Database Systems II – Exercise #3 Sheet #3: Branch Prediction + Hashing and Hash Tables

Daniel Flachs

Chair of Practical Computer Science III: Database Management Systems

13/03/2019

Created March 13, 2019

1 Compiler/Assembler Tool: godbolt

2 Exercise Sheet #3

- Task 1
- Task 2
- Task 3

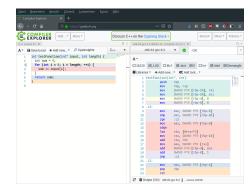
1 Compiler/Assembler Tool: godbolt

- Task 1
- Task 2
- Task 3

godbolt

Compiler Explorer, https://godbolt.org/

- Lets you enter and compile source code to assembler.
- You can choose
 - architecture (Intel, ARM, ...),
 - compiler (gcc, clang, ...),
 - and compiler flags.
- Source and assembler code are shown side by side.



Intel x86 architecture see

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture.

1 Compiler/Assembler Tool: godbolt

2 Exercise Sheet #3

- Task 1
- Task 2
- Task 3

Task 1 a+b

In general, the code implements an if-statement that depends on a conjunction of two selection predicates p_1 and p_2 , i. e.

```
if p_1 \land p_2
<code 1>
else <code 2>
```

On what factors does the efficiency of the above code depend, assuming that <code 1> and <code 2> take approximately the same time?

- costs of evaluating p_1 and/or p_2
- implementation of the ∧ operator (& vs. &&) and probability that p₁ is true

Recap: Branch Prediction

- CPU loads subsequent instructions in advance and starts executing them (pipelining and speculative execution).
- If a branch (if-statement) is encountered, the CPU tries to guess the outcome of the condition (branch prediction) and loads the instructions of the path that is more likely to be executed.
- Branch misprediction: pipeline hazard leading to instruction stall.
- Branch prediction is harder if both branches are equally likely. The probability for a misprediction increases.

Recap: & vs. && in C++

- In C++, there are two variants for a logical AND operator (∧) that connects two predicates p₁ and p₂.
- &&
 - Short-circuit evaluation, i. e., the second operand is not evaluated if the first yields false.
 - Beneficial if the second operand is expensive to evaluate.
 - Introduces a new "invisible branch" that evaluates p₂ only if p₁ is true.
 ⇒ Danger of branch misprediction.
- **&**
- Both operands are always evaluated.
- Does not introduce an additional branch.
- Unnecessary cost for evaluating the second operand even if the first yields false.
- Depending on the use case, one variant might be superior to the other.

Task 1b

```
bool singleAmp(int a, int b) {
     if ((a == 3) \& (b == 5)) {
2
       return true;
3
     }
 Δ
    return false;
5
6 }
7
  bool doubleAmp(int a, int b) {
8
     if ((a == 3) \&\& (b == 5))
9
        ſ
       return true;
    }
11
    return false;
12
13 }
14
```

- How does the assembler code differ?
- Optimization levels: -O0 vs. -O3
- Side effects
 - If the predicates do not have side effects, & and && are identical w.r.t. correctness.
 - In that case, the compiler may optimize by just evaluating both predicates (if they are cheap) and disregarding short-circuit evaluation.
 - If a predicate has side effects, short circuit evaluation is a must as the programmer might rely on that behavior!

Task 1b Code with side effects

What is the expected behavior of the following code snippet?

```
#include <iostream>
2
  bool __attribute__ ((noinline)) // Disallows inlining
3
4 secondCondition (int b) {
    puts(" first condition was true");
5
    return (b==5):
6
7 }
8
9 bool f(int a, int b) {
    if ((a == 3) \&\& secondCondition(b)) \{
10
      return true;
11
    }
12
    return false;
13
14 }
```

Task 1c

- Both functions sum up the elements in an integer array.
- sum0 uses a single summation variable, iterates all elements using a for-loop, and always adds the current element: 1Sum += aArray[i];
- sum1 uses a for-loop iterating the indices of the lower half of the array, and two summation variables, each of the summing up the elements in one half of the array:

lSum1 += aArray[i];

lSum2 += aArray[i+lHalf];

- Observation: sum1 runs faster than sum0.
- Reason: μ -ops parallelism
- How about cache misses?

Task 2a

What does the term universal hashing mean?

- Intuition: Universal hashing captures the desired property that distinct keys do not collide too often. The idea is to choose a hash function from a set of hash functions *randomly* and *independent* of the values that are stored in it.
- Formal: Let H be a family of hash functions that map values in U to values in $M := \{0, 1, ..., m 1\}$. H is said to be *universal* iff for each pair of distinct keys $k, l \in U$, the number of hash functions $h \in H$ for which h(k) = h(l) is at most

$\frac{|H|}{|M|}.$

Equivalently, we can say that, for a hash function h, randomly chosen from the family of hash function H, we have that

$$\Pr[h(k) = h(l)] \le \frac{1}{|M|},$$

i.e., the chance of a collision between k and l is no more than $\frac{1}{|M|}$. This equals the probability that h(k) = h(l) for randomly chosen values of h(k) and h(l) from the interval $\{0, 1, \ldots, m-1\}$.

Daniel Flachs

Task 2b

Consider the following four hash functions h_1, h_2, h_3, h_4 that map values from the universe $U := \{0, 1, 2, 3, 4, 5\}$ to the set $D := \{0, 1\}$.

$x \in U$	0	1	2	3	4	5
$h_1(x) \in \{0,1\}$	0	1	0	1	0	1
$h_2(x) \in \{0,1\}$	0	0	0	1	1	1
$h_3(x) \in \{0,1\}$	0	0	1	0	1	1
$h_4(x) \in \{0,1\}$	1	0	0	1	1	0

- i. Let $H := \{h_1, h_2\}$. Is H universal?
- ii. Let $H' := \{h_1, h_2, h_3\}$. Is H' universal?
- iii. Let $H'' := \{h_1, h_2, h_3, h_4\}$. Is H'' universal?

Task 2b

$x \in U$	0	1	2	3	4	5
$h_1(x) \in \{0,1\}$	0	1	0	1	0	1
$h_2(x) \in \{0,1\}$	0	0	0	1	1	1
$h_3(x) \in \{0,1\}$	0	0	1	0	1	1
$h_4(x) \in \{0,1\}$	1	0	0	1	1	0

i. $H := \{h_1, h_2\}$ is not universal. The relevant bound is $\frac{|H|}{|D|} = \frac{2}{2} = 1$. • $\delta_H(1,4) = 0 \le 1 \checkmark$, and $\delta_H(1,3) = 1 \le 1 \checkmark$, but • $\delta_H(0,2) = 2 \not\le 1 \checkmark$, and $\delta_H(3,5) = 2 \not\le 1 \checkmark$. ii. $H' := \{h_1, h_2, h_3\}$ is not universal. The relevant bound is $\frac{|H'|}{|D|} = \frac{3}{2} = 1.5$. • $\delta_H(1,4) = 0 \le 1.5 \checkmark$, but • $\delta_H(0,2) = 2 \not\le 1.5 \checkmark$, $\delta_H(1,3) = 2 \not\le 1.5 \checkmark$, and $\delta_H(4,5) = 2 \not\le 1.5 \checkmark$. iii. $H'' := \{h_1, h_2, h_3, h_4\}$ is universal. The relevant bound is $\frac{|H''|}{|D|} = \frac{4}{2} = 2$. • $\delta_H(1,4) = 0 \le 2 \checkmark$, $\delta_H(0,2) = 2 \le 2 \checkmark$, $\delta_H(1,3) = 2 \le 2 \checkmark$, $\delta_H(4,5) = 2 \le 2 \checkmark$, ...

Task 3

Implement a hash table that resolves collisions using chaining. Your hash table must be generic: Make the hash function a parameter. Find some data and insert it into your hash table under different hash functions. Output the average length and the maximum length of the buckets/chains in your hash table. What do you observe?