
Database Systems II – Exercise #0
Introduction and Recap of the C++ Programming Language

Daniel Flachs

Chair of Practical Computer Science III:
Database Management Systems

20/02/2019

Created February 21, 2019

Contents

1 Welcome & Organizational

2 C++ Recap
Pointers, References, and Call Semantics
Compilation Stages of a C++ Program
Stack vs. Heap
Object Orientation

3 Links and References

Daniel Flachs DBS II – Exercise #0 20/02/2019 2 / 19

Welcome & Organizational

Contents

1 Welcome & Organizational

2 C++ Recap
Pointers, References, and Call Semantics
Compilation Stages of a C++ Program
Stack vs. Heap
Object Orientation

3 Links and References

Daniel Flachs DBS II – Exercise #0 20/02/2019 3 / 19

Welcome & Organizational

Contact

Daniel Flachs
B6, 29, Room C 0.04
Research assistant at the Chair of Practical Computer Science III
(Prof. Moerkotte) since February 2019
Before: B.Sc. and M.Sc. studies in Business Informatics at the
University of Mannheim
Mail: daniel.flachs@uni-mannheim.de

Web: https://lspi3.informatik.uni-mannheim.de

Daniel Flachs DBS II – Exercise #0 20/02/2019 4 / 19

mailto:daniel.flachs@uni-mannheim.de
https://lspi3.informatik.uni-mannheim.de

Welcome & Organizational

DBS II Organization

Lecture
Lecturer: Prof. Dr. Guido Moerkotte
Time & place: Mondays (weekly), 12:00–13:30 in B6 A1.01
Presentation of new content using I slides and I script.

Exercise Sessions
Lecturer: Daniel Flachs
Time & place: Wednesdays (weekly), 13:45–15:15 in B6 A1.01
Discussion of lecture content + practical application (including
programming!) using exercise sheets.

All materials (script, slides, exercise sheets) and announcements can
be found on the IDBS II web page (we don’t use ILIAS). Check the
page regularly!

Daniel Flachs DBS II – Exercise #0 20/02/2019 5 / 19

https://lspi3.informatik.uni-mannheim.de/en/staff/prof-dr-guido-moerkotte/
https://lspi3.informatik.uni-mannheim.de/fileadmin/lehrstuehle/pi3/UB/Datenbanksysteme_II/2019_FSS/dbsII_slides_2019.pdf
https://lspi3.informatik.uni-mannheim.de/fileadmin/lehrstuehle/pi3/UB/Datenbanksysteme_II/2019_FSS/dbsII_script_2019.pdf
https://lspi3.informatik.uni-mannheim.de/en/staff/daniel-flachs/
https://lspi3.informatik.uni-mannheim.de/en/teaching/database-systems-ii/

Welcome & Organizational

Prerequisites

The lecture covers main memory database management systems
(MMDBMS) both in a conceptual and a practical way.
The exercise class focuses on the latter, i. e., practical application and
especially implementation.
Implementation → programming → C++
You should be familiar with programming in some programming
language on an advanced level.
It’s fine if C++ is new to you, as long as you know basic concepts of
programming and are willing to learn a new language.

Daniel Flachs DBS II – Exercise #0 20/02/2019 6 / 19

Welcome & Organizational

Lecture Overview

Foundations/Recap
1 Hardware
2 Operating System
3 Hashing
4 Compression

MMDBMS
5 Storage Layout
6 Physical Algebra – Processing Modes
7 Expression Evaluation
8 Physical Algebra – Implementation
9 Index Structures
10 Parallelism
11 Boolean Expressions
12 Transaction Management

Daniel Flachs DBS II – Exercise #0 20/02/2019 7 / 19

C++ Recap

Contents

1 Welcome & Organizational

2 C++ Recap
Pointers, References, and Call Semantics
Compilation Stages of a C++ Program
Stack vs. Heap
Object Orientation

3 Links and References

Daniel Flachs DBS II – Exercise #0 20/02/2019 8 / 19

C++ Recap Pointers, References, and Call Semantics

Pointers

Address Memory Variable

0x00 5 x

0x01 0x00 xp

0x02

0x03

0x04

0x05

...

Stores the memory address of a
variable.
Declaration with ‘*’.
‘&’ operator returns the memory
address of a variable.
Access to of the pointer value:
dereferencing with the ‘*’
operator.

1 int x = 5;
2 int* xp = &x;
3 // *xp == 5, xp == 0x00

Daniel Flachs DBS II – Exercise #0 20/02/2019 9 / 19

C++ Recap Pointers, References, and Call Semantics

Pointers vs. References

C++ differentiates between pointers and references.
Pointer

Stores the memory address of a variable.
Can be uninitialized: int* p = nullptr;
Can change, i. e., can point to another memory address (of the same
data type).

Reference
Alias (= different name) for an existing variable.
Must be initialized.
Cannot be changed to reference a different variable.

Daniel Flachs DBS II – Exercise #0 20/02/2019 10 / 19

C++ Recap Pointers, References, and Call Semantics

References

Alias for an existing variable.
Declaration with ‘&’.
Access to a reference value is similar to
a simple variable value.

1 int x = 5;
2 int& xr = x;
3 ++xr;
4 // x == xr == 6

Daniel Flachs DBS II – Exercise #0 20/02/2019 11 / 19

C++ Recap Pointers, References, and Call Semantics

Overview: Variables, Pointers, References

Declaration Definition Combined D&D Value Access

Variable char c; c = ’a’; char c = ’a’; c = ’z’;
Pointer char* cp; cp = &c; char* cp = &c; *cp = ’z’;
Reference – – char& cr = c; cr = ’z’;

Daniel Flachs DBS II – Exercise #0 20/02/2019 12 / 19

C++ Recap Pointers, References, and Call Semantics

Call Semantics: Call by Value vs. Call by Reference

Call by * describes the way in which a function is given its parameters
when it is called.
Call by Value: The function is given a copy of the parameters.
Changing the parameter in the function has no effect on the original
value: void func(int param)

Call by Reference: The function is given a reference to the parameter,
i. e., changes to the parameter value in the function are propagated to
the caller: void func(int& param)

Call by Pointer: Like call by reference, but pointer instead of
reference: void func(int* param)

Daniel Flachs DBS II – Exercise #0 20/02/2019 13 / 19

C++ Recap Pointers, References, and Call Semantics

Call Semantics: Call by Value vs. Call by Reference
Example

1 void addByValue (i n t param , i n t i n c r) {
2 param = param + in c r ;
3 }
4
5 void addByReference (i n t& param , i n t i n c r) {
6 param = param + in c r ;
7 }
8
9 void addByPointer (i n t * param , i n t i n c r) {

10 *param = *param + in c r ; // d e r e f e r en c i n g !
11 }
12
13 i n t main () {
14 i n t x = 100 ; // x == 100
15 addByValue (x , 10) ; // x == 100
16 addByReference (x , 50) ; // x == 150
17 addByPointer(&x , 100) ; // x == 250
18 }

Daniel Flachs DBS II – Exercise #0 20/02/2019 14 / 19

C++ Recap Compilation Stages of a C++ Program

Compilation Stages of a C++ Program

Compiler call (all stages)
g++ -std=c++17 -Wall -Wextra -o a.out a.cc

1 Source code file (a.cc)
2 → Preprocessor → Translation unit (a.ii)
3 → Compiler → Assembler file (a.s)
4 → Assembler → Object code file (a.o)
5 → Linker → Executable binary file (a.out)

Daniel Flachs DBS II – Exercise #0 20/02/2019 15 / 19

C++ Recap Stack vs. Heap

Stack vs. Heap Memory

Java’s memory management is mostly automated: Within a method,
variables with primitive data types are stored on the stack, and class
instances on the heap.
In C++, one can choose where a variable should be allocated.
1 int i = 5; // Lives on the stack
2 int* j = new int(5); // Lives on the heap

The new keyword allocates a piece of heap memory that is large
enough to store the respective data type.
new returns a pointer to that piece of memory, i. e., access needs
dereferencing.
The memory allocated using new must be freed explicitly:
1 delete j ; // Free allocated heap memory

Also, heap memory needs to be requested from the operating system,
which requires a system call (expensive!).

Daniel Flachs DBS II – Exercise #0 20/02/2019 16 / 19

C++ Recap Object Orientation

Object Orientation

Classes: member variables, member functions, constructors,
destructors
Inheritance
Polymorphism
Dynamic binding

Daniel Flachs DBS II – Exercise #0 20/02/2019 17 / 19

Links and References

Contents

1 Welcome & Organizational

2 C++ Recap
Pointers, References, and Call Semantics
Compilation Stages of a C++ Program
Stack vs. Heap
Object Orientation

3 Links and References

Daniel Flachs DBS II – Exercise #0 20/02/2019 18 / 19

Links and References

Links

Learn & Look Up
C++ references: en.cppreference.com, www.cplusplus.com
C++ tutorial videos: www.youtube.com/playlist?list=
PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
Tutorials: www.tutorialspoint.com/cplusplus/,
www.learn-cpp.org/

Practice
www.leetcode.com
www.hackerrank.com

Tools
Online compilers: cpp.sh, www.onlinegdb.com, godbolt.org
Learning VIM: www.openvim.com/

Daniel Flachs DBS II – Exercise #0 20/02/2019 19 / 19

https://en.cppreference.com
www.cplusplus.com
www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb
www.tutorialspoint.com/cplusplus/
www.learn-cpp.org/
www.leetcode.com
www.hackerrank.com
http://cpp.sh/
www.onlinegdb.com
https://godbolt.org/
www.openvim.com/

	Welcome & Organizational
	C++ Recap
	Pointers, References, and Call Semantics
	Compilation Stages of a C++ Program
	Stack vs. Heap
	Object Orientation

	Links and References

