
Database Systems II – Exercise #3
Sheet #3: Branch Prediction + Hashing and Hash Tables

Daniel Flachs

Chair of Practical Computer Science III:
Database Management Systems

13/03/2019

Created March 13, 2019

Contents

1 Compiler/Assembler Tool: godbolt

2 Exercise Sheet #3
Task 1
Task 2
Task 3

Daniel Flachs DBS II – Exercise #3 13/03/2019 2 / 15

Compiler/Assembler Tool: godbolt

Contents

1 Compiler/Assembler Tool: godbolt

2 Exercise Sheet #3
Task 1
Task 2
Task 3

Daniel Flachs DBS II – Exercise #3 13/03/2019 3 / 15

Compiler/Assembler Tool: godbolt

godbolt

Compiler Explorer, https://godbolt.org/

Lets you enter and compile
source code to assembler.
You can choose

architecture (Intel, ARM, ...),
compiler (gcc, clang, ...),
and compiler flags.

Source and assembler code are
shown side by side.

Intel x86 architecture see
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture.

Daniel Flachs DBS II – Exercise #3 13/03/2019 4 / 15

https://godbolt.org/
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture

Exercise Sheet #3

Contents

1 Compiler/Assembler Tool: godbolt

2 Exercise Sheet #3
Task 1
Task 2
Task 3

Daniel Flachs DBS II – Exercise #3 13/03/2019 5 / 15

Exercise Sheet #3 Task 1

Task 1 a+b

In general, the code implements an if-statement that depends on a
conjunction of two selection predicates p1 and p2, i. e.

if p1 ∧ p2
<code 1>

else <code 2>

On what factors does the efficiency of the above code depend, assuming
that <code 1> and <code 2> take approximately the same time?

costs of evaluating p1 and/or p2

implementation of the ∧ operator (& vs. &&)
and probability that p1 is true

Daniel Flachs DBS II – Exercise #3 13/03/2019 6 / 15

Exercise Sheet #3 Task 1

Recap: Branch Prediction

CPU loads subsequent instructions in advance and starts executing
them (pipelining and speculative execution).
If a branch (if-statement) is encountered, the CPU tries to guess the
outcome of the condition (branch prediction) and loads the
instructions of the path that is more likely to be executed.
Branch misprediction: pipeline hazard leading to instruction stall.
Branch prediction is harder if both branches are equally likely.
The probability for a misprediction increases.

Daniel Flachs DBS II – Exercise #3 13/03/2019 7 / 15

Exercise Sheet #3 Task 1

Recap: & vs. && in C++

In C++, there are two variants for a logical AND operator (∧) that
connects two predicates p1 and p2.
&&

Short-circuit evaluation, i. e., the second operand is not evaluated if the
first yields false.
Beneficial if the second operand is expensive to evaluate.
Introduces a new “invisible branch” that evaluates p2 only if p1 is true.
⇒ Danger of branch misprediction.

&
Both operands are always evaluated.
Does not introduce an additional branch.
Unnecessary cost for evaluating the second operand even if the first
yields false.

Depending on the use case, one variant might be superior to the other.

Daniel Flachs DBS II – Exercise #3 13/03/2019 8 / 15

Exercise Sheet #3 Task 1

Task 1b

1 bool singleAmp(int a, int b) {
2 if ((a == 3) & (b == 5)) {
3 return true;
4 }
5 return false ;
6 }
7

8 bool doubleAmp(int a, int b) {
9 if ((a == 3) && (b == 5))

{
10 return true;
11 }
12 return false ;
13 }
14

How does the assembler code differ?

Optimization levels: -O0 vs. -O3

Side effects

If the predicates do not have side
effects, & and && are identical
w. r. t. correctness.
In that case, the compiler may
optimize by just evaluating both
predicates (if they are cheap) and
disregarding short-circuit
evaluation.
If a predicate has side effects,
short circuit evaluation is a must
as the programmer might rely on
that behavior!

Daniel Flachs DBS II – Exercise #3 13/03/2019 9 / 15

Exercise Sheet #3 Task 1

Task 1b
Code with side effects

What is the expected behavior of the following code snippet?

1 #include <iostream>
2

3 bool __attribute__ ((noinline)) // Disallows inlining
4 secondCondition (int b) {
5 puts(" first condition was true");
6 return (b==5);
7 }
8

9 bool f(int a, int b) {
10 if ((a == 3) && secondCondition(b)) {
11 return true;
12 }
13 return false ;
14 }

Daniel Flachs DBS II – Exercise #3 13/03/2019 10 / 15

Exercise Sheet #3 Task 1

Task 1c

Both functions sum up the elements in an integer array.
sum0 uses a single summation variable, iterates all elements using a
for-loop, and always adds the current element: lSum += aArray[i];

sum1 uses a for-loop iterating the indices of the lower half of the
array, and two summation variables, each of the summing up the
elements in one half of the array:
lSum1 += aArray[i];
lSum2 += aArray[i+lHalf];

Observation: sum1 runs faster than sum0.
Reason: µ-ops parallelism
How about cache misses?

Daniel Flachs DBS II – Exercise #3 13/03/2019 11 / 15

Exercise Sheet #3 Task 2

Task 2a

What does the term universal hashing mean?

Intuition: Universal hashing captures the desired property that distinct keys
do not collide too often. The idea is to choose a hash function from a set of
hash functions randomly and independent of the values that are stored in it.

Formal: Let H be a family of hash functions that map values in U to values
in M := {0, 1, . . . ,m − 1}. H is said to be universal iff for each pair of
distinct keys k , l ∈ U, the number of hash functions h ∈ H for which
h(k) = h(l) is at most

|H|
|M|

.

Equivalently, we can say that, for a hash function h, randomly chosen from
the family of hash function H, we have that

Pr[h(k) = h(l)] ≤ 1
|M|

,

i.e., the chance of a collision between k and l is no more than 1
|M| . This

equals the probability that h(k) = h(l) for randomly chosen values of h(k)
and h(l) from the interval {0, 1, . . . ,m − 1}.

Daniel Flachs DBS II – Exercise #3 13/03/2019 12 / 15

Exercise Sheet #3 Task 2

Task 2b

Consider the following four hash functions h1, h2, h3, h4 that map values
from the universe U := {0, 1, 2, 3, 4, 5} to the set D := {0, 1}.

x ∈ U 0 1 2 3 4 5

h1(x) ∈ {0, 1} 0 1 0 1 0 1
h2(x) ∈ {0, 1} 0 0 0 1 1 1
h3(x) ∈ {0, 1} 0 0 1 0 1 1
h4(x) ∈ {0, 1} 1 0 0 1 1 0

i. Let H := {h1, h2}. Is H universal?
ii. Let H ′ := {h1, h2, h3}. Is H ′ universal?
iii. Let H ′′ := {h1, h2, h3, h4}. Is H ′′ universal?

Daniel Flachs DBS II – Exercise #3 13/03/2019 13 / 15

Exercise Sheet #3 Task 2

Task 2b

x ∈ U 0 1 2 3 4 5

h1(x) ∈ {0, 1} 0 1 0 1 0 1
h2(x) ∈ {0, 1} 0 0 0 1 1 1
h3(x) ∈ {0, 1} 0 0 1 0 1 1
h4(x) ∈ {0, 1} 1 0 0 1 1 0

i. H := {h1, h2} is not universal. The relevant bound is |H|
|D| =

2
2 = 1.

δH(1, 4) = 0 ≤ 1 3, and δH(1, 3) = 1 ≤ 1 3, but
δH(0, 2) = 2 6≤ 1 7, and δH(3, 5) = 2 6≤ 1 7.

ii. H ′ := {h1, h2, h3} is not universal. The relevant bound is |H′|
|D| = 3

2 = 1.5.

δH(1, 4) = 0 ≤ 1.5 3, but
δH(0, 2) = 2 6≤ 1.5 7, δH(1, 3) = 2 6≤ 1.5 7, and δH(4, 5) = 2 6≤ 1.5 7.

iii. H ′′ := {h1, h2, h3, h4} is universal. The relevant bound is |H′′|
|D| = 4

2 = 2.

δH(1, 4) = 0 ≤ 2 3, δH(0, 2) = 2 ≤ 2 3, δH(1, 3) = 2 ≤ 2 3,
δH(4, 5) = 2 ≤ 2 3, ...

Daniel Flachs DBS II – Exercise #3 13/03/2019 14 / 15

Exercise Sheet #3 Task 3

Task 3

Implement a hash table that resolves collisions using chaining. Your hash
table must be generic: Make the hash function a parameter. Find some
data and insert it into your hash table under different hash functions.
Output the average length and the maximum length of the buckets/chains
in your hash table. What do you observe?

Daniel Flachs DBS II – Exercise #3 13/03/2019 15 / 15

	Compiler/Assembler Tool: godbolt
	Exercise Sheet #3
	Task 1
	Task 2
	Task 3

