Email: moerkotte@uni-mannheim.de

Daniel Flachs
Email: daniel.flachs@uni-mannheim.de

Database Systems II Exercise Sheet 4
Spring Semester 2019 Created March 21, 2019

Exercise 1

Download the zip archive for this exercise sheet from the website.
Compile experiment4.cc with the output name set to experiment4, e.g., by compiling
as g++ experiment4.cc -o experiment4.
Run the script runExperiment4.sh and analyze the output. runExperiment4.sh is a
bash script.
If you run Windows, you are able to run this file in case your Windows version is
10 (or newer), cf. https://www.howtogeek.com/261591/how-to-create-and-run-
bash-shell-scripts-on-windows-10/
The script runExperiment4.sh runs experiment4 for different arguments. If you’re
having trouble to run the script, you can also perform the instructions of the script by
hand.

Exercise 2

This exercise deals with compression.

Exercise 2 a)

In the zip file for this exercise sheet, you find a file named country_or_area.csv.
This file contains the attribute values for the column country_or_area of the In-
ternational Financial Statistics data set https://www.kaggle.com/unitednations/
international-financial-statistics.
Implement a dictionary that allows you to compress the country_or_area attribute
values given in country_or_area.csv.
You are free to choose on the implementation details. Your dictionary may be based
on a hash table, a tree, or something simple (= inefficient), like an unsorted vector.

Exercise 2 b)

What is the compression rate and the percentage of space savings of your compression?
The compression ratio is computed as

compRatio =
uncompressedSize

compressedSize
,

where compressedSize is the size of the data plus the size of the dictionary.

1

mailto:moerkotte@uni-mannheim.de
mailto:daniel.flachs@uni-mannheim.de
https://www.howtogeek.com/261591/how-to-create-and-run-bash-shell-scripts-on-windows-10/
https://www.howtogeek.com/261591/how-to-create-and-run-bash-shell-scripts-on-windows-10/
https://www.kaggle.com/unitednations/international-financial-statistics
https://www.kaggle.com/unitednations/international-financial-statistics

The space savings is computed as

spaceSavings = 1− compressedSize

uncompressedSize
.

Exercise 3

This exercise deals with the difference in memory access costs for cache-aligned and
unaligned accesses. It simulates tuples of a database relation that are stored in row
store format, cf. Script, p. 53 ff. (especially the figure on p. 56).

Consider the following piece of code. The sum function sums up m elements of integer
array B, starting at B[0] in steps of s integers, i. e., s = 3 would sum up B[0], B[3],
B[6] etc. The main method uses the sum function to sum up the same array A with
different access patters (step size and offset), denoted by (0), (1) and (2) in the code.

1 int32_t sum (int32_t ∗ B, const u int m, const i n t s) {
2 int32_t lSum = 0 ;
3 f o r (uint32_t i = 0 ; i < m; ++i) { // m: number o f e lements
4 lSum += ∗B;
5 B += s ; // s : s tep s i z e
6 }
7 r e turn lSum ;
8 }
9

10

11 i n t main () {
12 const uint32_t n = 1000∗1000∗100;
13 // number o f i n t s in array
14 const uint32_t m = (n − 16) / 16 ;
15 // 16∗4 = 64 = s i z e o f (c a ch e l i n e)
16

17 void ∗ A = 0 ;
18 i n t lRc = posix_memalign(&A, 64 , (n ∗ s i z e o f (int32_t))) ;
19 i f (lRc) {
20 p r i n t f ("memalign f a i l e d . ") ;
21 r e turn 1 ;
22 }
23

24 int32_t ∗ B = nu l l p t r ;
25

26 // ∗∗∗ (0) ∗∗∗
27 B = (int32_t ∗) A;
28 f o r (uint32_t i = 0 ; i < n ; ++i) { B[i] = 1 ; }
29 const int32_t lSum0 = sum(B, m, 1) ;
30

31 // ∗∗∗ (1) ∗∗∗
32 B = (int32_t ∗) A;
33 f o r (uint32_t i = 0 ; i < n ; ++i) { B[i] = 1 ; }

2

34 const int32_t lSum1 = sum(B, m, 16) ;
35

36 // ∗∗∗ (2) ∗∗∗
37 B = (int32_t ∗) (A + 62) ;
38 f o r (uint32_t i = 0 ; i < n − 15 ; ++i) { B[i] = 1 ; }
39 const int32_t lSum2 = sum(B, m, 16) ;
40

41 p r i n t f ("sum0/1/2 : %d , %d , %d\n" , lSum0 , lSum1 , lSum2) ;
42

43 a s s e r t ((void ∗) B < A + n) ;
44 f r e e (A) ;
45 }

Exercise 3 a)

In the following figure, for each access pattern (0), (1) and (2), indicate the location
of the first array element that is summed up when calling the sum function. Suppose
that int* A points to the leftmost integer in cache line 0.

64 B

4 B = sizeof(int) 1B

Cache Line 0

Cache Line 1

Cache Line 2

Cache Line 3

...

Exercise 3 b)

Use your findings of the previous subtask to determine which of the access patterns is
cache-aligned and which is not.

Exercise 4

Note: This exercise was discussed in class, but was originally not on the sheet. It was
taken from Cormen et al., 3e, p. 277, Ex. 11.4-1.

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m = 11 using open addressing with the auxiliary hash function h′(k) := k. For
inserting, use

a) linear probing,

b) quadratic probing with c1 := 1, c2 := 3,

c) double hashing with the two auxiliary hash functions h1(k) := k and
h2(k) := (k mod (m− 1)) + 1.

3

