Database Systems || — Exercise #3

Sheet #3: Branch Prediction 4+ Hashing and Hash Tables

Daniel Flachs

Chair of Practical Computer Science Ill:
Database Management Systems

13/03/2019

ol
& ,UNIVERSITY
¥ OF MANNHEIM

School of Business Informatics
and Mathematics

Created March 13, 2019

Contents

Compiler/Assembler Tool: godbolt

Exercise Sheet #3
m Task 1
m Task 2
m Task 3

Daniel Flachs DBS Il — Exercise #3 13/03/2019 2/15

Compiler/Assembler Tool: godbolt

Contents

Compiler/Assembler Tool: godbolt

Daniel Flachs DBS Il — Exercise #3 13/03/2019 3/15

Compiler/Assembler Tool: godbolt

godbolt

Compiler Explorer, https://godbolt.org/

m Lets you enter and compile
source code to assembler.
m You can choose
m architecture (Intel, ARM, ...),
m compiler (gec, clang, ...),
m and compiler flags.

338 BREg

4]

m Source and assembler code are
shown side by side.

SEREREF

EET]

»

€ HOUPI (00) 004 e 1 -camrene)

Intel x86 architecture see

https://en.wikibooks.org/wiki/X86 _ Assembly/X86 _ Architecture.

Daniel Flachs DBS Il — Exercise #3 13/03/2019 4/15

https://godbolt.org/
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture

Exercise Sheet #3

Contents

Exercise Sheet #3
m Task 1
m Task 2
m Task 3

Daniel Flachs DBS Il — Exercise #3 13/03/2019 5/15

Exercise Sheet #3 Task 1

Task 1 a+b

In general, the code implements an if-statement that depends on a
conjunction of two selection predicates p; and py, i.e.

if p1Ap2
<code 1>
else <code 2>

On what factors does the efficiency of the above code depend, assuming
that <code 1> and <code 2> take approximately the same time?

m costs of evaluating p; and/or ps

m implementation of the A operator (& vs. &&)
and probability that p; is true

Daniel Flachs DBS Il — Exercise #3 13/03/2019 6/15

Exercise Sheet #3 Task 1

Recap: Branch Prediction

m CPU loads subsequent instructions in advance and starts executing
them (pipelining and speculative execution).

m If a branch (if-statement) is encountered, the CPU tries to guess the
outcome of the condition (branch prediction) and loads the
instructions of the path that is more likely to be executed.

m Branch misprediction: pipeline hazard leading to instruction stall.

m Branch prediction is harder if both branches are equally likely.
The probability for a misprediction increases.

Daniel Flachs DBS Il — Exercise #3 13/03/2019 7/15

Exercise Sheet #3 Task 1

Recap: & vs. && in C++

m In C++, there are two variants for a logical AND operator (A) that
connects two predicates p; and po.
B &&
m Short-circuit evaluation, i.e., the second operand is not evaluated if the
first yields false.
m Beneficial if the second operand is expensive to evaluate.
m Introduces a new “invisible branch” that evaluates p, only if p; is true.
= Danger of branch misprediction.

m Both operands are always evaluated.

m Does not introduce an additional branch.

m Unnecessary cost for evaluating the second operand even if the first
yields false.

m Depending on the use case, one variant might be superior to the other.

Daniel Flachs DBS Il — Exercise #3 13/03/2019 8/15

Exercise Sheet #3 Task 1

Task 1b

. bool singleAmp(int a, int b) { m How does the assembler code differ?

2 if ((a ==23) & (b ==05)) { m Optimization levels: -O0 vs. -O3

3 return true;

.} m Side effects

5 return false; m If the predicates do not have side

6 effects, & and && are identical

7 w. r.t. correctness.

s bool doubleAmp(int a, int b) { m In that case, the compiler may

o if ((a == 3) && (b == 5)) optimize by just evaluating both
{ predicates (if they are cheap) and

10 return true; disregarding short-circuit

1} evaluation.

12 return false; m If a predicate has side effects,

13} short circuit evaluation is a must

14 as the programmer might rely on

that behavior!

Daniel Flachs DBS Il — Exercise #3 13/03/2019 9/15

Exercise Sheet #3 Task 1

Task 1b

Code with side effects

What is the expected behavior of the following code snippet?

1 #include <iostream>

2

bool _ _attribute_ _ ((noinline)) // Disallows inlining
secondCondition (int b) {

puts(" first condition was true");

return (b==5);

3
4
5
6
7}
8
9

bool f(int a, int b) {
10 if ((a == 3) && secondCondition(b)) {

11 return true;
2}

13 return false;
14 }

Daniel Flachs DBS Il — Exercise #3 13/03/2019 10/15

Exercise Sheet #3 Task 1

Task 1c

m Both functions sum up the elements in an integer array.

m sumO uses a single summation variable, iterates all elements using a
for-loop, and always adds the current element: 1Sum += aArraylil;

m suml uses a for-loop iterating the indices of the lower half of the
array, and two summation variables, each of the summing up the
elements in one half of the array:
1Suml += aArraylil;
1Sum?2 += aArrayl[i+1Half];

m Observation: suml runs faster than sumO.
m Reason: p-ops parallelism

m How about cache misses?

Daniel Flachs DBS Il — Exercise #3 13/03/2019 11/15

Exercise Sheet #3 Task 2

Task 2a

What does the term universal hashing mean?

m Intuition: Universal hashing captures the desired property that distinct keys
do not collide too often. The idea is to choose a hash function from a set of
hash functions randomly and independent of the values that are stored in it.

m Formal: Let H be a family of hash functions that map values in U to values
in M:={0,1,...,m—1}. H is said to be universal iff for each pair of
distinct keys k,/ € U, the number of hash functions h € H for which
h(k) = h(/) is at most

1H|
(M|
m Equivalently, we can say that, for a hash function h, randomly chosen from
the family of hash function H, we have that .
= <
Prlh(k) = (1) < 7
i.e., the chance of a collision between k and / is no more than ﬁ This
equals the probability that h(k) = h(/) for randomly chosen values of h(k)
and h(/) from the interval {0,1,..., m—1}.

Daniel Flachs DBS Il — Exercise #3 13/03/2019 12 /15

Exercise Sheet #3 Task 2

Task 2b

Consider the following four hash functions hy, hy, h3, hs that map values
from the universe U := {0,1,2,3,4,5} to the set D := {0,1}.

xeU 01 2 3 45
m(x)e{0,1} 0 1 0 1 0 1
h(x)e{0,1} 0 0 0 1 1 1
hy(x)e{0,1} 0 0 1 0 1 1
ha(x)€{0,1} 1 0 0 1 1 0

i. Let H:= {hy, ho}. Is H universal?
ii. Let H := {h1, ha, h3}. Is H universal?
iii. Let H" := {hy, ha, h3, ha}. Is H" universal?

Daniel Flachs DBS Il — Exercise #3 13/03/2019 13 /15

Exercise Sheet #3

Task 2b
xe U 0 1 2 3 4 5
m(x)€{0,1} 0 1 0 1 0 1
ha(x)e{0,1} 0 0 0 1 1 1
hi(x)€{0,1} 0 0 1 0 1 1
ha(x)€{0,1} 1 0 0 1 1 0
i = {hy, ho} is not universal. The relevant bound is ‘i} = % =1.

-5%L®:O§1JJM6ML$:1§1me

m 04(0,2) =2£1KX, and §(3,5) =2 L 1 X.

[H|
1Dl

ii. H :={hy, hy, h3} is not universal. The relevant bound is

m 0y(1,4)=0<15/, but
m 04(0,2) =2L 15X, 6n(1,3) =2« 15X, and §(4,5) =2 £ 1.5 X.

iii. H” :={h1, ha, h3, hy} is universal. The relevant bound is Il%ll = 5 =2,
m(1,4)=0<2/,64(0,2)=2<2/,64(1,3) =2<2/

Su(4,5)=2<2/, ..

3

Daniel Flachs DBS Il — Exercise #3 13/03/2019 14 /15

Exercise Sheet #3 Task 3

Implement a hash table that resolves collisions using chaining. Your hash
table must be generic: Make the hash function a parameter. Find some
data and insert it into your hash table under different hash functions.
Output the average length and the maximum length of the buckets/chains
in your hash table. What do you observe?

Daniel Flachs DBS Il — Exercise #3 13/03/2019 15 /15

	Compiler/Assembler Tool: godbolt
	Exercise Sheet #3
	Task 1
	Task 2
	Task 3

