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Introduction

The holy grail for a DBMS is one that is:
I Scalable & Speedy,

to run on anything from small ARM processors up to
globally distributed compute clusters,

I Stable & Secure,
to service a broad user community,

I Small & Simple,
to be comprehensible to a small team of programmers,

I Self-managing,
to let it run out-of-the-box without hassle.



Introduction

We will have a more limited view, shared with Stonebraker:
There are three important things in databases:

1. performance,
2. performance, and
3. performance.



Hardware



Hardware: Alignment
Accessing a data item d at memory address a is aligned if

a mod |d | = 0

if |d | is the size of the data item in bytes.
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Virtual Memory
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Per byte translation table is too expensive.



Virtual Memory

Map pages:
virtual
addresses

physical
addresses



Virtual Memory: address translation
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Virtual Memory: translation table base register

1
page table

valid

47 12 0

physical address

47 12 0

virtual address

+

11

11

TTBR



Virtual Memory: TLB

1

page table

valid

47 12 0

physical address

47 12 0

virtual address

+

11

11

TTBR

TLB

tag

ref
dirty
valid



Virtual Memory: TLB: numbers

Typically, there exist TLB1 and TLB2 caches for the translation
table. Example Intel i7-4790:
I instruction TLB1 [for 4KB pages]: 64 entries, 8-way
I data TLB1 [for 4KB pages]: 64 entries, 4-way
I TLB2 cache [for 4KB pages]: 1024 entries, 8-way



Caches: Quantitative Features

I size
I associativity
I hierarchy
I latency



Caches: Qualitative Features

I nonblocking caches [cache can serve accesses while
processing a miss]

I way prediction [predicts way of the next access to safe
comparisons]

I victim caches [cache holds evicted cache lines]
I trace caches [L1i]
I can cache on virtual or physical addresses
I inclusive/exclusive



Caches: Sample Organization of the Memory
Hierarchie
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Caches: Latencies

mem latency [cycles]
register ≤ 1
L1 3-4
L2 ≈ 14
TLB1 ≈ 12
TLB2 ≈ 30
main memory ≈ 240

(these are rough approximate numbers)



Caches: non-associative
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Caches: 4-way associative
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Caches: some numbers

CPU L1i L1d L2 L3 L4 L1 TLB entries
KB KB KB MB MB

Power8 32 64 512 8* 16** 72i + 48d
Xeon E5 v4 32 32 256 2.5* 128i + 64d
i7-4790 32 32 256 8* 64i + 64d
Exynos 2254 32 32 2048* - 32i + 32d

*: shared; **: per buffer chip



Prefetching: Hardware

Hardware prefetcher:
I adjacent cache line prefetcher
I stride prefetcher

Often: prefetchers do not prefetch across page boundaries.



Prefetching: Software

Software prefetching:
I explicit prefetch instructions



Prefetcher: Performance

Measure code fragment:

1 for (int i = 0; i < n; ++i)
2 r += A[ I[i] ]

I index array filled in two different ways:
1. contains consecutive numbers [0,n[

2. contains random permutation of [0,n[



Prefetcher: Performance

results in time per element:

kind of read i7-4790 i7-4790 Exynos 2254
n 109 108 108

random 45.7 ns 11.3 ns 43.6 ns
sequential 0.8 ns 0.8 ns 3.2 ns
factor 57.1 14.1 13.6



CPU: Pipelining

Illustration of non-pipelined execution (simplified):

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

We get an IPC of 0.25. (CPI of 4.)



CPU: Pipelining

Illustration of pipelined execution:

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU
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We get an IPC/CPI of 1.



CPU: Pipelining

Pipeline hazards (resulting in stall):
I data dependency
I data access
I branch misprediction
I instruction stall

Worst of all is the instruction stall, where the core has (due to
memory/cache access latencies) no instruction to execute.



CPU: out-of-order execution

I ops→ µ-ops
I µ-ops processed at ports (concurrently, obeying data

dependencies)
I µ-ops sometimes in caches (saves instruction decode)

Examples:
I Haswell has 8 ports per core
I Power8 has 16 execution pipelines per core



CPU: out-of-order: read

To illustrate the out-of-order processing for read operations,
i.e., parallelizing memory accesses, we repeat an experiment
performed by Manegold, Boncz, and Kersten. We sum up all
elements in an array containg n = 108 elements using two
different functions. The first one is the simple, standard
implementation:

int
sum0(int* arr, int n) {

int lSum = 0;
for(int i = 0; i < n; ++i) {

lSum += arr[i];
}
return lSum;

}



The second one uses two partitial sums, one for each half of
the array:

int
sum1(int* arr, int n) {

int lHalf = n/2;
int lSum = 0, lSum1 = 0, lSum2 = 0;
for(int i = 0; i < lHalf; ++i) {

lSum1 += arr[i];
lSum2 += arr[i+lHalf];

}
lSum = lSum1 + lSum2;
if(n & 0x1) {

lSum += arr[n-1];
}
return lSum;

}



The execution times per element in the array on a i7-4790 are:

sum0 0.375 ns
sum1 0.254 ns

where we compiled with gcc -O2.



Branch (Mis-) Prediction

Schematic 2-bit branch predictor:
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BMP: code fragment with branching

SELECT(int* b, int* a, int l, int n)

1 int j = 0;
2 for (int i = 0; i < n; ++i)
3 if (a[i] < l)
4 b[j++] = a[i];
5 return j



BMP: predicated code

code fragment 2: predicated code suggested by Ross:

SELECT(int* b, int* a, int l, int n)

1 int j = 0;
2 for (int i = 0; i < n; ++i)
3 b[j] = a[i];
4 j += (a[i] < l)
5 return j



BMP: i7-4790
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BMP: Samsung Exynos 6422 Cortex A15

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0  0.2  0.4  0.6  0.8  1

p
e
r 

tu
p
le

 t
im

e
 [

n
s]

selectivity

Branch vs. Predicated on Exynos 5422 Cortex A15

A15 branch
A15 pred

[Note: conditional execution of instructions on ARM]



SIMD

Idea:
I perform the same operation on multiple operands at the

same time. (SIMD = single instruction multiple data)
Supported by virtually all processors:
I ARM: NEON
I Intel: SSE, AVX
I Power: VMX, VSX
I Sparc: VIS

Usable
I automatically by compiler
I manually (inline assembler/intrinsics)



SIMD: Idea

Example illustration of a SIMD add operation:

a1+b1 a2+b2 a3+b3 a4+b4

a1 a2 a3 a4

b1 b2 b3 b4

+

=



SIMD: Intel: Intrinsics: Overview

I 128 bit, 256 bit, 512 bit SIMD registers
I arithmetics, comparisons, bit operations
I load, broadcast load, store, all selective/masked
I scatter/gather, conflict detection



SIMD: Intel: selective load

I m256i mm256 maskload epi32 (int const* mem addr,
m256i mask)

FOR j := 0 to 7
i := j*32
IF mask[i+31]

dst[i+31:i] := MEM[mem addr+i+31:mem addr+i]
ELSE

dst[i+31:i] := 0
FI

ENDFOR



SIMD: Intel: gather

I m256i mm256 i32gather epi32 (int const* base addr,
m256i vindex, const int scale)

FOR j := 0 to 7
i := j*32
dst[i+31:i] := MEM[base addr + SignExtend(vindex[i+31:i])*scale]

ENDFOR



SIMD: Intel: scatter

void mm256 mask i32scatter epi32(void* base addr,
mmask8 k,
m256i vindex,
m256i a,

const int scale)

FOR j := 0 to 7
i := j*32
IF k[j]

MEM[base addr + SignExtend(vindex[i+31:i])*scale] := a[i+31:i]
k[j] := 0

FI
ENDFOR



SIMD: Intel: scatter: conflict
Useful is the detection of conflicts (writes to the same location):
I mm256 conflict epi32

Test each 32-bit element of r for equality with all other elements
in r closer to the least significant bit. Each element’s
comparison forms a zero extended bit vector in dst:

FOR j := 0 to 7
i := j*32
FOR k := 0 to j-1

m := k*32
dst[i+k] := (a[i+31:i] == a[m+31:m]) ? 1 : 0

ENDFOR
dst[i+31:i+j] := 0

ENDFOR
dst[MAX:256] := 0



SIMD: Intel: compare

I m256i mm256 cmpeq epi32( m256i a, m256i b)
I m256i mm256 cmpgt epi32 ( m256i a, m256i b)

effect of 1:

FOR j := 0 to 7
i := j*32
dst[i+31:i] := ( a[i+31:i] == b[i+31:i] ) ? 0xFFFFFFFF : 0

ENDFOR



SIMD: Intel: compare: collect result

Set each bit of mask dst to the most significant bit of the 32-bit
element in a.
I int mm256 movemask ps( m256 a)

effect:

FOR j := 0 to 7
i := j*32
IF a[i+31]

dst[j] := 1
ELSE

dst[j] := 0
FI

ENDFOR



Bit Manipulations (1)

Examples:
I pop count

I bit scan forward, bit scan reverse

I pdep u32, pext u32



Bit Manipulation (2)

other useful instructions accessible by builtins are:

blsr(a) := a ? (a− 1) // reset lowest bit set
blsi(a) := a ? (−a) // extract lowest bit set

blsmsk(a) := a⊗ (a− 1) // set all lower bits up to incl. lowest bit set
tzcnt(a) // count number of trailing zero bits
lzcnt(a) // count number of leading zero bits



Software Prefetching

Sometimes it is beneficial to use explicit prefetching instructions
to hide memory access latencies. There is a useful built-in to
support this:
I builtin prefetch(void* mem, int rw, int a)

where
mem is the memory address to be prefetched

rw indicates prefetching for read (0) or write (1)
a indicates the access pattern: a = 0 indicates that

the temporal locality is low, that is, we probably
don’t access the data item again after the first
access. a = 3 indicates the contrary, a = 2
something inbetween



Streaming Store

Bypass cache by streaming stores. Instructions, e.g.:
I mm256 stream si256
I mm512 storenrngo ps
I mm512 storenrngo pd

The latter two also follow a weaker memory model.
When writing to two different locations within a single cache
line, it may happen that the cache line is written twice to main
memory. To prevent this, some processors provide
write-combine buffers, which combine multiple writes to a
cache line in order to write it only once to main memory.
Software can make use of it by issueing two streaming store
operations (e.g. mm256 stream si256) in close
neighborhood which together cover a whole cache line. This is
called software write-combining.



Simultaneous multithreading (SMT)

I AMD/Intel: 2 threads per core
I Power8: up to 8 threads per core

Notes:
I threads share the core’s resources
I sometimes useful to hide latencies

Example architecture on the next slide.
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Cache Coherence

Cache coherence makes sure that simultaneous memory
accesses to the same cache line by different cores does not
result in any correctness problems. (As long as the memory
addresses are not the same!). However, this may lead to
performance problems as illustrated below.



Cache Coherence: MESI Protocol

The most commonly used protocol is the MESI protocol where
each cache line can be in one of four states:

modified the cache line has been modified
no other processor has this cache line

exclusive the cache line has not been modified
no other processor has this cache line

shared the cache line has not been modified
other processors may have this cache line

invalid the cache line does not hold any valid data



Cache Coherence: Experiment

Function code incrementing a pointer on a given hw-thread:

void f(uint64 t* s, uint64 t n, int aHwThreadNo) {
cbind to hw thread(aHwThreadNo, 1);
for(uint64 t i = 0; i < n; ++i) *s += 1;

}

Runtime results (n = 109):

HW thread no exec time for pointer distance
CPU HWT 1 HWT 2 8 B 800 B
Intel i7-4790 4 7 5.37 s 1.52 s

3 7 3.33 s 2.22 s
Exynos 5422 4 7 4.75 s 4.89 s

Recall: Intel i7-4790 supports SMT: hw-threads [0,4] are on
core 0, [1,5] are on core 1, [2,6] on core 2, [3,7] on core 3.



Synchronization Primitives

In order to synchronize different threads and prevent race
conditions, synchromization primitives such as mutex and
semaphore must be used and implemented. This is facilitated
by atomic operations provided by the underlying hardware.
Typical operations implementing atomicity are:
I compare-and-swap (CAS)
I fetch-and-add (FAA)
I load exclusive, store exclusive (e.g. LDREX, STREX on

ARM)
I memory barrier instructions (e.g. DMB on ARM)



NUMA: UMA
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NUMA: NUMA
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NUMA Measurements

IntelMemoryLatencyChecker for a Xeon E5-2690 v3 @
2.60GHz:

Measuring idle latencies [ns]
Numa node

Numa node 0 1
0 78.8 123.5
1 122.5 79.4



NUMA Measurements

IntelMemoryLatencyChecker for a Xeon E5-2690 v3 @
2.60GHz:

Memory Bandwidths [MB/s]
Numa node

Numa node 0 1
0 61112.6 18817.4
1 18942.2 61207.7



Performance Monitoring Unit (PMU)

Processors have (configurable) hardware performance
counters for different events:
I cycle/instruction counter
I caches/memory: read access, write access, refill

Example: ARMv7
I use coprocessor registers
I 1 non-configurable cycle counter
I 6 configurable counters

Tools: Linux: perf



Operating Systems
useful system calls for

1. process/thread support, binding threads to cores (e.g. fork
(copy on write))

2. cooperation
I shared memory

3. communication
I ipc
I network

4. I/O
I raw I/O
I direct I/O
I chained I/O
I vectorized I/O
I memory mapped files

5. numa
6. clock access
7. hardware inspection



Operating System: Linux: hardware inspection:
commands

cat /proc/cpuinfo information about cpu/cache/ram
lscpu/lsblk/lsusb/lshw describe hardware pieces

nproc number of hw-threads
lstopo topology of computer
cpuid more information about the cpu

sensors/hddtemp temperature and other sensors
hdparm more information about SATA devices

dpkg-architecture cpu, os, architecture, endianness
(debian/ubuntu)

getconf os configuration (e.g. getconf PAGESIZE)
uname hostname, os



Operating System: Linux: hardware inspection:
system calls

ioctl everything concerning I/O
uname as uname above
sysinfo cpu load and memory information (total, free,

swap)
sysconf as getconf above

/proc for everything



Hash Functions and Hash Tables



Hash Functions

I division
h(x) := x mod m

I multiplicative
h(x) := bm( a

w x mod 1)c
I fibonacci hashing
I polynomial over prime field

h(x) :=
∑k−1

i=0 aix i mod p
I multiply-(add)-shift

ha,b(x) := (ax + b)� (l − lout)
or plain multiplicative:
ha(x) := (ax)� (l − lout)

I murmur hashing
I tabulation hashing
I hashpjw, CityHash, Fowler-Noll-Vo, Jenkins, SpookyHash,

Zobrist, Larson



Why Hash-Functions Matter

Simple experiment: encode dates from 01.01.1950 to
31.12.1999 into 32-bit unsigned integer by encoding the year
into the most significant 16 bit, the month in the next 8 bit and
the day into the least significant 8 bits. [Julian day would be a
better encoding.]
Then use a simple hash-function to map a date d to its
hash-value by performing

d mod 2k

for some k . This gives us:



k n #F #C llps #E avg uni
8 256 31 31 600 225 589.10 71.34
9 512 62 62 300 450 294.55 35.67

10 1024 124 124 150 900 147.27 17.83
11 2048 247 247 100 1801 73.94 8.92
12 4096 366 366 50 3730 49.90 4.46
13 8192 366 366 50 7826 49.90 2.23
14 16384 366 366 50 16018 49.90 1.11
15 32768 366 366 50 32402 49.90 0.56
16 65536 366 366 50 65170 49.90 0.28
17 131072 731 731 25 130341 24.98 0.14
18 262144 1461 1461 13 260683 12.50 0.07
19 524288 2922 2922 7 521366 6.25 0.03

where n = 2k : hash-table size, #F is the number of filled entries, #E is
the number of empty entries, #C is number of entries with collisions,
llps is the length of longest probe sequence, avg is the average
number of dates falling into one entry, uni is the expected number of
elements falling into one entry if the hash-function would distribute
the dates uniformly.



Same exercise with murmur hashing:

k n #F #C llps #E avg uni
8 256 256 256 92 0 71.34 71.34
9 512 512 512 55 0 35.67 35.67

10 1024 1024 1024 34 0 17.83 17.83
11 2048 2048 2047 21 0 8.92 8.92
12 4096 4052 3856 14 44 4.51 4.46
13 8192 7294 5332 10 898 2.5 2.23
14 16384 10973 5044 8 5411 1.66 1.11
15 32768 14018 3545 6 18750 1.3 0.56
16 65536 15905 2147 5 49631 1.15 0.28
17 131072 17015 1194 3 114057 1.07 0.14
18 262144 17637 621 3 244507 1.04 0.07
19 524288 17936 325 3 506352 1.02 0.03



Hash functions: properties

Properties wanted:
1. uniformity
2. universality
3. efficiency



Hash functions: uniformity

The expected average collision chain length is about n/m
where n is the number of keys and m is the hash-table size.



Hash functions: average-case search length

Denote by α the fill-degree α := n/m. Then
I on average: successful search: Θ(1 + α)

I on average: unsuccessful search: Θ(1 + α)

(details see Knuth or Corman)



Hash functions: expected Length of the Longest Probe
Sequence (llps)

Let n be the number of keys, m the hash-table size, and
α = n/m the fill-degree, and ik = i(i − 1) . . . (i − k + 1) the
descending factorial.
For a full hash-table using uniform probing:

E [llps] ≈ 0.631587454 ∗m + O(1)

where m equals the hash-table size and the number of entries.
For a partially filled hash-table using uniform probing:

E [llps] =
∑
k≥0

(1−
n−1∏
i=0

(1− ik

mk ))

≈ − logα(m)− logα(logα(m)) + O(1)

(see Gonnet 81)



Hash functions: universal

We start with universal.
Let A and B be two sets. A hash-function maps A to B, i.e.,

f : A−−→B

A is the set of potential keys. We assume |A| > |B|.
Let f be a hash-function and x , y ∈ A two keys. We define

δf (x , y) =

{
1 if x 6= y and f (x) = f (y)
0 else

x and y collide under f iff δf (x , y) = 1.



In case f , x , and/or y are replaced by a set, this denotes
summation. For example

δH(x ,S) =
∑
f∈H

∑
y∈S

δf (x , y)



Def.

Let H be a class of functions from A to B. H is universal iff
∀x , y ∈ A

δH(x , y) ≤ |H|/|B|

Thus, no two distinct keys collide under more than (1/|B|)th of
the hash-functions.



Proposition 1 shows that the bound on δH(x , y) in the definition
of universal is tight.
Prop. 1. For all classes H of hash-functions there exists
x , y ∈ A such that

δH(x , y) > |H|( 1
|B|
− 1
|A|

)



Proof.
Define a := |A|, b := |B|. Let f ∈ H.
For each i ∈ B define Ai := {a|a ∈ A, f (a) = i} and ai := |Ai |.
Note that for i , j ∈ B, i 6= j , δf (Ai ,Aj) = 0. (because elements of
Ai are mapped to i and those in Aj to j .)
Note that every element in Ai collides with every other element
in Ai . Thus

δf (Ai ,Ai) = ai(ai − 1)

Hence,

δf (A,A) =
∑
i∈B

∑
j∈B

δf (Ai ,Aj)

=
∑
i∈B

δf (Ai ,Ai)

=
∑
i∈B

ai(ai − 1)



∑
i∈B

ai(ai − 1)

is minimized if all Ai are of the same size, i.e., ai = aj = a/b for
all i , j . This gives us

δf (A,A) =
∑
i∈B

ai(ai − 1)

≥
∑
i∈B

a/b(a/b − 1)

= a(a/b − 1)

= a2(1/b − 1/a)

Thus, (summing over H)

δH(A,A) ≥ |H|a2(1/b − 1/a)



δH(A,A) ≥ |H|a2(1/b − 1/a)

The left-hand side sums over fewer than a2 non-zero elements
(as x = y implies δH(x , y) = 0). The pigeon hole principle
implies that there exist x , y ∈ A, x 6= y such that

δH(x , y) > |H|(1/b − 1/a)

2



Proposition 2 tells us about the average collision chain length
(averaged over H).
Prop. 2. Let x ∈ A, S ⊆ A, H universal class of hash-functions,
f ∈ H chosen randomly. Then, the mean value of δf (x ,S) is at
most

|S|/|B|



Proof.

For the mean value we get:

δf (x ,S) =
1
|H|

∑
f∈H

δf (x ,S)

=
1
|H|

∑
y∈S

δH(x , y)

=
1
|H|

∑
y∈S

|H|
|B|

[by Def. universal]

=
|S|
|B|

2



The Class H1
Let A = {0, . . . ,a− 1} and B = {0, . . . ,b − 1}. Let p ≥ a (!) be
prime.
Let g : Zp−−→B be a function with

|{y ∈ Zp|g(y) = i}| ≤ dp/be

(e.g. g(z) := z mod b)
For any m,n ∈ Zp, m 6= 0 define hm,n : A−−→Zp via

hm,n(x) := (mx + n) mod p

and fm,n : A−−→B via

fm,n(x) := g(hm,n(x))

Finally, define the class H1 of hash-functions from A to B by

H1 := {fm,n|m,n ∈ Zp,m 6= 0}



Lemma Let H1 be defined as above. Then ∀x , y ∈ A, x 6= y

δH1(x , y) = δg(Zp,Zp)



Proof. Since p ≥ a, p prime, and m 6= 0:

hm,n(x) = hm,n(y) ≺� x = y

and, hence, for x 6= y

fm,n(x) = fm,n(y) ≺� g(r) = g(s)

for r := hm,n(x) and s := hm,n(y). Thus,

δH1(x , y) = δg(Zp,Zp)

2



Theorem 1

H1 is universal.



Proof.

We have to show that

δH1(x , y) ≤ |H1|/|B|

Note that |H1| = p(p − 1). Using the lemma, it remains to show
that

δg(Zp,Zp) ≤ p(p − 1)/b

[remember b = |B|]
Define ni := {t ∈ Zp|g(t) = i}|. Then, by definition of g,

∀i ni ≤ dp/be

Since p and b are integers

dp/be ≤ ((p − 1)/b) + 1



Now, consider some r ∈ Zp. Then the number of choices for
some s with

1. s 6= r
2. g(s) = g(r)

is limited to (p − 1)/b.
Since there are p choices for r

p(p − 1)/b ≥ δg(r , s)

Recalling δH1(x , y) = 0 for x = y and the above concludes the
proof. 2



Remark: the modulo function is expensive. For Mersenne
primes, the modulo operation can be implemented quite
efficiently.



Let p = 2j − 1 be prime and x < 22j − 1. Let x1 be the j most
significant bits and x2 the j least significant bit. Then

x = 2jx1 + x2 mod p
= x1 + x2 mod p

since 2j ≡ 1 mod p.
Thus, the following procedure calculates the remainder modulo
p = 2a − 1 for some x < 22a.

MOD MERSENNE(x , p, a)

1 r = ((x&p) + (x >> a))
2 return ((r < p) ? r : (r − p))

On the XU-4 this is about a factor of three faster than the
built-in modulo for 32-bit integers and about a factor of four for
64-bit integers. On the i7-4790 the corresponding factors are
2.5 and 1.5. The exact numbers are compiler dependent.



k -Universal Hash-Functions

A class H of hash-functions from A to B is k -universal iff
I for any k distinct elements a1, . . . ,ak ∈ A and
I for any k (not necessarily distinct) elements b1, . . . ,bk ∈ B

we have
|H|/(|B|k )

functions to map ai → bi for all i = 1, . . . , k .
Or for uniformly random i ∈ 1, . . . , |H|

Pr [hi(a1) = b1, . . . ,hi(ak ) = bk ] ≤ 1/|B|k



(c, k)-Universal Hash-Functions

A family {hi}i∈I of hash-functions from A to B is (c, k)-universal
iff
I for any k distinct elements a1, . . . ,ak ∈ A,
I for any k (not necessarily distinct) elements b1, . . . ,bk ∈ B,

and
I for uniformly random i ∈ I

we have

Pr [hi(a1) = b1, . . . ,hi(ak ) = bk ] ≤ c/|B|k



Dietzfelbinger

Dietzfelbinger proposes the following 2-universal class of
hash-function.
Let u, k ,m ≥ 1 be arbitrary integers with k ≥ u. Let
U := {0, . . . ,u − 1} and M := {0, . . . ,m − 1} Define
H := {ha,b|0 ≤ a,b ≤ km} with

ha,b : U → M
ha,b(x) := ((ax + b) mod km)÷ k

Then, H is (c,2)-universal with c = 5
4 . An efficient

implementation of Dietzfelbinger’s hash functions was
proposed by Thorup.



Tabulation Hashing

Assume we have q hash-functions h0, . . . ,hq−1 ∈ H. Each
hash function implemented as an array hi of random numbers.
Assume we hash a value x composed of q (sub-) values xi (e.g.
4 byte int, string) by

~h(x) := h0[x0]⊗ h1[x1]⊗ . . .⊗ hq−1[xq−1]

Then, if H is 2-universal then ~h is 2-universal. If H is 3-universal
then ~h is 3-universal. After 3, the scheme breaks down.



Tabulation Hashing

4-universal hash functions can be build according to the
following principle:

~h[x0x1] = h0[x0]⊗ h1[x1]⊗ h2[x1 + x2]

For the general scheme: to produce k -universal hash-functions
for strings of length q,

(k − 1)(q − 1) + 1

k-universal hash-functions are required.



Hashing string values

Let s = c1, . . . , cm be a string of m characters, v a seed and hi
some intermediate hash value generated after hashing i
characters. Then, the generic code of a string hash function is:

HASH(s, v )

1 h0 = INIT(v )
2 for (i = 1; i < m; ++i)
3 hi = STEP(i , hi−1, ci )
4 return FINAL(hm, v )



Hashing string values

Ramakrishna and Zobel then propose the following class of
hash-functions:

init(v) = v
step(i ,h, c) = h ⊗ ((h� L) + (h� R) + c)

final(h, v) = h mod T

where T is the hash-table size and L and R are constants with
4 ≤ L ≤ 7 and 1 ≤ R ≤ 3 where they used L = 5 and R = 2 in
their experiments.
Almost equally good is Larson’s string hash function:

while(*s) h = h * 101 + *s++



Hash Table Organization

From A&D:
I chaining (may preserve locality for the first element, see

below)
I open addressing

I linear probing
(preserves locality)

I quadratic probing
(does not preserve locality)



Chained Hash Table with Latches: V0

latch dir chain

d

e f



Chained Hash Table with Latches: V1

latch entry chain
d
e f

dir



Cuckoo-Hashing

Like in a cuckoo’s nest: the new element kicks out the older
element, which in turn is stored in the next level of hash tables:

d

e‘
e

dir1 dir2



Compression

light-weight compression techniques:
1. zero suppression
2. prefix suppression
3. frame of reference
4. dictionary compression

result: fixed length unsigned integers



Storage Layout



Storage Layout

Subsequently, we consider the possible storage layouts for the
following relation:

eno name salary
001 Müller 1000
002 Maier 2000
003 Schmidt 4000



Row Format (NSM)

We can concatenate all the bytes for every attribute of a tuple
and then concatenate all the tuple’s bytes. This results in a row
format:

001 Müller 1000 002 Maier 2000
003 Schmidt 4000

This format is also called NSM (N-ary Storage Model).



Row Format in C++

Row-Format in C++:

struct emp t {
int eno;
std::string name;
double salary;

};
std::vector<emp t> Employees;

Note: std::string is a performance killer and is not inlined as in
the figure.



Column Format (DSM)

Alternatively, the DSM (Decomposed Storage Model) storage
layout can be used. Here, every attribute is stored in a binary
relation. The first attribute of this relation contains a surrogate
(row identifier (rid) or tuple identifier (tid)) and the second
attribute contains the original attribute’s value. Here is how
DSM looks like for our small relation:

0
1
2

001
002
003

eno
0
1
2

Müller
Maier
Schmidt

name
0
1
2

1000
2000
4000

salary

Note: rid can be virtual.



Column Format (DSM) with virtual rid

001
002
003

Müller
Maier

Schmidt

1000
2000
4000

nameeno salary



Column Format in C++

Column-Format in C++:

struct Employees {
std::vector<int> eno;
std::vector<std::string> name;
std::vector<double> salary;

};



Query Processing: Sample Data

Query processing: example: Bigger table emp:

rid eno name salary
0 10 — 100
1 2000 — 200
2 500 — 300
3 700 — 400
4 30 — 500
5 8000 — 600
6 800 — 700

stored columnwise (rid implicit as index into column array).



Query Processing: Sample Query

select sum(salary)
from Employees
where eno between 100 and 900



Query Processing: Columns

eno
10

2000
500
700
30

8000
800

σ100≤eno≤900
rid
2
3
6

χs:salary .rid
300
400
700

sum
1400



Query Processing: Query in C++

int sum = 0;
for(size t i = 0; i < emp.eno.size(); ++i) {

if((100 ≤ emp.eno[i]) && (emp.eno[i] ≤ 900))
sum += emp.salary[i];

}
return sum;



Insert Example

insert into Employees values (333, ”Trump”, 33)

Employees::insert(int e, std::string n, double s) {
eno.push back(eno)
name.push back(n)
salary.push back(s)

}



Hybrid Storage Model (PDSM)

It is obvious, that we can decompose a relation not only into
binary relations but arbitrarily. This results in the partially
decomposed storage model. Attributes used frequently
together are then stored together in one fragment.



Row Format and Cache Lines

Things look bad for the row store:

63 0



Column Format and Cache Lines

Things look good for the column store:

63 0



Putting Columns onto Pages: PAX

header

This looks very similar to a slotted page. The only difference is
that instead of pointing to tuples, the slots contain pointers to
arrays of attribute values, i.e., a column.



Storage Layout: Complications

fixed length: easy. Complications:
1. variable length fields
2. null-values
3. compression



Row Layout: Fixed Length

To keep attribute values aligned, we assume that records are
aligned to, say, 8 bytes. Then, we put all the 8-byte attributes at
the beginning (e.g., doubles dj ), followed by the 4-byte
attributes (e.g., integers ij ), followed by 2-byte, and finally
1-byte attributes:

d1 d2 i1 i2 i3



Row Layout: Variable Length

Adding variable size attribute values, for example strings si , is
rather simple: We add in the fixed-length part offsets to the
strings. Note: o1 points to the start of s1 and is the end of s0. A
last ok+1 denotes the end of sk . (end = one character after the
last). Adding three string values results in:

d1 d2 i1 i2 i3 o0 o1 o2 o3 s0 s1 s2



Row Layout: NULL values

Dealing with NULL-values, we have two possibilites:
I reserve some special value to represent NULL-values
I add NULL-indicators

The former approach it applicable only in special cases, e.g., for
dictionary compression where a dictionary id of 0 is reserved
for NULL-values. In general, the latter case must be supported.



Row Layout: NULL Indicator (1)

Adding NULL-indicators (nid), everything else remains
unchanged:

nid d1 d2 i1 i2 i3 o0 o1 o2 o3 s0 s1 s2

Disadvantage: still space allocated for NULL-attributes. We
now eliminate the wasted space.



Row Layout: NULL Indicators (2)

A consequence is that offsets to attributes are no longer the
same for every tuple as different tuples may have NULL-values
in different attributes. Assume in one tuple d1 is NULL and i1 is
NULL. The layout then is:

1010. . . 0 d2 i2 i3 o0 o1 o2 o3 s0 s1 s2

If we assume d1, d2, i3, and s1 to be NULL, we get

11001010. . . 0 i1 i2 o0 o2 o3 o4 s0 s2



Row Layout: NULL Indicators (3)

There are several possibilities to calculate the offset of an
attribute, some with layout changes, some not:

1. interprete the null-indicator: go through the bits of the
null-indicate and perform offset calculation.

2. use an offset array within each record similar to the
variable size attributes for null-able attributes. if offsets are
smaller than actual values this saves some space.

3. use a separate table where these offset calculations are
materialized

4. use uval t arrays as tuples. Using popcnt on the
null-indicators up to the attribute to be accessed and
subtract this from the attribute number to be accessed. Of
course, uval t arrays waste some memory.

5. The same popcnt solution can be used if null-indicators
are grouped by attribute size.



Row Layout: Compression (1)

Compression adds another layer of complexity.
I Assume we add leading-zero-suppression for integers.
I If we restrict the length of integers to multiples of a byte,

integers can now be 0, 1, 2, 3, or 4 bytes long.
We take a look at the offset-table-based approach.



Row Layout: Compression (2)

The basic record layout there is:

strings

codes data

fixed−length variable−length

encoding for dictionary−based compression

length and offset encoding



Row Layout: Compression (3)

For every attribute with variable length (including compressed
and nullable attributes), we use a status bits to encode its
length and, possibly, null-status. For example:

4 byte integers
length NOT NULL nullable

0 – 000
1 00 001
2 01 010
3 10 011
4 11 100

8 byte floats
0 - 00
4 0 01
8 1 10



Row Layout: Compression (4)

These status bits are packed together within bytes such that
always all status bits belonging to a certain attributes are
contained in one byte. Unused hi-bits are set to zero. Consider
for example a relation with attributes

(a int, b int, c double not null, d int, e int, f int not null)

Assume all attributes are compressed. Then, all attributes
become variable length attributes and two bytes are necessary
the length encodings:

− ba
1 ba

2 ba
3 bb

1 bb
2 bb

3 bc
1

bd
1 bd

2 bd
3 be

1 be
2 be

3 bf
1 bf

2



Row Layout: Compression (5)
decoding byte 1 decoding byte 2

0 0 1 0 0 0 0 1
Attr. a Attr. b Attr. c

1

0

Attr. a Attr. b

10

35

34

33

32

31

30

127

0 2 2 0 2 1

126

Attr. c

total length

0 0 1

1

0

Attr. d Attr. e

7

101

100

99

98

97

96

255

0 3 3 0 3 3

254

Attr. f

1 1 0 0 1
Attr. d Attr. e Attr. f

offset
length encoding



Row Layout: Compression (6)

The code to calculate the offset of some variable-length
attribute is

int off(int attrno, // number of attribute
int* codeBytes, // code bytes of row
int byteNo, // number of code byte for attr
dct table) { // decoding table

int off = 0;
for(int j = 0; j < byteNo; + + j)

off += table[j][codeBytes[j]].total;
return off + table[byteNo][codeBytes[byteNo]].offset(attrno)

+ table[byteNo][codeBytes[byteNo]].length(attrno);
}



Column Layout

Many different proposals/possibilities:
I simple array
I BitPackingH
I BitSliceH
I BitSliceV
I ByteSliceV



BitpackingH

Original column layout in Hana:

a a a b b b c c c d d d e e e f f . . .

Decoding:
I unpack into 32-bit integers
I implementation using SIMD instructions



BitPackingH: Decoding

Decoding Steps (128 bit SIMD):
1. 16 Byte alignment: make sure 128-bit registers start with

complete compressed value. Assume currently handled
value is in the upper part of a 256-bit register
1.1 load second 128-bit register into lower part of a 256-bit

register
1.2 perform a 256-bit register shift

2. 4 Byte alignment:
2.1 apply a shuffle operation to put four consecutive

compressed values into the 4 32-bit words of a 128-bit
register

3. Bit alignment:
3.1 apply a shift operation with 4 individual shifts
3.2 apply a bitwise AND operation with a mask to zero out

irrelevant bits



BitPackingH: Problems

Problems:
I comparisons for selection predicate (e.g. between) after

decompression
I improvement: it is possible to insert the selection predicate

evaluation after the first few steps of the decompression
algorithm (comparison can be done before bit alignment,
by shifting the constants with which to compare
accordingly.)



BitSliceH: storage layout

BitSliceH uses one bit more than necessary. It is set to zero.
Consider again the case of n = 3 bits necessary to encode a
value. Then the BitSliceH storage layout looks like

0 a a a 0 b b b 0 c c c 0 d d d 0 . . .

I extra bit used to hold comparison result
I no codes spans multiple lines (padding)

Thus, if w is the line length and k the value size, both in bits,
bw/(k + 1)c values can be stored in one register.



BitSliceH: implementing comparison operators

We discuss how comparison of a column with a value can be
implemented. we use
I Let w be the (SIMD) register length.
I Let X be the register holding the column values.
I Let Y be the register holding w/(k + 1) times the value

with which the column is to be compared.
I Let Z be the result vector where the additional bit indicates

the result of the comparisons.
Further, let x and y be two k bit values.
bitwise operators: ? bitwise and; > bitwise or; ⊗ bitwise xor; ¬
bitwise complement



BitSliceH: (in-)equality

Inequality: We have x 6= y iff x ⊗ y 6= 0k . Adding 01k to 01k

does not produce an overflow. Thus, Z can be calculated as

Z = ((X ⊗ Y ) + 01k01k . . . 01k ) ? 10k10k . . . 10k

Equality: complement of inequality

Z = ¬((X ⊗ Y ) + 01k01k . . . 01k ) ? 10k10k . . . 10k



BitSliceH: less than (or equal to)

Less Than:

x < y
⇐⇒ x ≤ y − 1
⇐⇒ 2k + x ≤ y + 2k − 1
⇐⇒ 2k ≤ y + 2k − 1− x

Note that 2k − 1− x = ¬x = x ⊗ 1k . Thus (no overflow can
occur):

Z = (Y + (X ⊗ 01k01k . . . 01k )) ? 10k10k . . . 10k

Less Than Or Equal To Since x ≤ y iff x < y + 1 we have

Z = (Y + 0k1 . . . 0k1 + (X ⊗ 01k01k . . . 01k )) ? 10k10k . . . 10k



BitSliceH: indicator bit extraction (1)

Let b = k + 1 be the length of one block of bits. Every such
block is the form c0k where the bit c indicates the comparison
result. After one of the comparison operators defined above,
the result is of the form

c10k . . . cm0k

which we wish to transform into

c1, . . . , cm,0∗.

where m = 2/(k + 1).



BitSliceH: indicator bit extraction (2)

Idea 1: successive shift/or
Example:

Input: c1 0 0 0 c2 0 0 0 c3 0 0 0 c4 0 0 0
Step 1: c1 c2 0 0 0 0 0 0 c3 c4 0 0 0 0 0 0
Step 2: c1 c2 c3 c4 0 0 0 0 0 0 0 0 0 0 0 0

General procedure:

Step 1: Y = (X > (X � 1(b − 1))) ? (02b−212 . . . 02b−212)

Step 2: Y = (Y > (Y � 2(b − 1))) ? (04b−414 . . . 04b−414)

Step 3: Y = (Y > (Y � 4(b − 1))) ? (08b−818 . . . 08b−818)
. . .



BitSliceH: indicator bit extraction (3)

Idea 2: replace multiple shifts by one multiplication

Y = (X ∗ (0b−210b−21 . . . 0b−21)) ? (1bw/bc0bw/bc(b−1))

Careful: b ≤
√

w .



BitSliceH: converting bitvector to indices

Define two helper functions:

rlsb(x) := x ? (x − 1) // reset least-significant bit set
smsb(x) := x ⊗ (−x) // set most-significant bits up to the lsb set

The intrinsic blsr implements rlsb with one machine
instruction;
Example:

0 1 2 3 4 5 6 7 msb
x = 0 1 1 0 1 1 0 1

rlsb(x) = 0 0 1 0 1 1 0 1
smsb(x) = 0 0 1 1 1 1 1 1



BitSliceH: converting bitvector to indices (3)

Algorithm:
I loop over all bits set in a word x in the bitvector
I for all bits set: determine their index and output it after

adding some base.
Assumption: the index of the most significant bit is the lowest
index.



BitSliceH: converting bitvector to indices (3)

INPUT: BV: input bitvector, w: word width
OUPUT: L: vector of RIDs
p = 0
foreach x in BV

while(x 6= 0)
rid = p + popcnt(smsb(x)) // get base + index
L += rid // append rid to output L
x = rlsb(x) // reset least significant bit set

p += w // add word length to base p
return L

Alternative: use bit-scan-forward/reverse to extract index of a
lowest/highest bit set.



DB2 BLU

I BLINK is a row store
I DB2 BLU builds on DB2 and BLINK
I DB2 BLU can behave as a column store or a row store

(PDSM)

We discuss DB2 BLU’s storage model.



DB2 BLU: column groups

Let R be a relation. For every attribute A ∈ A(R) which may
contain NULL-values, a null-indicator attribute is added. The
attributes A(R) of a relation R can be partitioned into column
groups. Any attribute A which may contain NULL-values and its
null-indicator attribute must be contained in the same column
group.



DB2 BLU: Overview

I Column groups are stored on pages.
I Pages are allocated in chunks called extents.
I Each extent contains data from one column group only.
I Tuple Sequence Numbers (TSN) are used to identify

tuples.
I For every tuple, the TSN is the same in each column group.
I A tuple projected on the attributes of a colum group is

called tuplet.
I Each page contains a page header.
I A page header contains a StartTSN and a TupleCount.
I A page map is used to map a (columngroup,TSN) pair to a

page. It is implemented as a B+-Tree.



DB2 BLU: Compression

I standard compression techniques
I but the active domain of an attribute can be partitioned
I partitioning frequency based
I compression scheme differs for each partition (e.g.

number of bits)

Example:
I We compress 16 bit country codes in a trading database.
I We partition the country codes into three partitions.

I We use 1 bit compression for China and Russia.
I We use 3 bits for other countries with a lot of trading.
I We use 8 bits for the remaining countries



DB2 BLU: Cell/Region

The space of possible formats of the tuplets in a column group
is determined by the cross product of
I the partitions of all columns of a column group

These combinations are called cells.
Within a page, all tuplets belonging to the same cell and (thus)
have the same format are stored together in a region.



DB2 BLU: Cell/Region for example

101 011 001 ...Bank 1: 3 bit tuplets in 128-bit
words, with 2 bits of padding

Region 1

Bank 1: 8 bit tuplets in 64-bit words (no padding)

Region 2

Tuple Map
101001000... (1st, 3rd, 6th entries are in region 1)



DB2 BLU: Tuple Map

If a page contains more than one region, it contains a

tuple map

which records to which region a tuple belongs.
The tuple map is indexed by the page-relative TSN and
contains as many bits as necessary to uniquely determine a
region.



DB2 BLU: Banks (fixed size)

I regions are subdivided into banks
I banks are contiguous areas of a page

(store the actual tuplets)
I tuplets do not cross bank boundaries
I bank size = 8, 16, 32, 64, 128, 256 bits



DB2 BLU: Page Format

A page contains the following elements:
1. page header
2. page-specific compression dictionaries
3. regions stored in banks
4. tuple map
5. variable width data bank



DB2 BLU: Page Format

10100111001110010010..

Page 
Header

Region

Tuple
Map

Page-speci�c
Compression
Dictionaries

Fixed-width
Data Banks

Variable-
width Data
Bank



DB2 BLU: Page Level Compression

Application scenarios:
I few distinct values in some attribute
I better frame of reference

first case: page dictionaries.



DB2 BLU: Small Materialize Aggregates (SMA)

Synopses with record per page:
I page reference
I MinTSN, MaxTSN
I Min/Max column values



DB2 BLU: Table Scan

1. SCAN-PREP: scan synopsis, apply predicates to synopsis
to skip pages

2. LEAF: scan one horizontal partition and apply predicates,
collect TSNs of qualifying tuples.

3. LCOL: for the other columns not contained in the column
group of LEAF access these columns using the TSNs.



SQL Server

Apollo:
I for OLAP
I originally ’column index’
I later index-only columns

Hekaton:
I for OLTP
I main-memory optimized row store



SQL Server: Apollo

I rows are divided into row groups
I each row group: segments for each column
I segments stored continously
I dictionary-based compression; bit packing or run-length

encoding
I delta



SQL Server: Hekaton

Goal:
I improve OLTP throughput of SQL Server by 10x-100x



SQL Server: Hekaton: Analysis (1)

The performance of any OLTP system can be expressed as

SP = BP ∗ SFlog2(N)

where

SP = system performance
BP = performance of a single core
SF = scalability factor
N = number of cores



Scale Factor Formel Graph
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SQL Server: Hekaton: Analysis (2)

Using

IR = instructions retired
CPI = cycles per instruction

we can rewrite the above to

SP = IR ∗ CPI ∗ SFlog2(N)



SQL Server: Hekaton: Analysis (3)
Remember:

SP = IR ∗ CPI ∗ SFlog2(N)

Observations for SQL Server:
I CPI of less than 1.6 (which is fairly good)
I SF is 1.89 up to 256 cores (which is also fairly good)

At 256 cores SQL Server throughput increases by factor of

1.898 = 162.8

Ideal: factor 256. Maximum improvement:

256/162.8 = 1.57

extraordinarily good CPI 0.8 leads to factor of 2. total:

2 ∗ 1.57 = 3.14

Thus, to achive 10x-100x a drastic decrease (90% to 99%) of
IR is necessary!



SQL Server: Hekaton: Architectural Guidelines

1. optimize indexes for main memory
(classical B-tree lookup: thousands of instructions)

2. eliminate latches and locks
(latch-free data structures, optimistic multi-version
concurrency control)

3. compile into native code



SQL Server: Hekaton: Storage Layer (1)

I Hekaton table is completely contained in main memory
I two types of indexes:

I Bw-Tree (latch-free B-Tree)
I hash index (latch-free hash table)

I a table can have multiple indexes
I record lookup is always by index



SQL Server: Hekaton: Storage Layer (3)

Example: Bank Account:
I Name, City, Amount: regular attributes of the relation
I begin/end: validity interval
I link fields: one per index chaining entries

Indices:
I hash-table on name (here: hash first character)
I Bw-Tree on city



SQL Server: Hekaton: Storage Layer: example

Begin End . . . Pointer Name City Amount

Header Links Payload

Record format

London10 20 John

Tx75

15

30

inf

100

100

Jane

Larry Rome

Paris 150

20 John London 110

Tx75 Inf John London

170

100

Tx75
100

Tx75 inf Larry Rome 150
100

Old

New
130

Old

New

B-tree

Hash index
on Name

Ordered index
on City

J

L



SQL Server: Hekaton: Storage Layer: example

READ:
I reading is performed for a specific time
I for any time only one version of a record qualifies

Update (red):
I TA 75 transfers 20 Yen from Larry’s account to John’s
I creates new versions of each account
I old version: 75 as their end-timestamp
I new versions: 75 in their begin-timestamps
I At commit time: update timestamps to commit time (100)



SQL Server: Hekaton: Storage Layer: example

Begin End . . . Pointer Name City Amount

Header Links Payload

Record format

London10 20 John

Tx75

15

30

inf

100

100

Jane

Larry Rome

Paris 150

20 John London 110

Tx75 Inf John London

170

100

Tx75
100

Tx75 inf Larry Rome 150
100

Old

New
130

Old

New

B-tree

Hash index
on Name

Ordered index
on City

J

L



Physical Algebra: Processing Modes



Physical Algebra: Processing Model

We split the discussion of the physical algebra into two parts:
1. Processing Modes
2. Implementation

We defer the discussion of the implementation after the
discussion of expression evaluation since all operators need
expression evaluation (e.g. a selection needs a selection
predicate).



Physical Algebra: Pull

Traditional pull-based algebra interface (as in DBSI):
I open
I next
I close

next is called once per tuple.



Physical Algebra: Push

Producer interface:
I run

Consumer interface:
I init
I step
I fin

step is called once per tuple.



Physical Algebra: Push: scan

Sample code for scan:

class Scan : public Producer {
void run(Segment S) {

foreach page P in S {
foreach tuple T on page P {

consumer->step(T)
}

}
}
Consumer* consumer;

};



Physical Algebra: Push: select

Sample code for selection:

class Select : public Consumer {
void step(Tuple T) {

if((* predicate)(T))
consumer->step(T);

}
Consumer* consumer;
Predicate* predicate;

};



Physical Algebra: Push: hash join (1)

The hash-join is split into two parts:
1. build (build hash table)
2. probe (probe other relation and build result tuples)

Ht

HtProbe HtBuild

scan (R) scan (S)



Physical Algebra: Push: hash join (2)

Evaluation of R 1hj S proceeds in two steps:
1. execute run on build relation (S)
2. execute run on probe relation (R)



Physical Algebra: Push: hash join (3)

Pseudocode: For simplicity, we assume that
I the argument to the step function is a rid (i.e., the type of

Tuple is uint) and every function knows how to access the
right parts of the tuple.

I the hash functions hr and hs are somehow known and
return an unsigned int (uint)

I the hash functions hr and hs take a rid as argument and
implicitly know where to find the join attributes.

I we only store the rid of the tuple in the hash table
I all required functions work with rids
I the result of the join is represented as pairs of rids of the

joining tuples represented by two aligned vectors Sres,
Rres.



Physical Algebra: Push: hash join (4)
typedef std::unordered map<uint, std::vector<uint>> hashtable t;
class HJoinBuild {

void step(Tuple s) {
ht[hs(s)].push back(s);

}
hashtable t ht;

}
class HJoinProbe {

void step(Tuple r ) {
for(auto s : ht[hr (r)]) {

if(JoinPredicate(r , s)) {
Rres.push back(r );
Sres.push back(s);

}
}
hashtable t& ht;

}



Physical Algebra: Push: Strands
In general, some order must be observed when executing
strands. In the following figure, there are three strands. Here,
the build input is on the left-hand side of every join:

BB

BA

S R

v vT

v



Physical Algebra: Processing Models

Discussion:
I push-based algebraic operators are easier to implement

than their pull-based counterparts
I needs some runtime coordination: strands
I push-based algebra are good for code-generation (one

code-fragment per strand)
I push-based algebra has low overhead (when compiled)



Physical Algebra: Materialization Granularity: Single
Tuple

As in the above code, per call to next/step one tuple is
processed. This results in some performance penalties:
I function call overheads: next/step and predicate/subscript
I lack of code locality (L1i misses)

The advantage is that there is only one tuple to be materialized.
That is, the memory can be reused for every tuple processed
(except for pipeline breakers (see DBSI)).



Physical Algebra: Materialization Granularity: Full

I An alternative is that every operator of the physical algebra
produces a completely materialized result.

I This disadvantage here is that a huge amount of memory is
needed and likewise a fair amount of memory-bandwidth.



Physical Algebra: Materialization Granularity:
Chunk/Vector

I In each call to next/step a bunch of tuples is processed.
Memory for this bunch has to be allocated (best: if it fits
into some cache).

I size of a chunk:
I in bytes
I in number of tuples

Two alternatives are possible for pipelining
blocks/chunks/bunches:
I one input bunch of tuples produces one output bunch of

tuples.
I many input bunches of tuples can produce one output

bunch of tuples.



Expression Evaluation



Expression Evaluation: Single Operator Xprs

Several operators take subscripts/functions/programs which
must be evaluated. For example: selection predicates, join
predicates, projection lists, map-expressions.
some operators may take several subscripts/programs: e.g.,
the hash-join operator:
I calculate hash-function for right input
I calculate hash-function for left input
I calculate result of join predicate
I concatenate two input tuples



Expression Evaluation: Multi Op Xprs

In a push-based algebra, it is rather simple to compose
complex expressions which evaluate a sequence of pipelined
algebraic operators (strand):
I scan-[select,map,semijoin,antijoin,project]-mat

Such a complex program would be given to the scan operator.



Expression Evaluation: Possibilities

In general there are two possibilities to evaluate these
expressions: interpretation and compilation. For each of them,
we have different sub-possibilities:
I interpretation

I operator tree with eval
I virtual machine

I compilation
I C or similar
I LLVM
I machine code



Expression Evaluation: Result Representation

I tuples in any of the storage layouts (col,row,. . . )
I and additionally

I to represent the result of a selection:
I list of indices (pointers/rids/tids) of qualifying tuples
I bitvector of qualifying tuples

I to represent result of join:
I pairs of indices (pointers/rids/tids)



Expression Evaluation: Operator Tree

Every operation for every supported type is encapsulated within
a class. The common superclass has the interface

typedef unsigned char byte t;
class SimpleOpBase {

virtual byte t* eval() = 0;
SimpleOpBase* args[MAXARGS];

}



Expression Evaluation: Uvals

To avoid byte t pointers, one can define a union-type uval t
containing the union of all supported types (and more):

typedef union {
int32 t i32;
double f64;
. . .

} uval t;



Xpr Eval: A Virtual Machine (AVM)

All virtual machines need some instruction set:

enum avm instr e {
kAvmStop = 0,
kAvmAddI32 = 1,
kAvmSubI32 = 2,
kAvmMulI32 = 3,
kAvmDivI32 = 4,
kAvmModI32 = 5,
kAvmEqI32 = 6,
. . .
kAvmNoOp = MAXNOOP

};



Xpr Eval: AVM: Program

A program is a sequence of uint32 t reflecting a sequence of
op-codes followed by arguments:

1. op-code from avm instr e

2. zero or more arguments in the form of attribute numbers or
offsets into row-tuples depending on the storage layout.

Putting together a program (here for row format):

uint32 t lProg[7];
lProg[0] = kAvmEqI32;
lProg[1] = 0; // offset of arg 1
lProg[2] = 4; // offset of arg 2
lProg[3] = kAvmStop;



Xpr Eval: AVM: row: single tuple

Two general approaches: switch vs. function pointers.
In both cases, the signature is the same:
I return value: bool
I parameter:

1. byte t* restrict aTuple
2. uint32 t* restrict aProg



Xpr Eval: AVM: single tuple: switch

#define OP(a1, a2, a3, op, T) (*(T*)(a1)) = (*(T*)(a2)) op (*(T*)(a3))
int
avm itp row single switch(byte t* t, uint32 t* p) {

int lRes = 0;
byte t *a1, *a2, *a3; // pointers to attribute values
LOOP:

switch(*p++) {
case kAvmStop : goto END;
case kAvmAddI32:

a1 = t + *p++; // add offset to tuple base pointer
a2 = t + *p++;
a3 = t + *p++;
OP(a1, a2, a3, +, int32 t);
break;

. . .



. . .
case kAvmEqI32:

a1 = t + *p++; // add offset to tuple base pointer
a2 = t + *p++;
lRes = ((* (int*) a1) == (* (int*) a2));
break;

. . .
}

goto LOOP;
END:
return lRes;

}



Xpr Eval: AVM: single tuple: funptr

For the variant using function pointers, we first need an array of
function pointers:

typedef int (*op fun t)(byte t* a, byte t* b, byte t* c);
op fun t gOpFunArr[] = { 0, &fun addi32, &fun subi32,

&fun muli32, &fun divi32, &fun modi32 };

where the functions fun XXX have to be implemented
somewhere.

int fun addi32 (byte t* a, byte t* b, byte t* c) {
OP(a, b, c, +, int32 t);
return 0

}



Xpr Eval: AVM: single tuple: funptr

int
avm itp row single funptr(byte t* aTuple, uint32 t* p) {

int lRes = 0;
byte t* t = aTuple;
int lOp = 0;
LOOP:

lOp = *p++;
if(kAvmStop == lOp) {

goto END;
}
lRes = (gOpFunArr[lOp])((t + *p), (t + *(p+1)), (t + *(p+2)));
p += 3;
goto LOOP;

END:
return lRes;

}



Xpr Eval: AVM: row: vectorized

Above interpreter:
I per tuple

I one call to AVM interpreter
I per instruction in program

I one branch/function call

Idea: reduce overhead by amortizing it on many tuples.
subsequently:

t tuple
w tuple width
n number of tuples
p program



int avm itp row vectorized(byte t* t, int n, int w, uint32 t* p) {
int i;
byte t* *a1, *a2, *a3; // pointers to attribute values
LOOP:

switch(*p++) {
case kAvmStop : goto END;
case kAvmAddI32:

a1 = t + *p++; // get pointers to attributes
a2 = t + *p++; // by adding offsets
a3 = t + *p++; // contained in avm program
for(i = 0; i < n; ++i) {

OP(a1, a2, a3, +, int32 t);
a1 += w;
a2 += w;
a3 += w;

}
break;

. . .
}

goto LOOP;
END:
return n;

}



Xpr Eval: AVM: col: single

int avm itp col single(byte t* aColPtrs[], int aTupleNo, int* p) {
int lRes = 0;
byte t *a1, *a2, *a3; // pointers to attribute values
LOOP:
switch(*p++) {

case kAvmStop : goto END;
case kAvmAddI32:

a1 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));
a2 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));
a3 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));
OP(a1, a2, a3, +, int32 t);
break;

. . .
}
goto LOOP;
END:
return lRes;

}



Xpr Eval: AVM: col: vectorized
int
avm itp col vectorized(BYTE* aColPtrs[],

const int aStartRid,
const int aNoTuples,
int* p) {

byte t *a1, *a2, *a3; // pointers to attribute values
LOOP:
switch(*p++) {

case kAvmStop : goto END;
case kAvmAddI32:

a1 = aColPtrs[*p++] + (aStartRid * sizeof(int));
a2 = aColPtrs[*p++] + (aStartRid * sizeof(int));
a3 = aColPtrs[*p++] + (aStartRid * sizeof(int));
for(int i = 0; i < aNoTuples; ++i) {

OP(a1, a2, a3, +, int32 t);
a1 += sizeof(int32 t);
a2 += sizeof(int32 t);
a3 += sizeof(int32 t);

}
break;

}
goto LOOP;
END:
return n;

}



Xpr Eval: AVM: col: vectorized: SIMD

Two possibilites:
1. rely on compiler
2. use intrinsics

Normally solution (1) sufficies since the loops are very stylized
and the compiler is able to generate SIMD-code. Since the
compiler does not know about alignments that maybe
guaranteed by the QEE, the code generated is typically a bit
more complex and a little less efficient.



Xpr Eval: Compilation
C/C++:
I simplest to implement
I results in fast expression evaluation
I compiler call is mostly unacceptably costly

LLVM:
I a little more difficult to implement
I results in fast expression evaluation
I compiler call maybe too expensive, especially for

short-running ad-hoc queries
MachineCode/Assembler:
I tedious to implement
I lower ’compilation’ overhead
I results in fast expression evaluation
I not portable



Xpr Eval: Evaluation

Evaluation time for a simple program adding five integer
attribute values and assign the result to some other attribute.
More specifically, the program measured corresponds to

A[0] = A[0] + A[1] - A[2] + A[3] - A[4]

where A[i] denotes the i-th integer attribute. The relation
contained a total of 90 integer attributes and no other ones.



Xpr Eval: Evaluation

rs,rs2 row single interpreted switch/function pointer
rsc row single compiled

rv,rv2 row vectorized interpreted, two slightly varying
implementations

rc row vectorized compiled
cs,cs2 col single interpreted switch/function pointer

cv col interpreted vectorized
cc col compiled vectorized, without SIMD

ccs col compiled vectorized, with SIMD

[SIMD instructions generated by compiler]



Xpr Eval: Eval: Row
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Xpr Eval: Eval: Col

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000  10000  100000  1x106

p
er

 t
u
p
le

 c
os

t 
[n

s]

block size [#tuple]

apollo4: add/sub(4): col

cs
cs2
cv
cc

ccs



Xpr Eval: Eval: Row and Col
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Xpr Eval: AVM: col: Vectorized SIMD: selection

During the above discussion it became clear that there is a
problem with selection operators under vectorization as not
every input tuple produces an output tuple. The output of a
selection can be:
I produce column projection, i.e., vectors containing the key

column and one or more payload columns
I a vector of indices of qualifying tuples
I a bitvector with ’1’ for qualifying tuples

We discuss the first possibility and leave the others as an
exercise.



Xpr Eval: AVM: col: Vectorized SIMD: selection

In order to avoid using special SIMD-instruction, which makes
the code somewhat more difficult to read, we use the following
notation:
I W is the number of entries in one SIMD-register.

For example: 4 4-byte integers in a 128 bit SSE or NEON
register.

I To denote a SIMD-register, vector notation is used: ~r .
I ← denotes assignment.
I masked or selective assignment is denoted by ~r ←m ~p for

a mask m indicating which entries of ~p are copied to ~r .
The code uses a software-managed buffer B. The idea here is
that it remains in the cache and streaming write is used to flush
it to main memory.



Xpr Eval: AVM: col: Vectorized SIMD: selection

The algorithm needs/does:
I performs a selection with a between predicate on some

key column
I some input column Tin containing the key attribute
I some input column Pin containing some payload
I for every index i such that klb ≤ Tin[i] ≤ kub an output

column Tout containing the qualifying key from Tin and an
output column Pout containing values from a corresponding
input column Pin.

I a software-managed buffer B
I a index vector ~r containing the current row ids.



SELECT BETWEEN
i , j , l ← 0 // index for in/out/buffer
~r ← [0, . . . ,W − 1] // input indices
for(i = 0, i < |Tin|; i+ = W ) // for each lane

~k ← Tin[i] // read W input values
m← ( ~klb ≤ ~k)&(~k ≤ ~kub) // ’between’ to mask
if(0 6= m) // at least one qualifying input key?

B[l]←m ~r // selectively store indices
l ← l + |m| // inc each component by |m|
if(|B| −W < l) // buffer almost full?

for(b = 0; b < |B| −W ; b+ = W ) // step through buffer
~x ← B[b] // load idx of qualifying tuples
~k ← Tin[~x ] // load qualifying keys
~p ← Pin[~x ] // load qualifying payload
Tout[j + b]← ~k // store key values
Pout[j + b]← ~p // store payload

~p ← B[|B| −W ] // move overflow ..
B[0]← ~p // .. to buffer begin
j ← j + |B| −W // update output index
l ← l − |B|+ W // update buffer index

~r ← ~r + W // update index vector
// after loop: flush remaining items in buffer



Physical Algebra



Physical Algebra

When implementing algorithms for a DBMS, the following points
have to be taken into account:
I efficient algorithms
I efficient implementation

I avoid interpretation overhead (e.g. by vectorization or
compilation)

I avoid cache misses (make algorithms cache conscious)
I avoid TLB misses
I avoid branch-misprediction (e.g. by predicated code)



Physical Algebra: Techniques

1. Blocking/Tiling
2. Partitioning
3. Extraction
4. Loop Fusion
5. software managed buffers
6. explicit prefetching
7. streaming stores (possibly with software write-combining)



Physical Algebra: Techniques: Blocking/Tiling
Nested loop join like algorithm:
I each element from one input is compared to each element

with some other input.
Inputs: arrays X and Y .

for(i = 0; i < m; + + i)
for(j = 0; j < n; + + j)

process(X [i], Y [j])

Can be rewritten to

for(b = 0; b < n/B; + + b)
for(j = 0; j < n; + + j)

for(j = b ∗ B; j < (b + 1) ∗ B; + + j)
process(X [i], Y [j])

where B is the block-size, such that B elements of Y fit into the
cache.



Physical Algebra: Techniques: Partitioning

Consider a simple sort operation of an array X of size n:

quicksort(X, n)

Due to the workings of quicksort, this results in many
cache-misses if X is large.
An alternative is to partition X into small partitions, sort them
individually and then merge the results:

partition X into partitions x of size m < cache size
for each partition x

quicksort(x,m)
merge all partitions



Physical Algebra: Techniques: Extraction

Instead of sorting full tuples or inserting full tuples into a hash
table, we can use
I pairs of sort-key and pointers to tuples

or similar (hash-key, hash-value, pointer/rid/tid).



Physical Algebra: Techniques: Loop Fusion
Extraction and hash table insert implemented with two loops:

for(i = 0; i < n; + + i)
A[i].key = relation[i ].key
A[i].ptr = relation[i ].ptr;

for(i = 0; i < n; + + i)
insert into hashtable(A[i])

This can be improved by loop fusion as in

for(i = 0; i < n; + + i)
A[i].key = relation[i ].key
A[i].ptr = relation[i ].ptr;
insert into hashtable(A[i])

here: most probably A[i] in cache



Physical Algebra: Operator Overview

Overview:
1. scan/select
2. join
3. partitioning
4. sorting (*)
5. grouping/aggregation (*)

(*): not yet



Physical Algebra: Scan/Select

We have discussed most alternatives already:
I branching code versus predicated code
I SIMD



Physical Algebra: Join: Simple

Start: simple hash join (S Bhj R):

HtBuild(HR, R)
for each s ∈ S

Probe(s, HR)

Discussion:
I whole tuples of R are stored in the hash-table.
I if R is small (smaller than some cache and TLB is no

issue), this algorithm should perform well.



Physical Algebra: Join: Extraction

Improvement: extract key-pointer-pairs from R:

for each r ∈ R
HR.insert(ExtractKeyPointer(r ))

for each s ∈ S
Probe(s, HR)

Discussion:
I increases locality
I if size of HR is not too large (cache/TLB), this algorithm

should perform well.



Physical Algebra: Join: Partitioning

Partition both relations:

PartitionedHashJoin(R, S)
Partition(ExtractKeyPointer(R))
Partition(ExtractKeyPointer(S))
for each partition i

HtBuild(HRi , Ri )
for each s ∈ Si

Probe(s, HRi )

Partitioning details: next section.



Physical Algebra: Join: Software Prefetching

I software prefetching is an alternative to partitioning.
I three techniques

I group prefetching
I software-pipelined prefetching
I rolling prefetching



Physical Algebra: Join: group prefetching

Probe:

foreach group of tuples in probe partition
foreach tuple in the group

compute hash bucket number
prefetch the target hash bucket

foreach tuple in the group
visit hash bucket header
prefetch collision chain next (if necessary)

foreach tuple in the group
visit the collision chain (if necessary)

foreach tuple in the group
visit matching build tuples

to compare keys and produce output tuple

[here: entries consist of hash-value and pointer to tuple]



Physical Algebra: Join: group prefetching

Disadvantages of group-prefetching:
1. bursts of prefetches
2. complexity



Physical Algebra: Join: Software-Pipelined Prefetching

Probe (D = pipeline length):

prologue;
for j=0; j< N - 3D; ++j

tuple j+3D: compute hash bucket number
prefetch the target bucket header

tuple j+2D: visit the hash bucket header
tuple j+D; visit the collision chain

prefetch the matching build tuple
tuple j: visit the matching build tuple

compare keys and produce output tuple
epilogue;

Disadvantages of software-pipelined prefetching:
1. pipelining in probe too short, even shorter in build
2. complexity



Physical Algebra: Join: Rolling Prefetching

Parameter k = 2:

template<class Tuint, class Tbun, class Thashfun>
void build rp 2(const std::vector<Tbun>& aBun) {

const size t m = size(); HtSize
const size t n = aBun.size();
Tuint lIdxA = 0; // number 1
Tuint lIdxB = 0; // number 2 (=k)



if(2 < n) {
lIdxA = Thashfun()(aBun[0].key()) % m;
lIdxB = Thashfun()(aBun[1].key()) % m;

builtin prefetch(&( dir[lIdxA]), 1, 0); // optional
builtin prefetch(&( dir[lIdxB]), 1, 0); // optional

const size t nx = n - 2;
for(size t i = 0; i < nx; ++i) {

insert at(aBun[i], lIdxA);
lIdxA = lIdxB;
lIdxB = Thashfun()(aBun[i+2].key()) % m;

builtin prefetch(&( dir[lIdxB]), 1, 0);
}
for(size t i = nx; i < n; ++i) {

insert(aBun[i]); // process the rest
}

} else {
build(aBun); // simple build for small relations

}
}



Physical Algebra: Join: Rolling Prefetch

I The parameter k determines the distance between the
hash directory entry currently inserted into and the hash
directory entry currently prefetched

I k = 2 does not allow for sufficient work inbetween to hide
memory access latency

I increase k by adding lIdxC, lIdxD, etc. is a little
cumbersome.

I next: code for k = 8 with array instead of single variables



Physical Algebra: Join: Rolling Prefetch

template<class Tuint, class Tbun, class Thashfun>
void
build rp 8(const std::vector<Tbun>& aBun) {

const size t m = size(); // HtSize
const size t n = aBun.size(); // input size
Tuint lIdx[8]; // eight temporal variables, used round robin
const uint32 t lMask = 0x7; // mask for round robin



if(8 < n) {
for(int i = 0; i < 8; ++i) {

lIdx[i] = Thashfun()(aBun[i].key()) % m;
builtin prefetch(&( dir[lIdx[i]]), 1, 0);

}
const size t nx = n - 8;
uint32 t lCurr = 0;
for(size t i = 0; i < nx; ++i, ++lCurr) {

insert at(aBun[i], lIdx[lCurr & lMask]);
lIdx[lCurr & lMask] = Thashfun()(aBun[i+8].key()) % m;

builtin prefetch(&( dir[lIdx[lCurr & lMask]]), 1, 0);
}
for(size t i = nx; i < n; ++i) {

insert(aBun[i]); // process rest
}

} else {
build(aBun); // regular build for small relations

}
}



Physical Algebra: Join: Rolling Prefetch: Performance

performance test:
I cheap hash function: identity
I on sorted (seq) and randomly permuted (rnd) key
I evaluate

I simple hash build
I rolling prefetch build: vary parameter k from 2 to 8

I x-axis: cardinality of build input
I y-axis: time per build tuple



Physical Algebra: Join: Build: i7-4790
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Physical Algebra: Join: Build: Raspberry Pi 3
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Physical Algebra: Join: Build: XU-4
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Rolling Prefetching: Discussion

I easy to implement
I only prefetches directory entries
I does not prefetch collision chain entries



Asynchronous Memory Access Chaining (AMAC)

Main Idea:
I keep address and
I execution state in a small
I array organized as a
I ring buffer

Probe: state: distinguish between
I hashing/prefetching and
I subsequent comparison/access

Assumption here: hash directory entry and collision chain
element have the same structure. Otherwise another code
fragment (and thus state) must be introduced.



AMAC: state

struct state t {
uint64 t idx; // index/rid of current input element
uint64 t key; // key of the current input element
uint64 t pload; // payload of the current input element
node t* ptr; // hash directory entry or collision chain elem
int32 t stage; // handle hash dir entry or collision chain elem

};



AMAC: probe: part I
void probe(bun t* input, uint64 t N, hashtable t& ht, bun t* out) {

state t s[SIZE]; // ring buffer of states
int32 t k ; // index into ring buffer of states
int32 t i ; // index into input array
/* prologue: omitted here */
while(i < N) {

k = (k == (SIZE − 1) ? 0 : k);
if(1 == s[k ].stage) { // collision chain element

entry t* n = s[k ].ptr ;
if(n→key == s[k ].key) {

/* handle match: omitted here */
s[k ].stage = 0; // assume key, otherwise no ’else’

} else if (s->next) {
prefetch(n→next);
s[k ].ptr = n→next;

} else {
/* initialize new lookup (Code 0) */

}



AMAC: probe: part II
} else if (0 == s[k ].stage) {

/* Code 0: hash input key, calculate bucket address */
uint64 t h = HASH(input[i ].key);
bucket t* ptr = &ht[h];
prefetch(ptr);
/* update state */
s[k ].idx = ++i;
s[k ].key = input[i ].key;
s[k ].ptr = ptr;
s[k ].stage = 1;
/* optionally: prefetch payload to emit result */
s[k ].pload = input[i].pload;

}
++k ;

}
/* epilogue: omitted here */

}



AMAC: discussion

I fully handles all cases
I can be applied to other algorithms
I introduces sequence of if-statements or switch (branch

misprediction!) to hide main memory access latency



Partitioning

Partitioning is often applied
I to partition a big input into smaller parts each fitting some

cache.
I The idea is to reduce random memory accesses resulting

in many cache misses.
I A goal of partitioning is to store items in the partitions in

close neighborhood, i.e., clustered.



Partitioning: Simple

A simple hashtable is used to point to the partitions which are
allocated in chunks and possibly chained.

Ht



Partitioning: Simple and Radix

#define HASH(v) ((v >> 21) XOR (v >> 13) XOR (v >> 7) XOR v)
typdef struct { int v1, v2; } bun t;
radix cluster(bun t* dst[2D], // output buffer begin

bun t* dst end[2D], // output buffer end
bun t* rel, // input relation begin
bun t* rel end, // input relation end
int R, // radix bits (position)
int D) { // #radix bits (depth)

int idx, M = (1 << D) - 1;
for(bun t* cur = rel; cur < rel end; ++cur) {

idx = ((*HF)(cur→v2) >> R) & M; // use HASH
memcpy(dst[idx], cur, sizeof(bun t)); // use assignment
if(++dst[idx] ≥ dst end[idx])

REALLOC(dst[idx], dst end[idx]);
}
}



where REALLOC can have several meanings:
I add a new chunk to the chain
I perform a real realloc

also: the code
I contains two comments concerning some optimization

potential.
I is more complex since it can be used in multiple passes

useful if
I 2D pointers are larger than Ld1/2/3, TLB1/2.
I 2D exceeds the number of TLB1/2 entries.



Multi-Pass Radix-Partitioning

no 012
50 010
32 000
72 000
68 001

1 100
59 110
66 010
72 000
36 001
45 101

=⇒
2msb

no 012
32 000
72 000

1 100
72 000
50 010
59 110
66 010
68 001
36 001
45 101

=⇒
1lsb

no 012
32 000
72 000
72 000

1 100
50 010
66 010
59 110
68 001
36 001
45 101

msb: most significant bit, lsb: least significant bit



Partitioning: Why chunks are not so good

One problem with the approach of having chained output
chunks is a possible
I underutilization of memory as some chunks maybe

partially filled.
Idea:
I instead of chunks
I use densely populated array to store partitions



Partitioning: dense array

I idea: use histogram to determine offset of partitions within
a densely packed output array

I subsequently: f is the function used for partitioning



Partitioning: Histogram Build

Let T be some input table with an attribute key.

build hist(H, T ) {
H = {0};
for(int i = 0; i < |T |; ++i) H[f (T [i].key)]++;

}



Partitioning: Histogram Prefix Sums Are Offsets

Let H be some input histogram and O the offset array to be
produced.

offset start(O, H) {
int off = 0;
for(int i = 0; i < H.size(); ++i) {

O[i] = off;
off += H[i];

}
}



Partitioning: cache-oblivious

part0(S, O, T ) {
for(int i = 0; i < |T |; ++i) {

t = T [i]; // get input tuple t
off = O[f (t .key)] + +; // get output index
S[off] = t ; // write output tuple to partition P

}
}

Again, if the offset array and the number of output partitions are
large, there are the usual problems with caches and TLBs.



Partitioning: cache-oblivious: in-place

I For multiple passes, in-place partitioning might be useful.
I For this algorithm we need the end of each partition

offset end(O, H) {
int off = 0;
for(int i = 0; i < H.size(); ++i) {

off += H[i];
O[i] = off;

}
}



Partitioning: cache-oblivious: in-place
T : input and output table; H: is the histogram; O: offset array
produced by offset end; P: number of partitions.

part in place(O, T , H, P) {
int off = 0, p = 0, i = 0;
while(0 == H[p]) ++p; // skip empty partitions
do {

t = T[i];
do {

p = f(t.key); // determine partition
off = −−O[p]; // determine/update offset
swap(T[off],t); // swap current tuple with contents of destination

} while(off != i); // until we found something for the original place
do {

i += H[p++];
} while((p < P) && (i == O[p]));

} while(p < P);
}



Partitioning: runtime
The following figure shows the runtime of the out-of-place,
in-place, and radix-cluster algorithms. The x-axis contains
cardinality of the input relation. The number of partitions is
chosen such that a partition fits into the L1 cache. The
experiment was run on a Intel Xeon E5-2620 v4 (2.10 GHz).
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Partitioning: software-managed buffer

The following code
I uses the last entry in the buffer to store the current offset of

a partition
This avoids another cache miss.



Partitioning: software-managed buffer

partition smb(S, T, H, P) {
int off = 0;
for(int p = 0; p < P; ++p) {

buffer[p][L-1] = off; // store offset of partition p
off += H[p];

}
for(int i = 0; i < T.size(); ++i) {

t = T[i]; // get next tuple
p = f(t.key); // determine its partition
off = buffer[p][L-1]++; // its offset
buffer[p][off mod L] = t; // store t in buffer
if((off mod L) == (L - 1)) {

// flush buffer to S[off] using streaming store
buffer[p][L-1] = off + 1;

}
}

}



Physical Algebra: Sort

not this semester



Physical Algebra: Grouping and Aggregation

not this semester



Index structures



Index Structures: Cache Conscious B+-Tree

The main idea of the CSB+-Tree:
I Instead of k + 1 child pointers for k keys, the CSB+-Tree

stores only one or a few child points.
I One child pointer suffices if successive child nodes are

stored consecutively in memory.
I In its simplest variant (full CSB+-Tree), there is always (!)

space allocated for the maximum number of child nodes.
As usual:
I A CSB+-Tree of order d contains k keys with d ≤ k ≤ 2d .



Index: CSB+-Tree: inner node

struct csb node inner t {
csb node inner t* childs; // 8 Bytes
uint16 t leaf indicator; // 2 Bytes
uint16 t no keys; // 2 Bytes
uint32 t unused; // 4 Byte
int32 t keys[12]; // 2d keys, d = 6

}

The size of a node here is 64 byte, which is exactly one cache
line. In general, a node can comprise multiple (a few) cache
lines.



Index: CSB+-Tree: child node allocation

All child nodes of an inner node are contained in one node
group allocated together. There are different choices possible:

1. whenever there is an inner node, all 2d + 1 child nodes are
allocated in one node group.
This results in the full CSB+-Tree.

2. only those nodes which are actually present are allocated
3. more than one pointer (say 2 or 3) are used in inner nodes

and a node group is split into node segments.
This results in the segmented CSB+-Tree.

Memory management is simpler in the first case and it is faster
if the update/search ratio increases. However, some space is
wasted.



Index: CSB+-Tree: leaf nodes

Leaf nodes contain (key,ptr/rid)-pairs and are chained:
I first sibling of a node group contains previous pointer
I last sibling of a node group contains next pointer
I otherwise offset calculation is used



Index: CSB+-Tree: operations

The operations in the CSB+-Tree are very similar to those in a
regular B+-Tree.



Index: Remember Radix Trees (TRIE)

A

N R

D

digit 1

digit 2

digit 3

leaf nodes

E TYT

I Tree height depends on key length k , but not on tree size n
I No re-balancing required
I Lexicographic order
I The keys stored implicitly, reconstructable from paths



Index: Radix Tree

I For binary keys, the fanout can be configured.
I At each node, s bits (“span”) of the key are used.
I Each inner node is simply an array of 2s pointers.

s=3 s=1

0 10 1 2 3 4 5 6 7



Index: ART: Adaptive Radix Tree

Why radix tree and not balanced binary search tree?
Height of a perfectly balanced binary search tree and a radix
tree:

perfect BST

radix tree (s=4)
radix tree (s=8)
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k 4
k 8
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tree size in # keys (log scale)

tre
e 

he
ig

ht
 



Index: ART: Adaptive Radix Tree

Traditional inner node of a radix tree:
I 2s pointers

for a span of s bits of the key.

I If the key is k bits long, the radix tree has height dk/se.
I Thus, s is a critical parameter for radix tree height.
I Also: s is a critical parameter for radix tree space

consumption.



Index: ART: Space Consumption

s is critical for height and space usage:

s=1

s=2

s=3
GPT (s=4)

LRT (s=6)
s=12s=14 s=16s=8

s=32ARTARTARTARTARTARTARTARTARTART1
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Index: ART: influences of s

I only some choices for s are suitable:
I the larger s the better the lookup performance
I the smaller s the smaller the space consumption

I ART: reduction of space due to multiple node sizes
(see next slide)



Index: ART: Adaptive Radix Tree

Problem in regular radix tree: partially filled nodes (left):

ART: different node sizes (right)



Index: ART: inner nodes

Node4 stores up to 4 child node pointers and up to 4 keys
Node16 stores between 5 and 16 child node pointers and

keys
Node48 stores stores an array with 17 to 48 child node

pointers and 255 offsets into this array
Node256 stores an array of 256 entries.

All nodes have a header containing node type, number of child
nodes, and compressed path to the node.



13 129130

key child pointer

3 8 9 ……

key child pointer

Node4

Node16

Node48

Node256

0 1 2
… …

child index child pointer

3 255

0 1 2
…

3 255

child pointer

4 5 6

255

0 1 2 3 0 1 2 3

0 1 2 0 1 2 1515

47210

TID TID TID TIDTID TID

2 913 255

byte representation

+218237439 00001101 00000010 00001001 11111111

integer key bit representation (32 bit, unsigned)



Index: ART: leaf nodes

Here: only unique index
1. single-value leaves: store one value
2. multi-valued leaves: store several key/value stores, may

differ in structure as inner nodes
3. combined pointer/value slots: if values fit into pointers, e.g.,

sizeof(void*) >= sizeof(TID)
one can reuse the inner node structures.

I single-value leaves most general, but increases key height
(additional pointer chase)

I multi-valued leaves good [hier fehlt was] ???
I combined pointer/value slots: preferable mode of operation



Index: ART: height reduction

Long keys result in large height. Two techniques to reduce
height:
lazy expansion inner nodes are only created if needed to

distinguish two leaf nodes
path compression remove inner nodes with a single child only
The latter requires to store the ’left out’ part of the key to be
stored in the nodes. In ART: 8 bytes fixed. if exeeded: compare
complete key in leaf nodes or after index at tuple access time.



Index: ART: height reduction

B
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expansion
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to single leaf

merge one-way node
     into child node



Index: ART: lookup

I lookup finds leaf by successively calling findChild

I findChild looks up a child in an inner node, given a
partial path (one byte)



Index: ART: findChild (1)

findChild(node, byte)
if node.type == kNode4 // simple loop

for (i=0; i < node.count; ++i)
if node.key[i] == byte

return node.child[i]
return NULL

if node.type == kNode16 // use SIMD
key = mm set1 epi8(byte)
cmp = mm cmpeq epi8(key, node.key)
msk = (1 << node.count) - 1
bv = mm movemask epi8(cmp) & msk
if bv

return node.child[ctz(bv)]
else

return NULL



Index: ART: findChild (2)

if node.type == kNode48 // two array lookups
if node.childIndex[byte] != kEmpty

return node.child[node.childIndex[byte]]
else

return NULL
if node.type == kNode256 // if not really needed

return node.child[byte] // single array lookup



Index: ART: insert (1)

we use the following subroutines:
I replace replaces a node in the tree by another node
I addChild appends a new child to an inner node
I checkPrefix compares the compressed path of a node

with the key and returns the number of equal bytes
I grow replaces a node by a larger node
I loadKey retrieves the key of a leaf



Index: ART: insert(2)

insert(node, key, leaf, depth)
// case 1: empty tree
if node == NULL // handle empty tree case

replace(node, leaf)
return



Index: ART: insert(3)

insert(node, key, leaf, depth)
. . .
// case 2: existing leaf is encountered
// (possibly due to lazy expansion)
if isLeaf(node) // expand node

newNode = makeNode4()
key2 = loadKey(node)
for (i = depth; key[i] == key2[i]; ++i)

newNode.prefix[i-depth] = key[i]
newNode.prefixLen = i - depth;
depth += newNode.prefixLen
addChild(newNode, key[depth], leaf)
addChild(newNode, key2[depth], node)
replace(node, newNode)
return



Index: ART: insert(4)

insert(node, key, leaf, depth)
. . .
// case 3: key of the new leaf to be inserted
// differs from compressed path
p = checkPrefix(node, key, depth) // len common prefix
if p != node.prefixLen // prefix mismatch

newNode = makeNode4()
addChild(newNode, key[depth+p], leaf)
addChild(newNode, node.prefix[p], node)
newNode.prefixLen = p
memcpy(newNode.prefix, node.prefix, p)
node.prefixLen = node.prefixLen - (p + 1)
memmove(node.prefix, node.prefix + p + 1, node.prefixLen)
replace(node, newNode)
return



Index: ART: insert(5)

insert(node, key, leaf, depth)
. . .
// case 4: regular cases
depth += node.prefixLen
next = findChild(node, key[depth])
if next // recurse

insert(next, key, leaf, depth + 1)
else

if isFull(node)
grow(node)

addChild(node, key[depth], leaf)



Index: ART: bulkload

I recursively partition data
I build ART accordingly



Index: ART: Performance: Lookup (4 Byte Keys)
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I GPT: Generalized Prefix Tree, Boehm et al., BTW 2011
I RB: Red-Black Tree
I CSB: Cache-Sensitive B+Tree, Rao and Ross, SIGMOD 2000
I kary: K-ary Search Tree, Schlegel et at., Damon 2009
I FAST: Fast Architecture Sensitive Tree, Kim et al., SIGMOD 2010
I HT: Chained Hash Table



Index: ART: Performance: Insert

I 16M entries, 4 byte keys
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Boolean Expressions



Bxp: Outline

1. preliminaries
2. cost functions

2.1 example cost function
2.2 precision/error metric

3. cardinality estimation (gamma sampling)
4. conjunctive queries

4.1 ordering by selectivity
4.2 ordering by rank
4.3 DPsel

5. disjunctive queries
5.1 cnf/dnf/bypass plans
5.2 bypass selection
5.3 TDbyp



Bxp: Preliminaries

Presentation restricted to column stores.
Algebraic operators needed:
I relation scan: scan(R)

I select: σ
I map: χ



Bxp: Preliminaries: scan

I the scan of a relation R is denoted by scan(R).
I it produces RIDs or column indices or pointers into

columns

Important: the scan does not include access to
columns/attributes. Since this is a costly memory access, it has
to be modelled explicitly.



Bxp: Preliminaries: map

The map operator adds a new attribute to a set/bag of input
tuples:

χA:e′(e) := {t ◦ [A : v ] | t ∈ e, v = e′(t)}
χA1:e1,...,Ak :ek := χAk :ek (. . . (χA1:e1(e)) . . .)

where e is an algebraic expression, A is an attribute name and
ei and e′ are expressions. Special case is attribute access, i.e.,
TID or column pointer dereference:

χ∗(A1,...,Ak )(e)



Bxp: Cost Functions

I measured costs
I cost function parameters/notation
I cost functions themselves



Bxp: Measured Column Access Costs in System Tx
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Bxp: Measured Selection Costs
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Bxp: Measured Costs: Observations

I measurements not absolutely precise (even
indeterministic)

I difficult to approximate

Nonetheless, (averaged) measurements are taken to be the
truth. Approximation will yield some error. This implies the
following question:
I Which error metrics should we minimize?



Bxp: Q-Error

Let x be a value and x̂ be an estimate for x . Then, the q-error
of the estimate x̂ is defined as

q-error(x̂) := ||x̂/x ||Q

where
||y ||Q := max{y ,1/y}

Why || · ||Q and not ‖·‖1 or ‖·‖2 or ‖·‖∞?



Bxp: Q-Error

For an expression e:
I let C(e) denote the result of some cost function
I letM(e) denote some measured costs
I let E = {e1, . . . ,ek} be a set of plans
I let eopt be the optimal plan for a query Q minimizingM(e)

I let ebest be the optimal plan for a query Q minimizing C(e)

We are now interested in the factor by which the true costs of
ebest are larger than the true costs of the optimal plan eopt .



Bxp: Q-Error: Theorem

If for all ei ∈ E
||C(ei)/M(ei)||Q ≤ q

for some q, then

||M(ebest )/M(eopt )||Q ≤ q2



Bxp: Q-Error: Corollary

If for all ei ∈ E
||C(ei)/M(ei)||Q ≤ q

for some q and for all ei 6= eopt

q <
√
||M(ei)/M(eopt)||Q,

then
M(ebest) =M(eopt).



Bxp: Q-Error: Proof of Theorem

Since under the cost function C the plan ebest is minimal, we
must have

C(ebest) ≤ C(eopt),

and since underM the plan eopt is minimal, we have

M(eopt) ≤M(ebest).



Since for all plans e we have ||M(e)/C(e)||Q ≤ q, we can
conclude that1

M(ebest) ≤ qC(ebest)

M(eopt) ≥ (1/q)C(eopt).

Using all these inequalities, we can derive

||M(ebest)/M(eopt)||Q ≤ M(ebest)

M(eopt)

≤ qC(ebest)

(1/q)C(eopt)

≤
qC(eopt)

(1/q)C(eopt)

≤ q2

2

1∀x > 0 ||x ||Q ≤ q =⇒ 1/q ≤ x ≤ q



Bxp: Q-Error: Proof of Corollary

AssumeM(ebest) 6=M(eopt).
Then, by our Theorem we have the following contradiction:

M(ebest)

M(eopt)
≤ q2 <

M(ebest)

M(eopt)

2



Bxp: Q-Error: Consequences

As a consequence of the theorem and its corollarly
I it becomes clear that we must minimize the q-error
I we must approximate the measurements such that the

q-error is minimized
The latter implies that linear regression, which minimizes l2 is
not appropriate.

We use the following parameters for our cost functions



Notation Description
R relation
A(i),B(i), . . . attributes, with and without index
A set of attributes
χ∗(A) map operator accessing A
aχ,bχ constants for map operator
deref (d) costs of dereferencing d columns
p(i) predicates
s(i), sel(p(i)) selectivities for predicates
P set of predicates, interpreted conjunctively
sel(P) selectivity of a set of predicates
e some algebraic expression (plan)
as,bs constants for scan operator
ain,aout constants for processing input/output tuples
B(s) branch misprediction cost for selectivity s
C(e) cost function applied to e, estimated runtime



Bxp: Cost Model

C(scan(R)) = |R| ∗ as + bs

C(χ∗(A)(e)) = |e| ∗ (deref (1,n) + aχ) + bχ
C(p1&p2) = C(p1) + C(p2) + C(&)

C(p1&&p2) = C(p1) + B(s1) + s1C(p2)

C(σp(e)) = |e| ∗ (C(p) + B(sel(p)) + ain + sel(p) ∗ aout )

Observe:
I cost functions mostly linear with some non-linear

components like B
I cost functions contain constants: calibration is needed
I selectivities/cardinalities must be known



Bxp: Cardinality Estimation

Let P = {p1, . . . ,pz} be the set of predicate used in some
conjunctive query.
Then, we need

sel(
∧
i∈S

pi)

for all S ⊆ {1, . . . , z}.
We discuss only one possibility to derive these:
gamma-sampling.



Bxp: Cardinality Estimation: gamma-sampling (1)

Let P = {p1, . . . ,pz} denote a set of z predicates. For a subset
of predicates P ′ ⊆ P, we denote by β(P ′) the formulae

Fβ(P ′) =
∧

pi∈P′

pi ,

and by γ(P ′) the formulae

Fγ(P ′) =
∧

pi∈P′

pi ∧
∧

pi 6∈P′

¬pi .

(Fβ are conjuncts of predicates and Fγ are minterms.)



Bxp: Cardinality Estimation: gamma-sampling (2)

The selectivities of these predicates are denoted by

β(P ′)

and
γ(P ′)

For our algorithm, we need the vector β, which gathers the
β(P ′) for all P ′. The procedure getGamma presented below will
give us γ. Hence, we need a method to convert γ to β.



Bxp: Cardinality Estimation: gamma-sampling (3)

A technicality:
I every subset P ′ ⊆ P can be expressed as bitvector bv(P ′)

of length |P|
I bv(P ′) can be interpreted as a positive integer whose

representation it is
Subsequently, we identify these two different interpretations of
the same bitpattern.



Bxp: Cardinality Estimation: gamma-sampling (4)

Let n = 2z . Define the complete design matrix C ∈ Rn,n as

C(i , j) =

{
1 if j ⊇ i
0 else

where j ⊇ i denotes the fact that every bit set to one in i is also
set in j , i.e., i = i&j and i , j range from 0 to 2z − 1.
C is binary, non-singular, upper triangular, and persymmetric.



Bxp: Cardinality Estimation: gamma-sampling (5)

The complete design matrix C allows us to go from γ to β by

Cγ = β



Bxp: Cardinality Estimation: gamma-sampling (6)

getGamma(p, z, S)
// p is vector of predicates,
// z its length,
// S is the sample
int n = (1 << z);
// array of counters initialized to zero
int c gamma[n] = 0;
// for all sample tuples in S
for(s : S)

int k = 0; // accumulated results for predicate evaluations
for(int i = 0; i < z; ++i) // for each predicate

// p[i](s): evaluate pi on sample tuple s
k | = (p[i](s) << i);

++c gamma[k];
return c gamma/|S|; // componentwise division



Bxp: Conjunctive Queries

I sort by increasing selectivity s
ignores different costs, relies on independence assumption
(IA)

I sort by increasing rank (r = s−1
c )

s selectivity of some predicate, c cost of some predicate.
Ad 2:
I selectivity ’changes’ if IA does not hold
I BMP costs depend on selectivity, thus cost change
I costs of a predicate might change if common

subexpressions occur
I selectivity of a predicate changes badly in case of

implications



Bxp: IA Example I

assume some attribute A contains uniformly randomly
distributed numbers in [1,100]
then

sel(A ≤ 51) = 0.51
sel(A ≥ 50) = 0.51

However, after σA≤51 has been applied,

sel(A ≥ 50) = 0.02



Bxp: IA Example II

Two simple predicates on a CAR relation from the DMV:
I make = ’HONDA’
I model = ’ACCORD’



Bxp: conjunctive queries: DPsel

I no independence assumption (IA)
I branch misprediction (BMP) costs
I common subexpression elimination (CSE)
I build plans using both, & and &&
I uses dynamic programming



Bxp: conjunctive queries: DPsel: BuildPlans

BUILDPLANS(p,e)

Input: a selection predicate p
an expression e (partial plan)

Output: plan container B
1 Xe = ∪pi∈eXpi

2 Xp|e = Xp \ Xe // outstanding maps
3 B = {σp(Xp|e(e))}
4 if e == σp′(Xp|e(e′))
5 B+=σp′&p(Xp|e(e′))
6 B+=σp′&&p(Xp|e(e′))
7 return B



Bxp: conjunctive queries: DPsel: DpInsert

DPINSERT(e,P,DP)

Input: an expression e
a set of predicate(s) P
a DP table

Output: none, affects DP
1 if DP[P] == null ∨ C(DP[P]) > C(e)
2 DP[P] = e



Bxp: conjunctive queries: DPsel

DPSEL

Input: a set P = {p0, . . ,pn−1} of predicates
Output: an optimal plan

1 DP = an empty DP table, size→ 2n

2 DP[∅] = scan(R)
3 for each 0 ≤ i < 2n − 1 ascending
4 P ′ = {pk ∈ P | (

⌊
i/2k⌋mod 2) = 1}

5 for each pj ∈ P \ P ′

6 for each ej ∈ BUILDPLANS(pj ,DP[P ′])
7 DPINSERT(ej ,P ′ ∪ {pj},DP)
8 return DP[P]



Bxp: disjunctions: plan alternatives (1)

I disjunctive normal form (DNF) plans require duplicate
eliminating union

I conjunctive normal form (CNF) plans typically imply
redundant evaluations

I bypass plans are the best known choice

main idea bypass plans: select operator gets two output
streams: one for tuples satisfying the selection predicate, one
for those that do not. (union becomes simple union [no dup
elim])



Bxp: disjunctions: plan alternatives (2)

∪

pl

prpc

(a) DNF plan

pc ∨ pr

pl ∨ pr

(b) CNF plan

-∪

pr

pl

pc

pr

true
false

(c) Bypass plan

Figure: Evaluation plans for the query (pc ∧ pl ) ∨ pr



Bxp: disjunction: plan alternatives (3)

I neither CNF nor DNF plans are opimal
I both require normalization which may lead to exponential

blow up
I thus: we are left with bypass plans

Question:
How to generate optimal bypass plans?



Bxp: disjunction: prerequisites

I an assignment is a set of elements of the form pi ← v
where v is a truth value

I let b be a boolean expression and A be an assignment
then b[A] denotes the replacement of the predicates in A
by their assigned truth values and subsequent
simplification

example: for A = {p2 ← false}:

(p1 ∧ p2) ∨ (p3 ∧ p4)[A] ≡ (p1 ∧ false) ∨ (p3 ∧ p4)

≡ (p3 ∧ p4)

Note: the same result occurs for A = {p1 ← false}.



Bxp: disjunction: prerequisites

Consequences:
I Remember: the same result occurs for A = {p1 ← false}.
I However: selectivities for p3 and p4 may differ!
I Thus: cannot use boolean expressions to index Memo

table!
I Hence: we use assignments to index Memo table

We use top-down plan generation with memoization. This is
why the DP table is renamed to Memo table.



Bxp: disjunction: TDbyp

TDBYP(e, Bxp, Asg, branch)

// Input: partial plan e
a Boolean expression Bxp
an assignment Asg
flag branch

// Output: best plan
1 if Memo[Asg]
2 return Mem[Asg]
3 bestcost =∞
4 bestplan = NULL



1 for each p ∈ {getPredicates(Bxp)}
2 e′ = BUILDPLANS(p,e,branch)
3 A = {p ← TRUE}
4 e+ = TDSIM(e′,Bxp[A],Asg ∪ A, TRUE)
5 A = {p ← FALSE}
6 e− = TDSIM(e′,Bxp[A],Asg ∪ A, FALSE)
7 cost = Cost(e+) + Cost(e−) + Cost(e′)
8 if bestplan == NULL or bestcost > cost
9 bestplan = [e′,e+,e−]

10 bestcost = cost
11 Memo[Asg] = bestplan
12 return bestplan



Bxp: disjunction: BuildPlans

BUILDPLANS(p,e,branch)

// Input: a selection predicate p
a partial plan e
flag branch

// Output: (partial) plan
1 Xe = ∪pj∈eXpj

2 Xp|e = Xp \ Xe // outstanding maps
3 if e == scan(R)
4 return σp(χ∗P(e))
5 elseif branch == TRUE

6 // at this point we know that e is not a scan
7 e = σp(Xp|e(σ+pj

(e′)))

8 else
9 e = σp(Xp|e(σ−pj

(e)))

10 return e



Bxp: disjunction: TDacb

prune search space while preserving optimality:
I branch-and-bound pruning
I here specialization: accumulated cost bounding
I prune execution of cost exceeds a given budget
I problem: reoptimization for rising budgets
I standard solution: exponential budget growth
I Memo[Asg].LB returns 0 by default

(lower bound for best plan for Asg)
I initial call: budget b =∞ (or heuristic like BDC)



Bxp: disjunction: TDacb

TDACB(e, Bxp, Asg, branch, b)

// Input: partial plan e, a Boolean expression Bxp,
an assignment Asg, flag branch, cost budget b

// Output: best plan
1 if Memo[Asg] 6= NULL and Cost(Memo[Asg]) ≤ b
2 return Memo[Asg]
3 if Memo[Asg].LB ≥ b
4 return NULL

5 if Memo[Asg].LB > 0
6 b = MAX(b,Memo[Asg].LB ∗ 2)
7 bestcost =∞
8 bestplan = NULL



1 for each p ∈ {getPredicates(Bxp)}
2 e′ = BUILDPLANS(p,e,branch)
3 b′ = MIN(b,bestcost)− Cost(e′)
4 A = {p ← TRUE}
5 e+ = TDACB (e′,Bxp[A],Asg ∪ A, TRUE,b′)
6 if e+ 6= NULL

7 b′ = b′ − Cost(e+)
8 A = p ← FALSE

9 e− = TDACB (e′,Bxp[A],Asg ∪ A, FALSE,b′)
10 if e− 6= NULL

11 cost = Cost(e+) + Cost(e−) + Cost(e′)
12 if bestplan == NULL or bestcost > cost
13 bestplan = [e′,e+,e−]
14 bestcost = cost



1 // If no valid plan was found with budget b
2 if bestplan.e+ == NULL or bestplan.e− == NULL

3 Memo[Asg].LB = b
4 return NULL

5 Memo[Asg] = bestplan
6 return Memo[Asg]



Cardinality Estimation
Many techniques:

1. histograms
2. sampling
3. sketches

I to estimate the number of distinct value
I to estimate the self-join and join sizes

4. compression using DCT, wavelets, etc.
For histograms and sketches to estimate the number of distinct
values, see ’Building Query Optimizers’ or book by Cormode,
Garofalakis, Hass, Jermaine. The latter contains an overview of
many different estmation techniques.



Sketches for Join Size Estimation
1. Tug-Of-War (AGMS sketch)
2. FastAGMS sketch



Frequency Moments

Let ~f = (f1, . . . , fn) be a frequency vector for values v1, . . . , vn.
Define frequency moments

Fk :=
n∑

i=1

f k
i

Then,
I F0: number of occurring distinct values ≤ n
I F1: cardinality (sum of the frequencies)
I F2: sum of square of frequencies: selfjoin size



The Random Variables

Let ζi ∈ {−1,+1} be a random variable. Then its expected
value is E(ζi) = 0. Define a random variable

Z =
n∑

i=1

ζi fi

Using the random variable Z , define the random variable X as

X = Z 2.

We show that for two-way independent ζi we have

E(X ) = F2



Proof

With E(ζi) = 0 and two-way independence we have

E(X ) = E(Z 2)

= E
(( n∑

i=1

ζi fi
)2)

=
n∑

i=1

f 2
i E(ζ2

i ) + 2
∑

1≤i<j≤n

fi fjE(ζi)E(ζj)

=
n∑

i=1

f 2
i

= F2

2



Variance
Next, we show that

Var(X ) ≤ 2F 2
2

Proof: Similar to the above, using 4-way independence it
follows that

E(X 2) =
n∑

i=1

f 4
i + 6

∑
1≤i<j≤n

f 2
i f 2

j

(Note:
(4

2

)
= 6, and due to 4-way independence we have

E(ζi1ζi2ζi3ζi4) = E(ζi1)E(ζi2)E(ζi3)E(ζi4) ) It follows that

Var(X ) = E(X 2)− E(X )2

= 4
∑

1≤i<j≤n

f 2
i f 2

j

≤ 2F 2
2

2



AGMS Sketch for Self-Join Size

I variance bounded but pretty high
I use median of averages to decrease variance

We need:
I Let s1, s2 be positive integers.
I Let ζi,j be 4-universal hash functions.



AGMS Sketch for Self-Join Size
1. define s := s1s2 random variables

Zi,j =
n∑

v=1

ζi,j(v)fv

for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2. and another s random
variables

Xi,j = Z 2
i,j

2. define s1 random variables

Yi = (1/s2)

s2∑
j=1

Xi,j

for 1 ≤ i ≤ s1.
3. define a random variable Z containing the median of the

Yj .

Then Z is the estimate of F2.



AGMS Sketch for Self-Join Size

Increasing s1 increases precision; increasing s2 increases
confidence:
Theorem

Let R be a relation with a frequency vector f , numbers s1, s2,
and the random variable Y as above. Then

Prob
(
|Y − SJ(R)|

SJ(R)
≤ 4√

s1

)
≥ 1− 2−s2/2

where SJ(R) denotes the selfjoin size of R. 2



AGMS Sketch for Join Size

Given relations R1 and R2. The counters Z 1 and Z 2 are defined
as

Z 1 :=
n∑

i=1

ζi fi

Z 2 :=
n∑

i=1

ζigi

where fi is the frequency of the value of value i in R1 and gi is
the frequency of the value i in R2. Then, the estimate is

Z := Z 1 ∗ Z 2.



AGMS Sketch for Join Size

Then

E(Z ) = |R1 B R2|
Var(Z ) ≤ 2SJ(R1)SJ(R2)

where JS(Ri) is the self-join size of Ri .



AGMS Sketch: Code for insert

The insert procedure of AGMS (Tug-of-War):

insert(const int aVal, const int aCount, const uint aRelNo) {
for(uint i = 0; i < s(); ++i) {

Z[aRelNo][i] += hash(aVal, i) * aCount;
}

}

where hash(v,i) applies the i-th hash function to the value v .



AGMS Sketch: Code for producing the estimate

double
estimate(const uint aRelNo1, const uint aRelNo2) const

double vt v(s2());
// 1. calculate averages
uint k = 0;
for(uint j = 0; j < s2(); ++j)

v[j] = 0;
for(uint i = 0; i < s1(); ++i)

v[j] += Z[aRelNo1][k] * Z[aRelNo2][k];
++k;

v[j] /= s1();
// 2. calculate median by sorting
std::sort(v.begin(), v.end());
if(0 == (v.size() & 0x1))

return (v[v.size() / 2 - 1] + v[v.size() / 2]) / 2 ;
return v[v.size() / 2];



AGMS Sketch: Discussion

I relatively precise
I insertion time proportional to number of counters



FastAGMS Sketch: Overview

I use s2 sketch vectors Zi (1 ≤ i ≤ s2) of length s1

I instead of updating s = s1s2 counters, only s2 counters are
updated.

I use hash function to determine which counter in each
sketch vector is updated.



FastAGMS Sketch: Hash Functions

I let U = {v1, . . . , vn} be the domain of the join attribute.
I we need a family of hash functions h1,j (1 ≤ j ≤ s2) to map

values to counters in the sketch vector (here treated as a
hash table).

I as in the AGMS sketch, we need a familiy of hash
functions h2,j to map values to ±1.

The hash functions:
I h1,j : U → {1, . . . , s1} to map a value to a counter
I h2,j : U → {−1,+1} as before



FastAGMS Sketch: Build

Upon an insertion or deletion with count c, we update only s2
counters:

insert(const int v, const int aCount, const uint aRelNo)
for(uint j = 0; j < s2; ++j)

ZaRelNo[j ∗ s1 + h1,j(v)] += aCount * h2,j(v);



FastAGMS Sketch: estimate

double
estimate(const uint aRelNo1, const uint aRelNo2) const

double vt v(s2());
uint k = 0;
for(uint j = 0; j < s2(); ++j)

v[j] = 0;
for(uint i = 0; i < s1(); ++i)

v[j] += ZaRelNo1[k ] ∗ ZaRelNo2[k ];
++k;

std::sort(v.begin(), v.end());
if(0 == (v.size() & 0x1))

return (v[v.size() / 2 - 1] + v[v.size() / 2]) / 2 ;
return v[v.size() / 2];



Parallelism



Parallelism: Amdahl’s Law

Given some task t , such that a fraction x of it is parallelizable.
Thus, 1− x is the sequential fraction of t . For a given degree of
parallelism n we can calculate the speedup factor according to
Amdahl’s law as

speedup =
1

1− x + x/n



Parallelism: Amdahl’s Law
Plotting this formula for different n results in:
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Amdahl's law, n = degree of parallelism, x = fraction parallelizable

n=2
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n=20
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n=100

Fortunately, in the database context, we do the same task on
many tuples (data parallelism).



Parallelism: Kinds

BB

BA

S R

v vT

v

kinds of parallelism
I inter-query parallelism

I run independent queries in parallel
I intra-query parallelism:

I partition relation and process partitions in parallel (within
strands)

I process indendent strands in parallel (bushy parallelism)



Parallelism: Morsel-Driven

I relation R is partitioned into ’small’ partitions called
morsels (at least 10.000 tuples)

I each morsel is processed by some worker-thread
I the dispatcher determines the worker-thread
I there is one worker-thread for every hardware thread



Parallelism: Morsel-Driven
General idea of morsel-driven parallelism for R BA S BB T . The
following picture shows the details of the last strand of the
above plan:
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Parallelism: Morsel-Driven

A complete picture for the whole plan looks as follows:

Build HT(S)

Build HT(T)
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Parallelism: Morsel-Driven

How do we achieve NUMA-awareness?
I relation partitioned
I each partition stored at some NUMA-node
I goal: minimize traffic between NUMA-nodes



Parallelism: Morsel-Driven: Join: Build

Build:
I build-phase split into two phases:

Mat materializes the input
HtBuild builds the hash-table

I while scanning a morsel of the input relation on a certain
NUMA-node, materialization takes place on the same
NUMA-node.

[Note: after materialization the exact size of the input relation is
available and it can be used to allocate a hash table of perfect
size.]



Parallelism: Morsel-Driven: Join: Build

Colors encode worker threads confined to NUMA-nodes and
memory areas belonging to NUMA-nodes.
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Parallelism: Morsel-Driven: Join: Probe
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Parallelism: Morsel-Driven: Join: Details

I QEPobject

I Dispatcher
I latch-free hashtable



Parallelism: Morsel-Driven: Join: Dispatcher
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Parallelism: Morsel-Driven: Join: Remarks

I the pipeline only contains jobs whose prerequisites are
fulfilled

I the dispatcher is implemented as a latch-free datastructure
I QEPobject is implemented as a state-machine.
I the dispatcher code is executed by some worker thread

looking for work (not as its own thread)
I the dispatcher calls QEPobject to generate new entries.

again, this is done by a worker-thread looking for work
I although possible, Thomas stays away from bushy

parallelism
(reason: cache locality (discuss))

I aborting a query:
I at any abort inducing event: mark query as aborted
I check query after a morsel finishes

I work-stealing is supported, prefer close NUMA-nodes



Transaction Management



Transaction Management

I Lock Manager
I Log Manager



Transaction Management: Updates

Handling updates
I in-place
I delta/staging



Lock Manager

Compabibility matrix for multi-granularity locking:

compatibility matrix
already granted

requested NONE IS IX S SIX U X
IS + + + + + - -
IX + + + - - - -
S + + - + - - -

SIX + + - - - - -
U + - - + - - -
X + - - - - - -

which has been extended by the deadlock-preventing U lock
mode. Note the asymmetry of the U-lock.



Lock Manager

If one transaction holds a lock and requests another one, we
need the lock conversion table (used to calculate lock max):

conversion matrix
already granted

requested NONE IS IX S SIX U X
IS IS IS IX S SIX U X
IX IX IX IX SIX SIX X X
S S S SIX S SIX U X

SIX SIX SIX SIX SIX SIX SIX X
U U U X U SIX U X
X X X X X X X X



Lock Manager: Grey/Reuter



Lock Manager: Grey/Reuter: TaCB

Transaction Control Block:

struct TransCB {
lock request* locks; // locks hold by TA
lock request* wait; // lock TA is waiting for
TransCB* cycle; // used by deadlock detector

};



Lock Manager: Grey/Reuter: Interface

enum LOCK REPLY { LOCK OK,
LOCK TIMEOUT,
LOCK DEADLOCK,
LOCK NOT LOCKED };

LOCK REPLY lock(lock name name,
lock mode mode,
lock class class,
long timeout);

LOCK REPLY unlock(lock name name);



Lock Manager: Grey/Reuter: Major Components

lock hash table map data item to lock (chain), each hash
directory entry contains a lock hash struct

lock head contains lock name, next pointer, latch, summary
information about the lock queue, lock headers
are pointed to by the hash directory and they are
chained.

lock request a lock points to a list of lock requests containing
owner, mode, duration, etc, and a pointer to the
lock header

transaction lock list for every transaction, the transaction
control block holds a list of locks (see locks of
TransCB) held by it.

pools for efficient memory management, we have lock
header free pool.



Lock Manager: Grey/Reuter: Enum LOCK MODE

enum LOCK MODE { . . . SIX . . . };



Lock Manager: Grey/Reuter: Lock Class

Sometimes it is helpful to know for how long a lock will be
requested:

enum LOCK CLASS {
LOCK INSTANT, // unlock: almost directly after lock
LOCK SHORT, // unlock: end of statement
LOCK MEDIUM, // lock/unlock: explicit (for cursor stability)
LOCK LONG, // unlock: end of transaction
LOCK VERY LONG // unlock: end of transaction, by class unlock

};



Lock Manager: Grey/Reuter: Hash Table

struct {
xlatch t latch; // protect collision chain
lock head* chain; // collision chain

} lock hash[MAXHASH];



Lock Manager: Grey/Reuter: Lock Head

struct lock head {
xlatch t latch; // protect lock queue
lock head* next; // next in collision chain
lock name name; // name of this lock
lock request* queue; // requests for this lock
lock mode granted mode; // granted group mode
bool waiting; // someone waiting?

};



Lock Manager: Grey/Reuter: Lock Status

enum LOCK STATUS { LOCK GRANTED,
LOCK CONVERTING,
LOCK WAITING,
LOCK DENIED

};



Lock Manager: Grey/Reuter: Lock Request

struct lock request {
lock request* queue; // pointer to next in lock queue
lock head* head; // pointer back to head of queue
LOCK STATUS status; // granted, waiting, . . .
LOCK MODE mode; // mode requested (and granted)
LOCK MODE convmode; // if in convert wait, mode desired
int count; // number of times lock was locked
LOCK CLASS class; // class in which lock is held (duration)
PCB* process; // process to wake up when lock is granted
TransCB* ta cb; // transaction that requested/holds lock
lock request* ta prev; // list of locks per transaction
lock request* ta next; // list of locks per transaction

};



Lock Manager: Grey/Reuter: lock (1)

Part 1: signature and local variable declarations:

LOCK REPLY // returns ok, deadlock, or timeout
lock(LOCK NAME aName, LOCK MODE aMode,

LOCK CLASS aClass, long aTimeout) {
long bucket; //
lock head* lock; //
lock request* request; // this lock request
lock request* last; // queue end
TransCb* me = . . .; // pointer to callers TransCB
LOCK STATUS lStat; // failure reason in case of failure
LOCK REPLY lRes; // result of lock()

. . .



Lock Manager: Grey/Reuter: lock (2)

Part 2: find lock and is free case:

bucket = lockhash(name); // eval hash function
acquire(lock hash[bucket]. latch); // acquire bucket latch
lock = lock hash[bucket]. chain; // get lock list
while((lock != 0) && (lock-> name != aName)) // walk lock list

lock = lock-> next; // walk lock list
if (lock == NULL) { // lock is free case

lock = lock head get(aName, aMode); // allocate lock header
lock-> chain = lock hash[bucket]. chain // list insert
lock hash[bucket]. chain = lock; // list insert
release(lock hash[bucket]. latch); // release bucket latch
return LOCK OK; // return ok

}



Lock Manager: Grey/Reuter: lock (3)

Part 3: lock not free, rerequest?

acquire(lock-> latch); // acquire lock latch
release(lock hash[bucket]. latch); // release bucket latch
for(request = lock-> queue; request != NULL;

request = request-> queue) {
if(request-> ta cb == me)

break; // rerequest!
last = request; // remember last lock in queue

}
if(request == NULL) {

// new request, see below
} else {

// deal with lock conversion, not handled (excercise)
}



Lock Manager: Grey/Reuter: lock (4)
Part 4: new lock request by this transaction
if(request == NULL) { // new request

request = lock request get(aLock, aMode, aClass); // allocate lock request
last-> queue = request; // append lock request
if((!lock-> waiting) && lock compatible(aMode, lock-> granted mode)) {

lock-> granted mode = lock max(aMode, lock-> granted mode);
release(lock-> latch);
return LOCK OK;

} else {
lock-> waiting = true;
request-> status = LOCK WAITING;
release(lock-> latch);
wait(aTimeout);
lStat = request-> status;
if(lStat == LOCK GRANTED); return LOCK OK;
if(lStat == LOCK WAITING) lRes = LOCK TIMEOUT;
// release/free request: use unlock
request-> class = LOCK INSTANT; // make sure unlock will work
unlock(request); // use unlock to release/free request
return lRes;

}
} else {

// deal with lock conversion, not handled (excercise)
}



Lock Manager: Grey/Reuter: lock

Remarks:
I sporadic wake-ups
I race conditions (see footnote 5 on page 475 in book by

Gray/Reuter
I observe state-machine on lock status
I some systems use bitmap of locks instead of max in

granted mode



Lock Manager: Grey/Reuter: unlock (1)

Part 1 contains the signature and local variable declarations:

lock reply
unlock(lock name aName) {

long bucket; // index of hash bucket
lock head* lock; // pointer to lock header block
lock head* prev = NULL; // previous (for list remove)
lock request* request; // current lock request in queue
lock request* prev request; // prev lock request in queue
TransCB* me; // callers TaCB
lock reply lRes; // return code

. . .
}



Lock Manager: Grey/Reuter: unlock (2)
Part 2 finds the requestor’s request

bucket = lockhash(aName);
acquire(lock hash[bucket]. latch);
// find lock in chain
lock = lock hash[bucket]. chain;
while((lock != NULL) && (lock-> name != aName)) {

prev = lock;
lock = lock-> next;

}
if(lock == NULL) goto B;
acquire(lock-> latch);
// find request in queue
for(request = lock-> queue; request != NULL;

request = request-> queue) {
if(request-> ta cb == me)

break;
prev request = request;

}



Lock Manager: Grey/Reuter: unlock (3)

Part 3 handles the case of long locks, which are released by
class and not by transaction. It also handles the case that a
lock has been granted multiple times.

if(request-> class == LOCK LONG ||
request-> count > 1) {
−−request-> count;
goto A;
}



Lock Manager: Grey/Reuter: unlock (4)

Part 4 handles the case that only me has a request

if(lock-> queue == request &&
request-> queue == NULL) {
// remove lock from list
if(prev == NULL) {

lock hash[bucket]. chain = lock-> next;
else

prev-> next = lock-> next;
free(lock);
free(request);
goto B;
}



Lock Manager: Grey/Reuter: unlock (5)
Part 5 handles the interesting case:
if(prev req != NULL)

prev req-> queue = request-> queue; // remove request from queue
else

lock-> queue = request-> queue;
free(request);
// recalculate group mode and wake-up waiters
lock-> waiting = false;
lock-> granted mode = LOCK FREE;
for(request = lock-> queue; request != NULL; request = request-> queue) {

if(request-> status == LOCK GRANTED)
lock-> granted mode = lock max(lock-> granted mode, request-> mode);

else
if(request-> status == LOCK WAITING) {

if(lock compatible(request-> mode, lock-> granted mode)) {
request-> status = LOCK GRANTED;
lock-> granted mode = lock max(request-> mode, lock-> granted mode);
wakeup(request-> process);

} else {
lock-> waiting = true; break; // FIFO

}
} else { // convert waits not handled }

}



Lock Manager: Grey/Reuter: unlock (6)

Part 6 does the latch release and return

. . .
A: release(lock-> latch);
B: release(lock hash[bucket]. latch);
return LOCK OK;

}

Not covered: lock escalation/deescalation, deadlock detection,
system startup/shutdown.



Lock Manager: Starburst

I segment: as ususal
I LCB: lock control block
I LRB: lock request block
I note: free LCB pool in slot



Lock Manager: Starburst



Lock Manager: Starburst MM
The main points of the Starburst MM Lock Manager are:
I only one latch per table protects it and all related data

structures
no extra latches for partition, index, locks

I no need for a hash table
I two levels/granularities: tables and tuples
I lock info directly attached to tables and tuples
I locking granularity flag kept in table to indicate current

locking granularity
I MM LM allows for lock escalation and deescalation

(dynamically)
I partition: fixed size (similar to page)

slots contain real main memory pointers to tuples withing
partition

I segment: variable number of partitions



Lock Manager: Starburst MM



Lock Manager: Fekete

not this semester



The End


