
Database Systems II – Exercise #1
Sheet #1: Big O Notation, Data Structures and Algorithms

Daniel Flachs

Chair of Practical Computer Science III:
Database Management Systems

27/02/2019

Created February 27, 2019

Contents

1 Exercise Sheet #1
Task 2
Task 3
Task 4

Daniel Flachs DBS II – Exercise #1 27/02/2019 2 / 27

Exercise Sheet #1

Contents

1 Exercise Sheet #1
Task 2
Task 3
Task 4

Daniel Flachs DBS II – Exercise #1 27/02/2019 3 / 27

Exercise Sheet #1 Task 2

Task 2
Recap: Big O Notation – Asymptotic Runtime

Approximation for the runtime of an algorithm for sufficiently large
inputs (→ asymptotic).
Runtime (in number of instructions) is given as a function that
depends on the size of the input, e. g., length of an array, number of
bits needed to store a number.
Big O only considers the highest-order terms of an expression and
ignores constant factors, e. g., 0.5n2 + 3n − 4 is O(n2).
Reason: For large input sizes n, the lower-order terms and constants
become insignificant.
Read more in Cormen, Leiserson, Rivest, Stein: Introduction to
Algorithms. 3rd ed. Cambridge, Mass. MIT Press, 2009.
Chapters 2 and 3. Online book available at the IUni MA Library.

Daniel Flachs DBS II – Exercise #1 27/02/2019 4 / 27

https://primo-49man.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=MAN_ALMA21101950740002561&context=L&vid=MAN_UB&search_scope=MAN_ALMA&isFrbr=true&tab=default_tab&lang=en_US

Exercise Sheet #1 Task 2

Task 2
Recap: Big O Notation – Asymptotic Runtime

Note

For this exercise, we are mostly interested in upper bounds that are tight.
Different from the formal definition, we use the letter O to indicate such a
bound, not considering the formal differences between O, Θ, Ω, o, and ω.
For details, see ICormen et al.

Daniel Flachs DBS II – Exercise #1 27/02/2019 5 / 27

https://primo-49man.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=MAN_ALMA21101950740002561&context=L&vid=MAN_UB&search_scope=MAN_ALMA&isFrbr=true&tab=default_tab&lang=en_US

Exercise Sheet #1 Task 2

Task 2a

1 void printUnorderedPairs (const std :: vector<double>& V) {
2 for (unsigned i = 0; i < V.size() ; ++i) {
3 for (unsigned j = i+1; j < V.size() ; ++j) {
4 std :: cout << "{" << V[i] << "," << V[j] << "}" << std::endl;
5 }
6 }
7 }

Loop body is executed for all pairs P := {(i , j) | 0 ≤ i < j < n}.

|P| = (n − 1) + (n − 2) + . . . + 1 + 0︸ ︷︷ ︸
n

=
n · (n − 1)

2

Asymptotic Runtime: O(n2)

Daniel Flachs DBS II – Exercise #1 27/02/2019 6 / 27

Exercise Sheet #1 Task 2

Task 2b

1 int factorial (int n) {
2 if (n < 0) { // Error case
3 return -1;
4 } else if (n == 0) { // Base case
5 return 1;
6 } else { // Recursion
7 return n * factorial (n-1);
8 }
9 }

For an arbitrary n ≥ 0, the recursion branch is entered n times, and the
base case once: n + 1.

Asymptotic Runtime: O(n)

Daniel Flachs DBS II – Exercise #1 27/02/2019 7 / 27

Exercise Sheet #1 Task 2

Task 2c

1 void allFib (int n) {
2 for (int i = 0; i <= n; ++i) {
3 std :: cout << "fib(" << i << "): " << fib(i) << std::endl;
4 }
5 }
6

7 int fib (int n) {
8 if (n == 0 || n == 1) {
9 return n;

10 }
11 return fib (n-1) + fib(n-2);
12 }

Each fib(n) call produces two recursive calls, fib(n-1) and fib(n-2).
fib(n) has runtime O(2n).
allFib calls fib(n) for all n ∈ {0, . . . , n}
⇒ 20 + 21 + . . . + 2n−1 + 2n = 2n+1 − 1.

Asymptotic Runtime: O(2n)
Daniel Flachs DBS II – Exercise #1 27/02/2019 8 / 27

Exercise Sheet #1 Task 3

Task 3a

Implement a function that finds all positive integer solutions to the equation

a2 + b2 = c2 + d2

where a, b, c, d ∈ [0, 1000].

Try to find an efficient solution. What is the asymptotic runtime of your
function? Measure the actual runtime of your function.

Daniel Flachs DBS II – Exercise #1 27/02/2019 9 / 27

Exercise Sheet #1 Task 3

Task 3b

Implement a function that compresses a string using counts of repeated
characters1. For example, the string aabcccccaaa becomes a2bc5a3. Note
that if a character occurs only once, then its count is not part of the
compressed string.

1Run-length encoding, see https://en.wikipedia.org/wiki/Run-length_encoding

Daniel Flachs DBS II – Exercise #1 27/02/2019 10 / 27

https://en.wikipedia.org/wiki/Run-length_encoding

Exercise Sheet #1 Task 3

Task 3c

Implement a stack class, i.e., a LIFO container.
Your class is expected to provide the following function members:

pop(): Remove the top item from the stack.
push(item): Add an item to the top of the stack.
top(): Return the top of the stack.
isEmpty(): Return true if and only if the stack is empty.

Daniel Flachs DBS II – Exercise #1 27/02/2019 11 / 27

Exercise Sheet #1 Task 4

Task 4

Implement a binary tree class based on the skeleton code provided.
a) Copy constructor and destructor
b) In-order printing
c) Call by value and call by reference
d) Symmetry check
e) Symmetric inversion of a tree
f) Flatten a tree to a linked list

Daniel Flachs DBS II – Exercise #1 27/02/2019 12 / 27

Exercise Sheet #1 Task 4

Task 4d: Symmetry of Binary Trees

A tree is symmetrical if the left subtree Tl is the mirror image of the
right subtree Tr .
Tl is the mirror image of Tr if

the root nodes are identical, and
the right subtree of Tr is the mirror image of the left subtree of Tl , and
the right subtree of Tl is the mirror image of the left subtree of Tr .

Daniel Flachs DBS II – Exercise #1 27/02/2019 13 / 27

Exercise Sheet #1 Task 4

Task 4e: Symmetric Inversion of a Binary Tree

The inversion of an empty tree is the empty tree.
The inversion of a tree with a left subtree Tl and a right subtree Tr is
a tree with the inversion of Tr as its left child and the inversion of Tl

as its right child.

Daniel Flachs DBS II – Exercise #1 27/02/2019 14 / 27

Exercise Sheet #1 Task 4

Task 4f: Binary Tree to Linked List

To transform a tree with root R and subtrees Tl and Tr :
Transform Tr into a list, then Tr .
The list Tl becomes the right child of R.
The list Tr becomes the left child of R.

Daniel Flachs DBS II – Exercise #1 27/02/2019 15 / 27

Exercise Sheet #1 Task 4

Task 4f: Binary Tree to Linked List

1 void flatten (Node* aNode) {
2 if (!aNode) { return; } // Recursion anchor: NULL nodes
3
4 flatten (aNode->getRightChild()); // Recursively flatten both child nodes
5 flatten (aNode->getLeftChild()); // => _left and _right are now chains!
6
7 /* Go to the rightmost (deepest) node in the left subtree of aNode
8 * and append the entire right subtree of aNode as rightmost's right child . */
9 Node* lRightMost = aNode->getLeftChild();

10 if (lRightMost) {
11 while (lRightMost->getRightChild()) {
12 lRightMost = lRightMost->getRightChild();
13 }
14
15 lRightMost->setRightChild(aNode->getRightChild());
16 aNode->setRightChild(aNode->getLeftChild());
17 aNode->setLeftChild(NULL);
18 }
19 }

Daniel Flachs DBS II – Exercise #1 27/02/2019 16 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (1/11)

0

1 2

3

4

5

6

flatten(0)
Daniel Flachs DBS II – Exercise #1 27/02/2019 17 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (2/11)

0

1 2

3

4

5

6

flatten(2)
Daniel Flachs DBS II – Exercise #1 27/02/2019 18 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (3/11)

0

1 2

3

4

5

6

flatten(6) X
Daniel Flachs DBS II – Exercise #1 27/02/2019 19 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (4/11)

0

1 2

3

4

5

6

flatten(3)
Daniel Flachs DBS II – Exercise #1 27/02/2019 20 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (5/11)

0

1 2

3

4

5

6

flatten(4)
Daniel Flachs DBS II – Exercise #1 27/02/2019 21 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (6/11)

0

1 2

3

4

5

6

flatten(5) X
Daniel Flachs DBS II – Exercise #1 27/02/2019 22 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (7/11)

0

1 2

3

4

5

6 ⇒

0

1 2

3

4

5

6

flatten(3) X
Daniel Flachs DBS II – Exercise #1 27/02/2019 23 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (8/11)

0

1 2

3

4

5

6 ⇒

0

1 2

3

4

5

6

flatten(2) X
Daniel Flachs DBS II – Exercise #1 27/02/2019 24 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (9/11)

0

1 2

3

4

5

6

flatten(0)

Daniel Flachs DBS II – Exercise #1 27/02/2019 25 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (10/11)

0

1 2

3

4

5

6

flatten(1) X

Daniel Flachs DBS II – Exercise #1 27/02/2019 26 / 27

Exercise Sheet #1 Task 4

Task 2f)
Example (11/11)

0

1 2

3

4

5

6

⇒

0

1

2

3

4

5

6

flatten(0) XDaniel Flachs DBS II – Exercise #1 27/02/2019 27 / 27

	Exercise Sheet #1
	Task 2
	Task 3
	Task 4

