
Main Memory DBMS

G. Moerkotte

February 4, 2019

2

Contents

1 Introduction 9

2 Hardware 11

2.1 Memory . 11

2.1.1 Aligned vs. Unaligned Access 11

2.1.2 Address Translation (Virtual Memory) 11

2.1.3 Caches and the Memory Hierachie 15

2.1.4 Some Numbers of Some Processors 18

2.1.5 Prefetching . 18

2.2 CPU . 19

2.2.1 Pipelining . 19

2.2.2 Out-Of-Order-Execution 20

2.2.3 (Cost of) Branch (Mis-) Prediction 21

2.2.4 SIMD . 23

2.2.5 Simultaneous multithreading (SMT) 30

2.3 Cache Coherence . 30

2.4 Synchronization Primitives . 32

2.5 NUMA . 32

2.6 Performance Monitoring Unit . 34

2.7 References . 35

3 Operating System 37

4 Hash Tables 39

4.1 Hash Functions . 39

4.1.1 Why hash-functions matter 40

4.1.2 Properties . 42

4.1.3 Uniformity . 42

4.1.4 Average-case Search Length 42

4.1.5 Expected Length of the Longest Probe Sequence (llps) . . 42

4.1.6 Universality . 43

4.1.7 k-Universal . 46

4.1.8 (c, k)-Universal . 46

4.1.9 Dietzfelbinger: Universality without Primes 47

4.1.10 k-universal Hash Functions 47

4.1.11 Tabulation Hashing . 48

3

4 CONTENTS

4.1.12 Hashing string values . 48

4.2 Hash Table Organization . 49

4.2.1 Two versions of Chained Hashtable 49

4.2.2 Cuckoo-Hashing . 49

4.2.3 Robin-Hood-Hashing . 50

4.2.4 Hopscotch-Hashing . 50

5 Compression 51

6 Storage Layout 53

6.1 Row stores and Column Stores 53

6.1.1 Row format (NSM) . 53

6.1.2 Column format (DSM) . 53

6.1.3 Hybrid Storage Model (PDSM) 55

6.1.4 Cache Lines in Row and Column Format 55

6.2 Organization on Pages . 56

6.3 Row Layouts . 57

6.4 Column Layouts . 60

6.4.1 BitPackingH . 60

6.4.2 BitSliceH . 61

6.4.3 BitSliceV . 64

6.4.4 ByteSliceV . 64

6.5 DB2 BLU . 64

6.5.1 Column Groups . 64

6.5.2 Compression . 65

6.5.3 Cell/Region . 65

6.5.4 Page Format . 66

6.5.5 Page Compression . 67

6.5.6 Small Materialized Aggregates (SMA) 67

6.5.7 Global Code . 68

6.5.8 Scan . 68

6.6 SQL Server . 68

6.6.1 Apollo . 68

6.6.2 Hekaton . 69

6.7 Large Objects . 72

7 Physical Algebra: Processing Modes 73

7.1 Pull Algebra . 73

7.2 Push Algebra . 73

7.2.1 Interface . 73

7.2.2 Scan . 73

7.2.3 Select . 74

7.2.4 Simplest Hash-Join . 74

7.3 Materialization Granularity/Call Granularity 77

7.3.1 Tuple-wise (single tuple materialization) 77

7.3.2 Complete (full materialization) 77

7.3.3 Blockwise (partial materialization) 77

CONTENTS 5

8 Expression Evaluation 79

8.1 Introduction . 79

8.2 Result Representation . 80

8.3 Interpretation: Operator Tree . 80

8.4 Interpretation: A Virtual Machine (AVM) 80

8.4.1 AVM: row: single tuple 81

8.4.2 AVM: row: vectorized . 83

8.4.3 AVM: col: single . 84

8.4.4 AVM: col: vectorized . 85

8.4.5 AVM: col: vectorized with SIMD 85

8.5 Compilation . 86

8.6 Comparison: simple map program 86

8.7 AVM: col: Vectorized SIMD: selection 88

9 Physical Algebra: Implementation 91

9.1 General Implementation Techniques 91

9.1.1 Blocking/Tiling . 92

9.1.2 Partitioning . 92

9.1.3 Extraction . 93

9.1.4 Loop Fusion . 93

9.2 Scan/Select . 93

9.3 Join . 93

9.3.1 Simple Hash Table . 94

9.3.2 Extraction . 94

9.3.3 Partitioning . 94

9.3.4 Software Prefetching . 95

9.3.5 Group Prefetchin . 95

9.3.6 Software-Pipelined Prefetching 95

9.3.7 Rolling Prefetching . 96

9.3.8 Asynchronous Memory Access Chaining (AMAC) 99

9.4 Partitioning . 101

9.5 Sort Operator . 105

9.6 Grouping and Aggregation . 105

10 Indexing 107

10.1 T-Tree . 107

10.2 Cache Conscious B+-Tree . 107

10.3 Skip Lists . 108

10.4 ART . 108

11 Boolean Expressions 109

12 Cardinality Estimation 111

12.1 Sketches for Joins . 111

12.1.1 Tug-Of-War (AGMS) . 111

12.1.2 FastAGMS . 115

12.1.3 FastCount . 115

6 CONTENTS

12.1.4 CountMin . 115

13 Parallelism 117

13.1 Amdahl’s Law . 117

13.2 Parallelization Constructs, Frameworks, and Libraries 117

13.3 Kinds of Parallelism . 118

13.4 Morsel-Driven Parallelism . 118

13.5 Synchronization of Index Structures 123

14 Memory Management 125

15 Thread Architecture 127

16 Transaction Processing 129

16.1 Handling updates . 129

16.2 Lock Manager . 129

16.2.1 The Gray/Reuter Lock Manager 130

16.2.2 Starburst Lock Manager 135

16.2.3 Starburst MM Lock Manager [104] 136

16.2.4 Fekete Lock Manager . 137

16.2.5 Pointers to Literature . 137

16.3 Snapshot isolation . 138

16.4 Logging . 138

17 The End 139

A Tools and System Calls 141

B Pointers to the Literature 143

B.1 Overview Papers/Books . 143

B.2 Timeline (Milestones) . 145

B.3 Storage Layouts . 146

B.4 Memory Management . 146

B.5 Hashing . 146

B.6 Compression . 147

B.7 Expression Evaluation Techniques 147

B.8 Indexes . 148

B.9 Physical Algebra . 148

B.10 Prefetching . 149

B.11 Instruction-Level Parallelism (ILP, SIMD) 150

B.12 Thread-Level Parallelism (TLP) 150

B.13 NUMA . 150

B.14 Cost Models . 150

B.15 Code Generation . 150

B.16 Buffer Management . 151

B.16.1 Buffer Manager . 151

B.16.2 Buffering Without Buffermanager 152

B.17 Recovery/Checkpointing . 152

CONTENTS 7

B.18 Storage Manager . 152
B.19 System Overviews . 153
B.20 todo . 153

8 CONTENTS

Chapter 1

Introduction

The holy grail for a DBMS is one that is [183]:

• Scalable & Speedy,
to run on anything from small ARM processors up to globally distributed
compute clusters,

• Stable & Secure,
to service a broad user community,

• Small & Simple,
to be comprehensible to a small team of programmers,

• Self-managing,
to let it run out-of-the-box without hassle.

We will have a more limited view, shared with Stonebraker:

There are three important things in databases:

1. performance,

2. performance, and

3. performance.

We concentrate on the architecture and the implementation of Query Execu-
tion Engines (QEE) focussing on data layout and (algebraic, simple) expression
evaluation.

We start out with a short refresh on hardware and a reminder that operating
systems are our friends. Then, we recall some stuff on hash tables and drop
the names of light-weight compression techniques that are applied in database
systems.

The first true chapter is Chap. 6. The chapter on memory management is
quite short yet. Larger is the chapter on the principal workings of a physical
algebra (Chap. 7). Very large is (or will be) the chapter on expression evaluation
(Chap. 8).

OTHER CHAPTERS TODO

9

10 CHAPTER 1. INTRODUCTION

Chapter 2

Hardware

2.1 Memory

2.1.1 Aligned vs. Unaligned Access

Accessing a data item d at memory address a is aligned if

a mod |d| = 0

if |d| is the size of the data item in bytes.

Fig. 2.1 illustrates aligned vs. unaligned access of a 4-byte integer. Unaligned
access maybe more expensive or even impossible on some architectures.

2.1.2 Address Translation (Virtual Memory)

Programs work with virtual addresses that must be translated into physical
addresses. An abstract view of this mapping is shown in Fig. 2.2.

Since mapping single addresses is way to expensive, the virtual and the
physical address space is organized into pages of equal size. A typical page
size is 4 KB, but some processors support several/other page sizes. Then, the
mapping is from a page of the virtual address space to a page in the physical
space. The offset within the virtual address space remains the same in the
physical address space. This is illustrated in Fig. 2.3.

At the bit-level, the address translation is illustrated in Fig. 2.4. The offsets
bits from the virtual address are copied to the according bits in the physical
address and just the logical page number is translated into the physical page
number. Typically/currently, not all bits of a 64-bit logical address are used.
[some researchers even make use of these unused bits [169]]

The mapping from virtual page numbers to physical page numbers is imple-
mented via a page table, which contains for every possible virtual page number
the according physical page number. To find the beginning of the page table, a
register called translation table base register (TTBR) is used. The implemen-
tation of the mapping is illustrated in Fig. 2.5.

Since the page table is kept in main memory, translating a virtual address
to a physical address would require an additional memory access. Obviously,

11

12 CHAPTER 2. HARDWARE

1
2
3
4
5

aligned
not aligned

not aligned
not aligned

aligned

0xFF0
0xFF1
0xFF2
0xFF3
0xFF4

Figure 2.1: Aligned vs. unaligned access

virtual
address

physical
address

0

2k

Figure 2.2: Virtual address to physical address mapping: schema

2.1. MEMORY 13

virtual
addresses

physical
addresses

Figure 2.3: Virtual address to physical address mapping: pages

14 CHAPTER 2. HARDWARE

48 47 12 11 0

unused
translation

page address o�set

47 12 11 0

physical address

virtual address

Figure 2.4: Virtual address to physical address mapping: page+offset

1

page table

valid

47 12 0

physical address

47 12 0

virtual address

+

11

11

TTBR

Figure 2.5: Virtual address to physical address mapping: page table

2.1. MEMORY 15

1

page table

valid

47 12 0

physical address

47 12 0

virtual address

+

11

11

TTBR

TLB

tag

ref
dirty
valid

Figure 2.6: Virtual address to physical address mapping: TLB

this is very expensive. Thus, a piece of special memory called TLB (transla-
tion lookaside buffer) is introduced to cache part of the translation table (see
Fig. 2.6).

Typically, there exist TLB1 and TLB2 caches for the translation table.
Example Intel i7-4790:

• instruction TLB1 [for 4KB pages]: 64 entries, 8-way

• data TLB1 [for 4KB pages]: 64 entries, 4-way

• TLB2 cache [for 4KB pages]: 1024 entries, 8-way

Exercise:

1. find out the page size of your computer

2. find out the number of TLB1/2 entries of your computers as well as their
latencies.

3. Assume a page size of 4KB and assume there are 64 TLB1 entries. How
large is the address space accessable without TLB1 misses.

2.1.3 Caches and the Memory Hierachie

Features of caches:

• Quantitative features:

– size

– associativity

– hierarchy

16 CHAPTER 2. HARDWARE

Core 1

L1i L1d

Core 2

L1i L1d

Core 3

L1i L1d

Core 4

L1i L1d

L2

L3

MM

Figure 2.7: One possible organization of caches (L1 per core, shared L2, (op-
tional) shared L3)

– latency

• Qualitative features:

– nonblocking caches [cache can serve accesses while processing a miss]

– way prediction [predicts way of the next access to safe comparisons]

– victim caches [cache holds evicted cache lines]

– trace caches [L1i]

– can cache on virtual or physical addresses

– inclusive/exclusive

Example organization of the memory hierarchy (see Fig 2.7).

Latencies (approximate):

mem latency [cycles]

register ≤ 1
L1 3-4
L2 ≈ 14
TLB1 ≈ 12
TLB2 ≈ 30
main memory ≈ 240

Detailed organization of a cache, non-associative:

2.1. MEMORY 17

V tag data

indextag
o�set

47 4 312 11 0

compare select

success? data requested

Detailed organization of a cache, 4-way associative:

V tag

1

V tag

1

V tag

1

V tag

1

tag index
47 12 11 4 3 0

compare MUX

success? requested
data

datadata data data

Exercise:

1. Measure the cache latencies of your computer

18 CHAPTER 2. HARDWARE

CPU L1i L1d L2 L3 L4 L1 TLB entries

Power8 32 KB 64 KB 512 KB/core 8 MB/core 16 MB/bc 72i + 48d
Xeon E5 v4 32 KB 32 KB 512 KB 2.5 MB/core 128i + 64d
i7-4790 32 KB 32 KB 256 KB 8 MB 64i + 64d
Exynos 2254 32 KB 32 KB 2 MB - 32i + 32d ?

Table 2.1: Cache sizes for some architectures

2. Describe what can happen if we write a 4-byte integer to some memory
address belonging to a cache line not present in any cache.

2.1.4 Some Numbers of Some Processors

Table 2.1 contains the sizes of caches for some architectures.
Remarks:

• Exynos 5422: 4x Cortex A15 share 2 MB L2-cache, 4x A7 share 512 KB
L2-cache.

• 4-K pages

• Power8, Xeon: L1: 8-way associative

• Power8: L3 shared, 8 MB per core, 12 core, 96 MB, 8-way associative;
L4: shared, 16-way associative; up to 8 buffer chips (bc)

• A15: 2-way associative

• Power8: 128 B cache lines, 2048 entries in TLB

• Intel i7-4790: 64 B cache lines, L1i/d, L2: 8-way associative, L3: 16-way
associative

• sources: anandtech, hardkernel, 7-cpu, Power8 Performance Optimization
and Tuning Techniques, and [239, 243]

Exercise:

1. Add the new Ryzen 7 1800+ processor to Table 2.1

2.1.5 Prefetching

Hardware prefetcher:

• adjacent cache line prefetcher

• stride prefetcher

Often: prefetchers do not prefetch across page boundaries.
Software prefetching:

• explicit prefetch instructions

2.2. CPU 19

Performance of hardware prefetcher for sequential access. Measure code
fragment:

1 for (int i = 0; i < n; ++i)
2 r += A[I[i]]

I index array filled in two different ways:

1. contains consecutive numbers [0, n[

2. contains random permutation of [0, n[

results in time per element:

kind of read i7-4790 i7-4790 Exynos 2254

n 109 108 108

random 45.7 ns 11.3 ns 43.6 ns
sequential 0.8 ns 0.8 ns 3.2 ns

factor 57.1 14.1 13.6

2.2 CPU

2.2.1 Pipelining

Illustration of non-pipelined execution (simplified):

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

We get an IPC of 0.25.
Illustration of pipelined execution:

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

instr
fetch

reg
read ALU

reg
write

We get an IPC of 1.
Pipeline hazards (resulting in stall):

• data dependency

• data access

• branch misprediction

• instruction stall

Worst of all is the instruction stall, where the core has (due to memory/cache
access latencies) no instruction to execute.

20 CHAPTER 2. HARDWARE

2.2.2 Out-Of-Order-Execution

• ops → µ-ops

• µ-ops processed at ports (concurrently, obeying data dependencies)

• µ-ops sometimes in caches (saves instruction decode)

Example (Haswell) [122]:

Port 0 : integer ALU and shift, FMA FP mult, vector int multiply, vector logi-
cals, branch, devide, vector shifts

Port 1 : integer ALU and shift, FMA FP mult and FP add, vector int ALU,
vector logicals

Port 2 : load and store address

Port 3 : load and store address

Port 4 : store data

Port 5 : integer ALU and LEA, vector shuffle, Vector int ALU, vector logicals

Port 6 : integer ALU and shift

Port 7 : store address

Example (Power8) [239] (16 exeuction pipelines per core):

• 2 fixed-point

• 2 load/store

• 2 load

• 4 double (can act as 8 float)

• 2 VMX/VSX

• 1 crypto

• 1 branch execution

• 1 condition register logical

• 1 decimal floating-point

To illustrate the out-of-order processing for read operations, i.e., paralleliz-
ing memory accesses, we repeat an experiment performed by Manegold, Boncz,
and Kersten [181]. We sum up all elements in an array containg n = 108

elements using two different functions. The first one is the simple, standard
implementation:

2.2. CPU 21

int
sum0(int* arr, int n) {

int lSum = 0;
for(int i = 0; i < n; ++i) {

lSum += arr[i];
}
return lSum;

}

The second one uses two partitial sums, one for each half of the array:

int
sum1(int* arr, int n) {

int lHalf = n/2;
int lSum = 0, lSum1 = 0, lSum2 = 0;
for(int i = 0; i < lHalf; ++i) {

lSum1 += arr[i];
lSum2 += arr[i+lHalf];

}
lSum = lSum1 + lSum2;
if(n & 0x1) {

lSum += arr[n-1];
}
return lSum;

}

The execution times per element in the array on a i7-4790 are:

sum0 0.375 ns
sum1 0.254 ns

where we compiled with gcc -O2.

Exercise:

1. Compile the functions sum0 and sum1 with gcc -O2 and gcc -O3. Mea-
sure the execution times and analyze at the assembler code produced.

2.2.3 (Cost of) Branch (Mis-) Prediction

Schematic 2-bit branch predictor:

bnt bnt

bnt bnt bnt

bt bt bt

branch
not
taken

branch
taken

branch
not
taken

branch
taken predict}

22 CHAPTER 2. HARDWARE

Code with branch

code fragment 1: code with jump

select(int* b, int* a, int l, int n)

1 int j = 0;
2 for (int i = 0; i < n; ++i)
3 if (a[i] < l)
4 b[j++] = a[i];
5 return j

Predicated Code

code fragment 2: predicated code [225, 226]

select(int* b, int* a, int l, int n)

1 int j = 0;
2 for (int i = 0; i < n; ++i)
3 b[j] = a[i];
4 j += (a[i] < l)
5 return j

Experiment with i7-4790

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

p
e
r

tu
p
le

 t
im

e
 [

n
s]

selectivity

Branch vs. Predicated on i7-4790

i7 branch
i7 pred

2.2. CPU 23

Experiment with Samsung Exynos 6422 Cortex A15

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 0.2 0.4 0.6 0.8 1

p
e
r

tu
p
le

 t
im

e
 [

n
s]

selectivity

Branch vs. Predicated on Exynos 5422 Cortex A15

A15 branch
A15 pred

[Note: conditional execution of instructions on ARM]
Exercise:

1. use godbolt to study the assembler code generated by different compilers
for different architectures for the above two code fragments.

2. Discuss the code fragment below where AND is defined as one of

• #define AND &

• #define AND &&

Code fragment for exercise:

int
select between(b, a, n, lb, ub)

j = 0;
for(i = 0; i < n; ++i)

if((lb[i] ≤ a[i]) AND (a[i] ≤ ub[i]))
b[j++] = a[i];

2.2.4 SIMD

Idea:

• perform the same operation on multiple operands at the same time
SIMD = single instruction multiple data

Supported by virtually all processors:

• ARM: NEON

• Intel: SSE, AVX

• Power: VMX, VSX

24 CHAPTER 2. HARDWARE

• Sparc: VIS

Usable

• automatically by compiler

• manually (inline assembler/intrinsics)

There are hundreds if not thousands SIMD instructions. In the current
lecture, we briefly look at some SIMD instructions provided by some Intel CPUs
but skipping most of those given below.

Arithmetics

Example illustration of a SIMD add operation:

a1+b1 a2+b2 a3+b3 a4+b4

a1 a2 a3 a4

b1 b2 b3 b4

+

=

Example instructions (Intel):

• m256i mm256 add epi32(m256i a, m256i b)

• m256i mm256 sub epi32(m256i a, m256i b)

• m128i mm mullo epi32(m128i a, m128i b)

• m256i mm256 udiv epi32(m256i a, m256i b)

• m256i mm256 urem epi32(m256i a, m256i b)

• m256i mm256 udivrem epi32(m256i * mem addr, m256i a, m256i
b)

Latencies vary between architectures. see

• software.intel.com/sites/landingpage/IntrinsicsGuide

2.2. CPU 25

bit operations

• m256i mm256 and si256(m256i a, m256i b)

• m256i mm256 andnot si256(m256i a, m256i b)

• m256i mm256 or si256(m256i a, m256i b)

• m256i mm256 xor si256(m256i a, m256i b)

plus several operations to test bits

shift

arithmetic/logical shift left/right, e.g.,

1. m256i mm256 slli epi32 (m256i a, int imm8)

2. m256i mm256 sllv epi32 (m256i a, m256i count)

load

1. m256i mm256 lddqu si256 (m256i const* mem addr)
unaligned

2. m256i mm256 load si256 (m256i const * mem addr)
32-byte aligned

3. m256i mm256 stream load si256 (m256i const* mem addr)
32-byte aligned

Effect:

dst[255:0] := MEM[mem addr+255:mem addr]

broadcast load

load a single number into all elements of a SIMD-register:

• m128 mm load1 ps (float const* mem addr)
Load a single-precision (32-bit) floating-point element from memory into
all 4 elements of dst.

• m256 mm256 broadcast ss (float const* mem addr)

selective load

• m256i mm256 maskload epi32 (int const* mem addr, m256i mask)

26 CHAPTER 2. HARDWARE

FOR j := 0 to 7
i := j*32
IF mask[i+31]

dst[i+31:i] := MEM[mem addr+i+31:mem addr+i]
ELSE

dst[i+31:i] := 0
FI

ENDFOR

partial load

• m128i mm loadl epi64 (m128i const* mem addr)

effect:

dst[63:0] := MEM[mem addr+63:mem addr]
dst[MAX:64] := 0

gather load

• m256i mm256 i32gather epi32 (int const* base addr, m256i vindex,
const int scale)

FOR j := 0 to 7
i := j*32
dst[i+31:i] := MEM[base addr + SignExtend(vindex[i+31:i])*scale]

ENDFOR

store

• void mm256 store si256(m256i* mem addr, m256i a)
32-byte aligned

Effect:

MEM[mem addr+255:mem addr] := a[255:0]

Exercise:

1. Write a simple program using SIMD that adds up all elements in an array.

selective store

• void mm256 maskstore epi32 (int* mem addr, m256i mask, m256i a)

FOR j := 0 to 7
i := j*32
IF mask[i+31]

2.2. CPU 27

MEM[mem addr+i+31:mem addr+i] := a[i+31:i]
FI

ENDFOR

scatter store

void mm256 mask i32scatter epi32(void* base addr,
mmask8 k,
m256i vindex,
m256i a,

const int scale)

effect

FOR j := 0 to 7
i := j*32
IF k[j]

MEM[base addr + SignExtend(vindex[i+31:i])*scale] := a[i+31:i]
k[j] := 0

FI
ENDFOR

Useful is the detection of conflicts (writes to the same location):

• mm256 conflict epi32

• mm512 conflict epi32

Test each 32-bit element of r for equality with all other elements in r closer to
the least significant bit. Each element’s comparison forms a zero extended bit
vector in dst:

FOR j := 0 to 7
i := j*32
FOR k := 0 to j-1

m := k*32
dst[i+k] := (a[i+31:i] == a[m+31:m]) ? 1 : 0

ENDFOR
dst[i+31:i+j] := 0

ENDFOR
dst[MAX:256] := 0

compare

• m256i mm256 cmpeq epi32(m256i a, m256i b)

• m256i mm256 cmpgt epi32 (m256i a, m256i b)

effect of 1:

28 CHAPTER 2. HARDWARE

FOR j := 0 to 7
i := j*32
dst[i+31:i] := (a[i+31:i] == b[i+31:i]) ? 0xFFFFFFFF : 0

ENDFOR

collecting compare results into bitvector

Set each bit of mask dst to the most significant bit of the 32-bit element in a.

• int mm256 movemask ps(m256 a)

effect:

FOR j := 0 to 7
i := j*32
IF a[i+31]

dst[j] := 1
ELSE

dst[j] := 0
FI

ENDFOR

convert

• m256i mm256 cvtepi8 epi32 (m128i a)

effect:

FOR j := 0 to 7
i := 32*j
k := 8*j
dst[i+31:i] := SignExtend(a[k+7:k])

ENDFOR

blend

• m256i mm256 blend epi32(m256i a, m256i b, const int imm8)

effect:

FOR j := 0 to 7
i := j*32
IF imm8[j%8]

dst[i+31:i] := b[i+31:i]
ELSE

dst[i+31:i] := a[i+31:i]
FI

ENDFOR

2.2. CPU 29

shuffle/permute

• m256i mm256 permutevar8x32 epi32 (m256i a, m256i idx)

effect:

FOR j := 0 to 7
i := j*32
id := idx[i+2:i]*32
dst[i+31:i] := a[id+31:id]

ENDFOR

Bit Manipulations

• pop count

• bit scan forward, bit scan reverse

• pdep u32, pext u32

pop-count does not exist for large SIMD registers. Fast implememtations
are provided by [194].

other useful instructions accessible by builtins are:

blsr(a) := a? (a− 1) // reset lowest bit set
blsi(a) := a? (−a) // extract lowest bit set

blsmsk(a) := a⊗ (a− 1) // set all lower bits up to incl. lowest bit set
tzcnt(a) // count number of trailing zero bits
lzcnt(a) // count number of leading zero bits

Exercise:

1. implement some methods presented in [194] for NEON registers.

Prefetching

Sometimes it is beneficial to use explicit prefetching instructions to hide memory
access latencies. There is a useful built-in to support this:

• builtin prefetch(void* mem, int rw, int a)

where

mem is the memory address to be prefetched

rw indicates prefetching for read (0) or write (1)

a indicates the access pattern: a = 0 indicates that the temporal locality is
low, that is, we probably don’t access the data item again after the first
access. a = 3 indicates the contrary, a = 2 something inbetween

30 CHAPTER 2. HARDWARE

Streaming Stores

Bypass cache by streaming stores. Instructions, e.g.:

• mm256 stream si256

• mm512 storenrngo ps

• mm512 storenrngo pd

The latter two also follow a weaker memory model.

When writing to two different locations within a single cache line, it may
happen that the cache line is written twice to main memory. To prevent this,
some processors provide write-combine buffers, which combine multiple writes
to a cache line in order to write it only once to main memory.

Software can make use of it by issueing two streaming store operations
(e.g. mm256 stream si256) in close neighborhood which together cover a
whole cache line. This is called software write-combining.

2.2.5 Simultaneous multithreading (SMT)

• AMD/Intel: 2 threads per core

• Power8: up to 8 threads per core

Example (produced by lstopo):

Machine (16GB)

Package P#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#7

2.3 Cache Coherence

Cache coherence makes sure that simultaneous memory accesses to the same
cache line by different cores does not result in any correctness problems [185,

2.3. CACHE COHERENCE 31

242]. (As long as the memory addresses are not the same!). However, this may
lead to performance problems as illustrated below.

The most commonly used basic protocol is the MESI protocol where each
cache line can be in one of four states:

modified the cache line has been modified
no other processor has this cache line

exclusive the cache line has not been modified
no other processor has this cache line

shared the cache line has not been modified
other processors may have this cache line

invalid the cache line does not hold any valid data

The MESI protocol than works around these states ensuring their guarantees.
For details about the MESI protocol see [185]. Intel uses the MESIF protocol,
with an additional Forward state.

Function code incrementing a pointer on a given hw-thread:

void
f(uint64 t* s, uint64 t n, int aHwThreadNo) {

cbind to hw thread(aHwThreadNo, 1);
for(uint64 t i = 0; i < n; ++i) {

*s += 1;
}

}

Two threads with this functions are run simultaneously with different hw-thread
numbers and different pointers. In one case, both pointers point into the same
cache line, in the other case, they point into different cache lines. The following
table contains the runtime results (both threads finish, n = 109):

HW thread no exec time for pointer distance
CPU HWT 1 HWT 2 8 B 800 B

Intel i7-4790 4 7 5.37 s 1.52 s
3 7 3.33 s 2.22 s

Exynos 5422 4 7 4.75 s 4.89 s

Recall: Intel i7-4790 supports SMT: hw-threads [0, 4] are on core 0, [1, 5] are
on core 1, [2, 6] on core 2, [3, 7] on core 3.

Exercise:

1. Find out why there is virtually no performance penalty for the Exynos
5422.

32 CHAPTER 2. HARDWARE

2.4 Synchronization Primitives

In order to synchronize different threads and prevent race conditions, synchro-
nization primitives such as mutex and semaphore must be used and imple-
mented. This is facilitated by atomic operations provided by the underlying
hardware. Typical operations implementing atomicity are:

• compare-and-swap (CAS)

• fetch-and-add (FAA)

• load exclusive, store exclusive (LDREX, STREX on ARM)

• memory barrier instructions (e.g. DMB on ARM, mfence on Intel)

More on this can be found in [20, 77, 119, 133, 185, 242].

2.5 NUMA

old from all CPU cores access to memory via a single bus (UMA/SMP)

new non-uniform memory access (NUMA)

Sketch of UMA:

CPU CPU CPU CPU

cache cache cache cache

bus

memory

Sketch of NUMA:

2.5. NUMA 33

memory

cache

CPU

memory

cache

CPU

cache

CPU

cache

CPU

memory memory

network (e.g. QPI)

Example (produced by lstopo):

34 CHAPTER 2. HARDWARE

Machine (126GB total)

NUMANode P#0 (63GB)

Package P#0

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#9

NUMANode P#1 (63GB)

Package P#1

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#15

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#19

Some measurements by IntelMemoryLatencyChecker for a Xeon E5-2690 v3
@ 2.60GHz:

Measuring idle latencies [ns]

Numa node

Numa node 0 1

0 78.8 123.5
1 122.5 79.4

Memory Bandwidths [MB/s]

Numa node

Numa node 0 1

0 61112.6 18817.4
1 18942.2 61207.7

Exercise:

1. Write a simple C/C++ program investigating the topology of the com-
puter it runs on. (like lstopo but only textual output)

2. Find out the name of the interconnect used for AMD Naples.

2.6 Performance Monitoring Unit

Processors have (configurable) hardware performance counters for different events:

2.7. REFERENCES 35

• cycle/instruction counter

• caches/memory: read access, write access, refill

Example: ARMv7

• use coprocessor registers

• 1 non-configurable cycle counter

• 6 configurable counters

2.7 References

• Patterson, Hennessy: Computer Organization and Design; The Hard-
ware/Software Interface; ARM Edition; 2016.

• Hennessy, Patterson: Computer Architecture; A Quantitative Approach.
2016.

• Drepper: What Every Programmer Should Know About Memory. 2007.
[article, online]

36 CHAPTER 2. HARDWARE

Chapter 3

Operating System

useful system calls for

1. process/thread support, binding threads to cores

2. cooperation

• shared memory

3. communication

• ipc

• network

4. I/O

• raw I/O

• direct I/O

• chained I/O

• vectorized I/O

• memory mapped files

5. numa

6. fork (copy on write) application in Hyper: [98]

7. clock access

8. hardware inspection

37

38 CHAPTER 3. OPERATING SYSTEM

Chapter 4

Hash Tables

4.1 Hash Functions

The following list tells us that hash functions are an important and well-studied
problem:

• division

h(x) := x mod p

or, in general,

ha,b(x) := ((ax+ b) mod p) mod n

where a, b ∈ Zp.

• multiplicative
h(x) := bm(awx mod 1)c

• fibonacci hashing

• polynomial over prime field (k-universal)
h(x) :=

∑k−1
i=0 aix

i mod p

• multiply-(add)-shift (2-universal)
ha,b(x) := (ax+ b)� (l − lout)
or plain multiplicative:
ha(x) := (ax)� (l − lout)

• murmur

• tabulation, x = [a0, . . . , aq−1]
h(x) := h0[a0]⊕ . . .⊕ hq−1[aq−1]

• hashpjw

• CityHash

• Fowler-Noll-Vo, Jenkins, SpookyHash, Zobrist

39

40 CHAPTER 4. HASH TABLES

• Larson
while(*s) h = h * 101 + *s++

references

• Knuth: The Art Of Programming Vol 3 [153].

• Aho, Sethi, Ullman: Compilers/Compilerbau.

• Carter, Wegman: Universal hashing [55]

• Ramakrishna, Bahcepkapili: Efficient Hardware Hashing Functions for
High Performance Computers. IEEE Trans. on Computers, 46(12), 1997.

• Ramakrishna, Zobel: Performance of String Hashing Functions [217]

• Patrascu, Thorup: The Power of Simple Tabulation Hashing [210]

• Thorup, Zhang: Tabulation-based 4/5-universal hashing [249, 250]

• Dietzfelbinger et al: Multiplicative Universal Hashing [84]

• Richter et al: A Seven-Dimensional Analysis of Hashing Methods and its
Implications on Query Processing. VLDB 2015.

• Ramakrishna, Zobel: hashing functions for strings, introduce add-shift-
xor function [217]

• Gonnet: expected length of longest collision chain [103]

4.1.1 Why hash-functions matter

Simple experiment: encode dates from 01.01.1950 to 31.12.1999 into 32-bit
unsigned integer by encoding the year into the most significant 16 bit, the
month in the next 8 bit and the day into the least significant 8 bits. [Julian
day would be a better encoding.]

Then use a simple hash-function to map a date d to its hash-value by per-
forming

d mod 2k

for some k.

This gives

4.1. HASH FUNCTIONS 41

k n #F #C llps #E avg uni

8 256 31 31 600 225 589.10 71.34
9 512 62 62 300 450 294.55 35.67

10 1024 124 124 150 900 147.27 17.83
11 2048 247 247 100 1801 73.94 8.92
12 4096 366 366 50 3730 49.90 4.46
13 8192 366 366 50 7826 49.90 2.23
14 16384 366 366 50 16018 49.90 1.11
15 32768 366 366 50 32402 49.90 0.56
16 65536 366 366 50 65170 49.90 0.28
17 131072 731 731 25 130341 24.98 0.14
18 262144 1461 1461 13 260683 12.50 0.07
19 524288 2922 2922 7 521366 6.25 0.03

where n = 2k is the hash-table size, #F is the number of filled entries in the
hash-table, #E is the number of empty entries in the hash-table, #C is number
of entries with collisions, llps is the length of the longest probe sequence,
i.e., the collision chain length, avg is the average number of dates falling into
one entry, uni is the expected number of elements falling into one entry if the
hash-functions distributes the dates uniformly.

The murmur hash function can be implemented as follows:

template<typename Tuint> Tuint murmurhash(Tuint x);
template<>
uint32 t
murmurhash(uint32 t x) {

x ˆ= x >> 16;
x *= 0x85ebca6b;
x ˆ= x >> 13;
x *= 0xc2b2ae35;
x ˆ= x >> 16;
return x;

}

template<>
uint64 t
murmurhash(uint64 t x) {

x ˆ= (x >> 33);
x *= 0xFF51AFD7ED558CCD;
x ˆ= (x >> 33);
x *= 0xC4CEB9FE1A95EC63;
x ˆ= (x >> 33);
return x;

}

Using murmur hashing, we get:

k n #F #C llps #E avg uni

8 256 256 256 92 0 71.34 71.34
9 512 512 512 55 0 35.67 35.67

10 1024 1024 1024 34 0 17.83 17.83
11 2048 2048 2047 21 0 8.92 8.92
12 4096 4052 3856 14 44 4.51 4.46
13 8192 7294 5332 10 898 2.5 2.23
14 16384 10973 5044 8 5411 1.66 1.11
15 32768 14018 3545 6 18750 1.3 0.56
16 65536 15905 2147 5 49631 1.15 0.28
17 131072 17015 1194 3 114057 1.07 0.14
18 262144 17637 621 3 244507 1.04 0.07
19 524288 17936 325 3 506352 1.02 0.03

42 CHAPTER 4. HASH TABLES

Exercises:

1. Same experiment as the first one, with d mod p for some prime p. Primes
are better.

2. Implement other hash functions, perform the same experiment, measure
time for hash function calculation.

4.1.2 Properties

Properties wanted:

1. uniformity

2. universality

3. efficiency

4.1.3 Uniformity

The expected average collision chain length is about n/m where n is the number
of keys and m is the hash-table size.

4.1.4 Average-case Search Length

Denote by α the fill-degree α := n/m. Then

• on average: successful search: Θ(1 + α)

• on average: unsuccessful search: Θ(1 + α)

(details see Knuth [153] or Corman [71])

4.1.5 Expected Length of the Longest Probe Sequence (llps)

(see Gonnet [103]) Let n be the number of keys, m the hash-table size, and
α = n/m the fill-degree, and ik = i(i−1) . . . (i−k+1) the descending factorial.

For a full hash-table using uniform probing:

E[llps] ≈ 0.631587454 ∗m+O(1)

where m equals the hash-table size and the number of entries.
For a partially filled hash-table using uniform probing:

E[llps] =
∑
k≥0

(1−
n−1∏
i=0

(1− ik

mk
))

≈ − logα(m)− logα(logα(m)) +O(1)

Exercise:

1. Plot E[llps] for different α, m ignoring the term O(1).

4.1. HASH FUNCTIONS 43

4.1.6 Universality

(see Corman et al [71] and Carter, Wegman [55])

We start with universal.

Let A and B be two sets. A hash-function maps A to B, i.e.,

f : A −→ B

A is the set of potential keys. We assume |A| > |B|.
Let f be a hash-function and x, y ∈ A two keys. We define

δf (x, y) =

{
1 if x 6= y and f(x) = f(y)
0 else

x and y collide under f iff δf (x, y) = 1.

In case f , x, and/or y are replaced by a set, this denotes summation. For
example

δH(x, S) =
∑
f∈H

∑
y∈S

δf (x, y)

Def. Let H be a class of functions from A to B. H is universal iff ∀x, y ∈ A

δH(x, y) ≤ |H|/|B|

Thus, no two distinct keys collide under more than (1/|B|)th of the hash-
functions.

Proposition 1 shows that the bound on δH(x, y) in the definition of universal
is tight.

Prop. 1. For all classes H of hash-functions there exists x, y ∈ A such that

δH(x, y) > |H|(1

|B|
− 1

|A|
)

Proof. Define a := |A|, b := |B|. Let f ∈ H.

For each i ∈ B define Ai := {a|a ∈ A, f(a) = i} and ai := |Ai|.
Note that for i, j ∈ B, i 6= j, δf (Ai, Aj) = 0. (because elements of Ai are

mapped to i and those in Aj to j.)

Note that every element in Ai collides with every other element in Ai. Thus

δf (Ai, Ai) = ai(ai − 1)

Hence,

δf (A,A) =
∑
i∈B

∑
j∈B

δf (Ai, Aj)

=
∑
i∈B

δf (Ai, Ai)

=
∑
i∈B

ai(ai − 1)

44 CHAPTER 4. HASH TABLES

The latter is minimized if all Ai are of the same size, i.e., ai = aj = a/b for all
i, j. This gives us

δf (A,A) =
∑
i∈B

ai(ai − 1)

≥
∑
i∈B

a/b(a/b− 1)

= a(a/b− 1)

= a2(1/b− 1/a)

Thus, (summing over H)

δH(A,A) ≥ |H|a2(1/b− 1/a)

The left-hand side sums over fewer than a2 non-zero elements (as x = y
implies δH(x, y) = 0). The pigeon hole principle implies that there exist x, y ∈
A, x 6= y such that

δH(x, y) > |H|(1/b− 1/a)

2

Proposition 2 tells us about the average collision chain length (averaged over
H).

Prop. 2. Let x ∈ A, S ⊆ A, H universal class of hash-functions, f ∈ H
chosen randomly. Then, the mean value of δf (x, S) is at most |S|/|B|.

Proof. For the mean value we get:

δf (x, S) =
1

|H|
∑
f∈H

δf (x, S)

=
1

|H|
∑
y∈S

δH(x, y)

=
1

|H|
∑
y∈S

|H|
|B|

[by Def. universal]

=
|S|
|B|

2

The Class H1 Let A = {0, . . . , a− 1} and B = {0, . . . , b− 1}. Let p ≥ a (!)
be prime.

Let g : Zp −→ B be a function with

|{y ∈ Zp|g(y) = i}| ≤ dp/be

(e.g. g(z) := z mod b)

For any m,n ∈ Zp, m 6= 0 define hm,n : A −→ Zp via

hm,n(x) := (mx+ n) mod p

4.1. HASH FUNCTIONS 45

and fm,n : A −→ B via

fm,n(x) := g(hm,n(x))

Finally, define the class H1 of hash-functions from A to B by

H1 := {fm,n|m,n ∈ Zp,m 6= 0}

Lemma Let H1 be defined as above. Then ∀x, y ∈ A, x 6= y

δH1(x, y) = δg(Zp, Zp)

Proof. Since p ≥ a, p prime, and m 6= 0:

hm,n(x) = hm,n(y) ≺� x = y

and, hence, for x 6= y

fm,n(x) = fm,n(y) ≺� g(r) = g(s)

for r := hm,n(x) and s := hm,n(y). Thus,

δH1(x, y) = δg(Zp, Zp)

2

Theorem 1 H1 is universal.

Proof.

We have to show that

δH1(x, y) ≤ |H1|/|B|

Note that |H1| = p(p− 1). Using the lemma, it remains to show that

δg(Zp, Zp) ≤ p(p− 1)/b

[remember b = |B|]
Define ni := {t ∈ Zp|g(t) = i}|. Then, by definition of g,

∀i ni ≤ dp/be

Since p and b are integers

dp/be ≤ ((p− 1)/b) + 1

Now, consider some r ∈ Zp. Then the number of choices for some s with

1. s 6= r

2. g(s) = g(r)

46 CHAPTER 4. HASH TABLES

is limited to (p− 1)/b.
Since there are p choices for r

p(p− 1)/b ≥ δg(r, s)

Recalling δH1(x, y) = 0 for x = y and the above concludes the proof. 2

Remark: the modulo function is expensive. For Mersenne primes, the mod-
ulo operation can be implemented quite efficiently [55].

Let p = 2j − 1 be prime and x < 22j − 1. Let x1 be the j most significant
bits and x2 the j least significant bit. Then

x = 2jx1 + x2 mod p

= x1 + x2 mod p

since 2j ≡ 1 mod p.
Thus, the following procedure calculates the remainder modulo p = 2a − 1

for some x < 22a.

mod mersenne(x, p, a)

1 r = ((x? p) + (x� a))
2 return ((r < p) ? r : (r − p))

On the XU-4 this is about a factor of three faster than the built-in modulo
for 32-bit integers and about a factor of four for 64-bit integers. On the i7-4790
the corresponding factors are 2.5 and 1.5. The exact numbers are compiler
dependent.

4.1.7 k-Universal

A class H of hash-functions from A to B is k-universal iff

• for any k distinct elements a1, . . . , ak ∈ A and

• for any k (not necessarily distinct) elements b1, . . . , bk ∈ B

we have
|H|/(|B|k)

functions to map ai → bi for all i = 1, . . . , k.
Or for uniformly random i ∈ 1, . . . , |H|

Pr[hi(a1) = b1, . . . , hi(ak) = bk] ≤ 1/|B|k

4.1.8 (c, k)-Universal

A family {hi}i∈I of hash-functions from A to B is (c, k)-universal iff

• for any k distinct elements a1, . . . , ak ∈ A,

• for any k (not necessarily distinct) elements b1, . . . , bk ∈ B, and

• for uniformly random i ∈ I

we have
Pr[hi(a1) = b1, . . . , hi(xk) = yk] ≤ c/|B|k

4.1. HASH FUNCTIONS 47

4.1.9 Dietzfelbinger: Universality without Primes

Dietzfelbinger proposes the following universal class of hash-function [83]. Let
u, k,m ≥ 1 be arbitrary integers with k ≥ u. Let U := {0, . . . , u − 1} and
M := {0, . . . ,m− 1} Define

H := {ha,b|0 ≤ a, b ≤ km}

with

ha,b : U →M

ha,b(x) := ((ax+ b) mod km)÷ k

Then, H is (c,2)-universal with c = 5
4 [55, 256].

We can look at Dietzfelbinger’s hash function as follows. Let the numbers
in U and M be at most 32 bits wide. Let a and b be 64-bit integers. Then
(ax+ b) gives us 33 useful bits (ax+ b)[32..64] and we easily extract 32 of them
by a simple rightshift. Note that most processors provide instructions directly
obtain the higher w word of the result of multiplying two words of width w.
See for example Intel’s *MULH* instructions.

An efficient implementation of Dietzfelbinger’s hash functions using floating
point arithmetics is proposed in [247].

4.1.10 k-universal Hash Functions

In order to get k-universal hash functions, we use polynomials.

• Let A = {0, . . . , a− 1} and B = {0, . . . , b− 1}.

• Let p ≥ a (!) be prime.

• Let ci be random numbers in [0, p[for i = 0, k − 1.

Define H to contain all hash functions hci defined as

hci(x) :=

k−1∑
i=0

cix
i mod p

Then H is k-universal.

The same trick with the polynomial also works with the Dietzfelbinger hash
function from above [83].

If 2-universal suffices for the application, we can use multiplication-shift-
based hashing. Assume we need to hash lin bit numbers to lout bit numbers.
Pick some l ≥ lin + lout − 1. Then define H to contain for any a, b ∈ [0, 2l[the
hash functions defined as

ha,b(x) := (ax+ b)� (l − lout)

48 CHAPTER 4. HASH TABLES

4.1.11 Tabulation Hashing

Assume we have q hash-functions h0, . . . , hq−1 ∈ H. Each hash function imple-
mented as an array hi of random numbers. Assume we hash a value x composed
of q (sub-) values xi (e.g. 4 byte int, string) by

~h(x) := h0[x0]⊗ h1[x1]⊗ . . .⊗ hq−1[xq−1]

Then, if H is 2-universal then ~h is 2-universal. If H is 3-universal then ~h is
3-universal. After 3, the scheme breaks down.

4-universal hash functions can be build according to the following principle:

~h[x0x1] = h0[x0]⊗ h1[x1]⊗ h2[x1 + x2]

For the general scheme: to produce k-universal hash-functions for strings of
length q,

(k − 1)(q − 1) + 1

k-universal hash-functions are required. For more on Tabulation Hashing see
[210, 249, 250, 251].

4.1.12 Hashing string values

Ramakrishna, Zobel [217] discuss several hash-functions for strings. Let s =
c1, . . . , cm be a string of m characters, v a seed and hi some intermediate hash
value generated after hashing i characters. Then, the generic code of a string
hash function is:

hash(s, v)

1 h0 = init(v)
2 for (i = 1; i < m; ++i)
3 hi = step(i, hi−1, ci)
4 return final(hm, v)

Ramakrishna and Zobel then propose the following class of hash-functions:

init(v) = v

step(i, h, c) = h⊗ ((h� L) + (h� R) + c)

final(h, v) = h mod T

where T is the hash-table size and L and R are constants with 4 ≤ L ≤ 7 and
1 ≤ R ≤ 3 where they used L = 5 and R = 2 in their experiments.

Almost equally good is Larson’s string hash function.

Exercise:

1. Compare the above hash-function’s performance with Larson’s hash-function.
As the string values you can use a string-based encoding of dates.

Pearson’s [212].

4.2. HASH TABLE ORGANIZATION 49

4.2 Hash Table Organization

From A&D:

• chaining (may preserve locality for the first element, see below)

• open addressing

– linear probing
(preserves locality)

– quadratic probing
(does not preserve locality)

4.2.1 Two versions of Chained Hashtable

latch dir chain

d

e f

latch entry chain
d
e f

dir

4.2.2 Cuckoo-Hashing

Like in a cuckoo’s nest: the new element kicks out the older element, which in
turn is stored in the next level of hash tables:

d

e‘
e

dir1 dir2

50 CHAPTER 4. HASH TABLES

4.2.3 Robin-Hood-Hashing

4.2.4 Hopscotch-Hashing

Chapter 5

Compression

light-weight compression techniques:

1. zero suppression

2. prefix suppression

3. frame of reference

4. dictionary compression

result: fixed length unsigned integers
see the following papers and the references therein: AODB [257], BLINK

[27], HANA [208, 94, 156], using SIMD: [173]

51

52 CHAPTER 5. COMPRESSION

Chapter 6

Storage Layout

6.1 Row stores and Column Stores

Subsequently, we consider the possible storage layouts for the following relation:

eno name salary

001 Müller 1000
002 Maier 2000
003 Schmidt 4000

6.1.1 Row format (NSM)

We can concatenate all the bytes for every attribute of a tuple and then con-
catenate all the tuple’s bytes. This results in a row format :

001 Müller 1000 002 Maier 2000
003 Schmidt 4000

This format is also called NSM (N-ary Storage Model).
Row-Format in C++:

struct emp t {
int eno;
std::string name;
double salary;

};
std::vector<emp t> Employees;

Note: std::string is a performance killer and is not inlined as in the figure.
Exercise:

1. Design a row-format where the string name is inlined.

6.1.2 Column format (DSM)

Alternatively, the DSM (Decomposed Storage Model) storage layout can be
used. Here, every attribute is stored in a binary relation. The first attribute of

53

54 CHAPTER 6. STORAGE LAYOUT

this relation contains a surrogate (row identifier (rid) or tuple identifier (tid))
and the second attribute contains the original attribute’s value. Here is how
DSM looks like for our small relation:

0
1
2

001
002
003

eno
0
1
2

Müller
Maier
Schmidt

name
0
1
2

1000
2000
4000

salary

This storage model was proposed by Copeland and Koshafian [69] and is used
in Monet [41]. The original relation can be restored using a join over the rid.
The rid can be virtual and need not be stored explicitly. Then, we arrive at
the column format :

001
002
003

Müller
Maier

Schmidt

1000
2000
4000

nameeno salary

Again, Monet is one of the forerunners applying this storage format [41].

Column-Format in C++:

struct Employees {
std::vector<int> eno;
std::vector<std::string> name;
std::vector<double> salary;

};

Exercise:

1. discuss different alternatives for std::string for string columns
(e.g., string containers without dictionary, with unordered dictionary,
with ordered dictionary)

Query processing example

Query processing: example: Bigger table emp:

rid eno name salary

0 10 — 100
1 2000 — 200
2 500 — 300
3 700 — 400
4 30 — 500
5 8000 — 600
6 800 — 700

stored columnwise (rid implicit as index into column array).

6.1. ROW STORES AND COLUMN STORES 55

select sum(salary)
from Employees
where eno between 100 and 900

Conceptually, processing the query looks as follows:
eno

10
2000
500
700
30

8000
800

σ100≤eno≤900
rid

2
3
6

χs:salary.rid
300
400
700

sum

1400

Compiled into C++, we get

int sum = 0;
for(size t i = 0; i < emp.eno.size(); ++i) {

if((100 ≤ emp.eno[i]) && (emp.eno[i] ≤ 900))
sum += emp.salary[i];

}
return sum;

Insert example

insert into Employees values (333, ”Trump”, 33)

Employees::insert(int e, std::string n, double s) {
eno.push back(eno)
name.push back(n)
salary.push back(s)

}

Exercise:

1. implement deleting a tuple with a given rid.

2. implement an index on Employee.eno

6.1.3 Hybrid Storage Model (PDSM)

It is obvious, that we can decompose a relation not only into binary relations but
arbitrarily. This results in the partially decomposed storage model [123, 213].
Attributes used frequently together are then stored together in one fragment.

6.1.4 Cache Lines in Row and Column Format

Obviously, the storage layout impacts cache utilization.

Things look bad for the row store:

56 CHAPTER 6. STORAGE LAYOUT

63 0

Things look good for the column store:

63 0

6.2 Organization on Pages

Both row and column store formats can organize their data in very large chunks
of bytes. This is typically not practical if updates occur, indices are applied
etc. In DBSI, we thus learned about an organization of the row storage format
on pages called slotted pages. Together with the tuple identifier concept, this
allowed for highly flexible updating/moving around of tuples.

Analogously, several small columns can be organized onto a page. One
proposal to do so is PAX [7]. A PAX page looks as follows:

header

This looks very similar to a slotted page. The only difference is that instead of
pointing to tuples, the slots contain pointers to arrays of attribute values, i.e.,
a column. There are some further details not discussed here.

6.3. ROW LAYOUTS 57

Exercise:

1. How can we deal with variable-length fields in PAX.

2. How can we deal with nullable attributes.

6.3 Row Layouts

fixed length: easy. complications:

1. variable length fields

2. null-values

3. compression

To keep attribute values aligned, we assume that records are aligned to, say,
8 bytes. Then, we put all the 8-byte attributes at the beginning (e.g., doubles
dj), followed by the 4-byte attributes (e.g., integers ij), followed by 2-byte, and
finally 1-byte attributes:

d1 d2 i1 i2 i3

Adding variable size attribute values, for example strings si, is rather simple:
We add in the fixed-length part offsets to the strings. Note: o1 points to the
start of s1 and is the end of s0. A last ok+1 denotes the end of sk. (end = one
character after the last). Adding three string values results in:

d1 d2 i1 i2 i3 o0 o1 o2 o3 s0 s1 s2

Dealing with NULL-values, we have two possibilites:

• reserve some special value to represent NULL-values

• add NULL-indicators

The former approach it applicable only in special cases, e.g., for dictionary
compression where a dictionary id of 0 is reserved for NULL-values. In general,
the latter case must be supported.

Adding NULL-indicators (nid):

nid d1 d2 i1 i2 i3 o0 o1 o2 o3 s0 s1 s2

Disadvantage: still space allocated for NULL-attributes. We now eliminate the
wasted space. A consequence is that offsets to attributes are no longer the same
for every tuple as different tuples may have NULL-values in different attributes.
Assume in one tuple d1 is NULL and i1 is NULL. The layout then is:

1010. . . 0 d2 i2 i3 o0 o1 o2 o3 s0 s1 s2

If we assume d1, d2, i3, and s1 to be NULL, we get

11001010. . . 0 i1 i2 o0 o2 o3 o4 s0 s2

58 CHAPTER 6. STORAGE LAYOUT

There are several possibilities to calculate the offset of an attribute, some
with layout changes, some not:

1. interprete the null-indicator: go through the bits of the null-indicate and
perform offset calculation. This means access to an attribute becomes
linear in the time of nullable attributes. If we always store the not-null
attributes followed by the nullable attributes (for each attribute size), we
can restrict this overhead to nullable attributes.

2. use an offset array within each record similar to the variable size attributes
for null-able attributes. if offsets are smaller than actual values this saves
some space.

3. use a separate table where these offset calculations are materialized

4. use uval t arrays as tuples. Using popcnt on the null-indicators up to
the attribute to be accessed and subtract this from the attribute number
to be accessed. Of course, uval t arrays waste some memory.

5. The same popcnt solution can be used if null-indicators are grouped by
attribute size.

Remark:

• Whereas uval t arrays may be used during query execution, they are
never used as a storage layout of tuples.

• The table based approach (discussed in [257]) has the disadvantage that
every table consumes a few kilobyte of memory, which puts additional
stress onto the L1d cache. Further, access latency to L1d is about 3-4
cycles whereas popcnt has a latency of 3 cycles.

Compression adds another layer of complexity. Assume we add leading-zero-
suppression for integers. If we restrict the length of integers to multiples of a
byte, integers can now be 0, 1, 2, 3, or 4 bytes long. (0 bytes in case of ’0’).
The size of a compressed integer may vary in every tuple. In this case, the only
studied approach is an offset-table-based one [257].

The basic record layout there is:

strings

codes data

fixed−length variable−length

encoding for dictionary−based compression

length and offset encoding

For every attribute with variable length (including compressed and nullable
attributes), we use status bits to encode its length and, possibly, null-status.
For example:

6.3. ROW LAYOUTS 59

4 byte integers

length NOT NULL nullable

0 – 000
1 00 001
2 01 010
3 10 011
4 11 100

8 byte floats

0 - 00
4 0 01
8 1 10

These status bits are packed together within bytes such that always all status
bits belonging to a certain attributes are contained in one byte. Unused hi-bits
are set to zero. Consider for example a relation with attributes

(a int, b int, c double not null, d int, e int, f int not null)

Assume all attributes are compressed. Then, all attributes become variable
length attributes and two bytes are necessary for the length encodings:

− ba1 ba2 ba3 bb1 bb2 bb3 bc1
bd1 bd2 bd3 be1 be2 be3 bf1 bf2

The following table shows an example. For every attribute, there are two
things stored:

1. the offset

2. the length encoding (and not the length itself)

decoding byte 1 decoding byte 2

0 0 1 0 0 0 0 1
Attr. a Attr. b Attr. c

1

0

Attr. a Attr. b

10

35

34

33

32

31

30

127

0 2 2 0 2 1

126

Attr. c

total length

0 0 1

1

0

Attr. d Attr. e

7

101

100

99

98

97

96

255

0 3 3 0 3 3

254

Attr. f

1 1 0 0 1
Attr. d Attr. e Attr. f

offset
length encoding

The code to calculate the offset of some variable-length attribute is

60 CHAPTER 6. STORAGE LAYOUT

int off(int attrno, // number of attribute
int* codeBytes, // code bytes of row
int byteNo, // number of code byte for attr
dct table) { // decoding table

int off = 0;
for(int j = 0; j < byteNo; + + j)

off += table[j][codeBytes[j]].total;
return off + table[byteNo][codeBytes[byteNo]].offset(attrno)

+ table[byteNo][codeBytes[byteNo]].length(attrno);
}

Remark: we omitted one important aspect in the above discussion, which
is versioning. In a real system, tuples must be versioned. The reason is that
schema changes may take place. For example, we might add or remove at-
tributes. If we are not able to version our tuples, a schema change requires to
modify all tuples immediately. With versioning, tuple layout change implied by
schema changes can be performed lazily.

6.4 Column Layouts

• simple: array of fixed length values (int32, int16)

• often: compression, e.g., by

– ordered dictionary or

– dates via julian day and frame of reference compression.

• consequence: fewer than 32 or 16 bits needed per value

• wish: use only as few bits per value as possible

• more compression, e.g., runlength encoding (possibly after sorting, etc.)

Note: the same complications arise as in the row-store case.

6.4.1 BitPackingH

This is the original storage format used by Hana [259, 260].
Using dictionary compression or some other technique, assume that n bits

suffice to store any attribute value of some attribute A. Then, values of A are
represented as a bitvector of length n ∗ |R|. Example (n = 3):

a a a b b b c c c d d d e e e f f . . .

Decoding:

• unpack into 32-bit integers

• implementation using SIMD instructions

Decoding Steps (128 bit SIMD):

6.4. COLUMN LAYOUTS 61

1. 16 Byte alignment: make sure 128-bit registers start with complete com-
pressed value. Assume currently handled value is in the upper part of a
256-bit register

(a) load second 128-bit register into lower part of a 256-bit register

(b) perform a 256-bit register shift

2. 4 Byte alignment:

(a) apply a shuffle operation to put four consecutive compressed values
into the 4 32-bit words of a 128-bit register

3. Bit alignment:

(a) apply a shift operation with 4 individual shifts

(b) apply a bitwise AND operation with a mask to zero out irrelevant
bits

For details see [260, 259].
Problems:

• comparisons for selection predicate (e.g. between) after decompression

• improvement: it is possible to insert the selection predicate evaluation
after the first few steps of the decompression algorithm (comparison can
be done before bit alignment, by shifting the constants with which to
compare accordingly.)

6.4.2 BitSliceH

BitSliceH and BitSliceV (discussed in the next section) were both proposed
by Li and Patel [177]. The latter builds on bitslicing originally proposed by
Rinfret, O’Neil, O’Neil [224].

BitSliceH uses one bit more than necessary. It is set to zero. Consider again
the case of n = 3 bits necessary to encode a value. Then the BitSliceH storage
layout looks like

0 a a a 0 b b b 0 c c c 0 d d d 0 . . .

This one additional bit is used to hold the result of comparison operations.
Further, no codes span multiple lines (a line corresponds in length to a SIMD
register and is accordingly aligned). Instead, padding is used.

We discuss how comparison of a column with a value can be implemented
(see [177] for details). Let w be the SIMD register length. Let X be the SIMD
register holding w/(k + 1) column values. Let Y be the SIMD-register holding
w/(k+1) times the value with which the column is to be compared. Let Z be the
result vector where the additional bit indicates the result of the comparisons.
Let x and y be two k bit values.

Further we will use the following bitwise operators:

• ? bitwise and

62 CHAPTER 6. STORAGE LAYOUT

• > bitwise or

• ⊗ bitwise xor

• ¬ bitwise complement

Inequality We have x 6= y iff x⊗y 6= 0k. Adding 01k to 01k does not produce
an overflow. Thus, Z can be calculated as

Z = ((X ⊗ Y) + 01k01k . . . 01k) ? 10k10k . . . 10k

Equality complement of inequality

Z = ¬((X ⊗ Y) + 01k01k . . . 01k) ? 10k10k . . . 10k

Less Than
x < y

⇐⇒ x ≤ y − 1
⇐⇒ 2k + x ≤ y + 2k − 1
⇐⇒ 2k ≤ y + 2k − 1− x

Note that 2k − 1− x = ¬x = x⊗ 1k. Thus (no overflow can occur):

Z = (Y + (X ⊗ 01k01k . . . 01k)) ? 10k10k . . . 10k

Less Than Or Equal To Since x ≤ y iff x < y + 1 we have

Z = (Y + 0k1 . . . 0k1 + (X ⊗ 01k01k . . . 01k)) ? 10k10k . . . 10k

Careful: y must be less than 2k − 1. This does not do any harm since 2k − 1
is the maximum possible value and thus a comparison x ≤ 2k − 1 would always
yield true.

Greater > and ≥ can be implemented using < and ≤ and an argument swap.

Indicator Bit Extraction Methods to extract the indicator bits are de-
scribed in Appendix B of [178]. The first method is rather simple: successively
shift/or/mask. Let b = k + 1 be the length of one block of bits. Every such
block is the form c0k where the bit c indicates the comparison result. After one
of the comparison operators defined above, the result is of the form

c10
k . . . cm0k

which we wish to transform into

c1, . . . , cm, 0
∗.

6.4. COLUMN LAYOUTS 63

where m = 2/(k + 1).

Step 1: Y = (X > (X � 1(b− 1))) ? (02b−212 . . . 02b−212)
Step 2: Y = (Y > (Y � 2(b− 1))) ? (04b−414 . . . 04b−414)
Step 3: Y = (Y > (Y � 4(b− 1))) ? (08b−818 . . . 08b−818)
. . .

Example:

Input: c1 0 0 0 c2 0 0 0 c3 0 0 0 c4 0 0 0
Step 1: c1 c2 0 0 0 0 0 0 c3 c4 0 0 0 0 0 0
Step 2: c1 c2 c3 c4 0 0 0 0 0 0 0 0 0 0 0 0

Li and Patel also propose a second alternative method [178] based on mul-
tiplication, which is only applicable if b ≤

√
w:

Y = (X ∗ (0b−210b−21 . . . 0b−21)) ? (1bw/bc0bw/bc(b−1))

The method is based on the idea that shifting is the same as multiplication. All
shifts are performed at once here. However, one must be sure that these don’t
interfere. That is the reason for the condition b ≤

√
w.

Since the multiplication method is faster than the shift-based method, it
should be used if applicable and the shift-based method should be used in the
remaining cases.

Remark: On POWER processors one can use specialized instructions for
bit-permutations.

Converting Bit Vectors to Indices (RIDs) A method to extract the in-
dices of the indicator bits is described in Appendix A of [178]: Define two helper
functions:

rlsb(x) := x? (x− 1) // reset least-significant bit set
smsb(x) := x⊗ (−x) // set to most-significant bits up to the lsb set

The intrinsic blsr implements rlsb with one machine instruction;
Example:

0 1 2 3 4 5 6 7 msb

x = 0 1 1 0 1 1 0 1
rlsb(x) = 0 0 1 0 1 1 0 1

smsb(x) = 0 0 1 1 1 1 1 1

Algorithm:

• loop over all bits set in a word x in the bitvector

• for all bits set: determine their index and output it after adding some
base.

Assumption: the index of the most significant bit is the lowest index.

64 CHAPTER 6. STORAGE LAYOUT

INPUT: BV: input bitvector, w: word width
OUPUT: L: vector of RIDs
p = 0
foreach x in BV

while(x 6= 0)
rid = p + popcnt(smsb(x)) // get base + index
L += rid // append rid to output L
x = rlsb(x) // reset least significant bit set

p += w // add word length to base p
return L

Alternative: use bit-scan-forward/reverse to extract index of a lowest/highest
bit set.

Remarks (1) In case there are no spare bits between encoded values in the
storage format, we could do the following to implement comparisons on the
compressed data: Comparison on compressed data:

• split word into even numbered and odd numbered parts (2 masks)

• do stuff as with 0-bits inbetween

• join together both results

This requires that the most significant bit is left unused.
(2) in order to evaluate A ≥ c for some attribute A and constant c, we could
also set the indicator bits to ’1’ in the encdoding of A, subtract c, and mask on
the indicator bits.

6.4.3 BitSliceV

6.4.4 ByteSliceV

ByteSliceV is the latest proposal to organize tuples in storage [96].

6.5 DB2 BLU

In this section, we briefly describe storage layout of DB2 with BLU Acceleration
(DB2 BLU for short) [90], which builds on (predicate evalution in) BLINK
[144, 218]. Note however, that DB2 BLU (as seen below) is (mainly) a column
store whereas BLINK is row store.

6.5.1 Column Groups

Let R be a relation. For every attribute A ∈ A(R) which may contain NULL-
values, a null-indicator attribute is added. The attributes A(R) of a relation
R can be partitioned into column groups. Any attribute A which may contain
NULL-values and its null-indicator attribute must be contained in the same
column group.

6.5. DB2 BLU 65

• Column groups are stored on pages.

• Pages are allocated in chunks called extents.

• Each extent contains data from one column group only.

• Tuple Sequence Numbers (TSN) are used to identify tuples.

• For every tuple, the TSN is the same in each column group.

• A tuple projected on the attributes of a colum group is called tuplet.

• Each page contains a page header.

• A page header contains a StartTSN and a TupleCount.

• A page map is used to map a (columngroup,TSN) pair to a page. It is
implemented as a B+-Tree.

6.5.2 Compression

Standard compression technique, but the active domain of an attribute can
be partitioned into several subdomains. This partitioning is best be done fre-
quency based. That is, highly frequent values go to one partition and values
of low frequency to another. The compression scheme may then differ for each
partition. For example, a different number of bits maybe used to encode the
values in different partitions.

Example:

• We compress 16 bit country codes in a trading database.

• We partition the country codes into three partitions.

– We use 1 bit compression for China and Russia.

– We use 3 bits for other countries with a lot of trading.

– We use 8 bits for the remaining countries

In general, the distinct values of an attribute A of some relation R are parti-
tioned into a few partition. For every such partition, a separate order-preserving
dictionary is allocated [218]. Details on how to determine the partitions are also
contained in [218].

6.5.3 Cell/Region

The space of possible formats of the tuplets in a column group is determined
by the cross product of

• the partitions of all columns of a column group

These combinations are called cells. Within a page, all tuplets belonging to the
same cell and (thus) have the same format are stored together in a region.

66 CHAPTER 6. STORAGE LAYOUT

6.5.4 Page Format

A page contains the following elements:

1. page header

2. page-specific compression dictionaries

3. regions stored in banks

4. tuple map

5. variable width data bank

We discuss those items not already discussed subsequently.

If a page contains more than one region, it contains a tuple map which
records to which region a tuple belongs. The tuple map is indexed by the page-
relative TSN and contains as many bits as necessary to uniquely determine a
region.

Regions are subdivided into banks. Banks are contiguous areas of the page
that contain the actual tuplet values (or their encoding). For example, assume
there is an attribute A which may contain NULL-values. Then, the actual
values of A and the A’s null-indicator column may be stored in separate banks.

Most banks contain fixed size tuplets. For compressed values, the encoded
tuples are stored packed together in 128-bit or 256-bit words with padding to
avoid straddling of tuplets across word boundaries. The 128 or 256 is called
width of the bank. Word lengths 8, 16, 32, 64 bits can also be used.

The following picture contains a page. This page stores columns of a single-
column column group: country-code. Although there exist altogether three
regions for country code (as explained above), only two regions are present on
the given page.

101 011 001 ...Bank 1: 3 bit tuplets in 128-bit
words, with 2 bits of padding

Region 1

Bank 1: 8 bit tuplets in 64-bit words (no padding)

Region 2

Tuple Map
101001000... (1st, 3rd, 6th entries are in region 1)

Considering only banks of one cell per attribute group and abstracting from
pages and regions, we have the following image for a relation with attributes a,
. . . , g vertically partitioned into column groups {a, b, c}, {d, e, f}, {g,h}.

6.5. DB2 BLU 67

2 9 10 11

- a b c

- a b c

- a b c

- a b c

- a b c

1 8 10 13

- d e f

- d e f

- d e f

- d e f

- d e f

2 9 5

- g h

- g h

- g h

- g h

- g h

Bank 1 Bank 2 Bank 3
w=32 w=32 w=16

In this figure, the i-th tuple consists of the i-th word of every bank. The ’-’
sign indicates unused bits. Further, the tuplet size coincides with the width of
the bank. In general, this does not need to be the case: several tuplets may be
contained in a w bit wide bank.

Fixed-width uncoded values are also stored in banks of regions where the
bank width is determined by the data type of the attribute.

Uncoded variable-width values are stored consecutively in a separate variable-
width data bank. Additionally, a pair (offset,length) is stored in a regular
(fixed-width) bank.

6.5.5 Page Compression

Page level compression exploits the fact that only a subset of the codes maybe
present in tuples to be stored on a given page. In this case, a smaller number
of bits might suffice. Thus, if beneficial, mini-dictionaries are stored on a page.
These then contain the page-level compression scheme.

Adjusting the frame of refererence in frame-of-reference compression can
also be done at the page level.

All elements of a page are contained in the following figure:

10100111001110010010..

Page
Header

Region

Tuple
Map

Page-speci�c
Compression
Dictionaries

Fixed-width
Data Banks

Variable-
width Data
Bank

6.5.6 Small Materialized Aggregates (SMA)

Small internal synopsis tables are created automatically for every colum-organized
table. These contain the following small materialized aggregates:

68 CHAPTER 6. STORAGE LAYOUT

• MinTSN, MaxTSN for every page

• min/max values of columns contained in the page

A synopsis table uses the same compression scheme as the regular column-
organized table for which it were created.

6.5.7 Global Code

The compression dictionary contains the

• partition-relative encoding and

• a global coding.

Assume the partitions are ordered into P1, . . . , Pn. Then, the i-th local code of
Pk gives rise to the global code

(
∑

l=1,...,k−1
|Pl|) + i

The global code is used in join and grouping operations.

6.5.8 Scan

Evaluating a selection predicate in multiple attributes on the DB2 BLU storage
format is not an easy task. It is performed in mainly three steps:

1. SCAN-PREP: scan synopsis, apply predicates to synopsis to skip pages

2. LEAF: scan one horizontal partition and apply predicates, collect TSNs
of qualifying tuples.

3. LCOL: for the other columns not contained in the column group of LEAF
access these columns using the TSNs.

This evaluation requires some infrastructure like TSNlists to represent qualify-
ing TSNs in a compact form. Predicate evaluation is performed for multiple
simple comparison predicates for different columns in a tuplet i parallel (see
[144] for details). The bit-operations are very similar to those in BitSliceH
[177]. A complication arises if multiple cells occur in a page. In this case, the
results from these pages must be interwoven using the tuple map (see details
in Sec.5.1.2 of [90]).

6.6 SQL Server

6.6.1 Apollo

The SQL Server column store started out as additional user-definable column
indices. Later, column only attributes became possible [163, 88]. We briefly
discuss the storage layout of the SQL Server column store.

6.6. SQL SERVER 69

As the column store started out as an additional index, copies of the columns
could extracted on already populated tables and stored separately in a columnar
format. This allowed for a row group wise processing. For every row group,
the attribute values of a certain attribute where extracted and a dictionary
populated. For each of the row groups and the dictionary, the data is then
encoded and compressed. Each compressed column in then stored in a segment.
The dictionary also contains other metadata like the number of tuples in the
segment, size of the segment, kind of the encoding, min/max values.

Segments are stored in BLOBs. The segments are not stored in the regular
buffer pool but instead in a special large-object buffer pool. This allows to store
the pages of a segment as continous pages in buffer with no ’page breaks’.

SQL Server uses two dictionaries per column:

1. global dictionary for the whole column

2. local dictioinaries for each row group

The global dictionary is optional.
The tow group to column creation process works in three steps:

1. encoding

2. determine optimal row order

3. compress each column

SQL Server uses two types of encodings:

1. dictionary-based encoding (maps values to 32 or 64 bit integers)

2. value-based encoding (convert integers/decimals to integers)

Since SQL Server supports run-length encoding sorting achieves the best
compression result. Thus, by looking at the possible compression ratios for the
different columns some overall best row order can be determined.

For compressing a column there is a choice between run-length encoding
and bit packing.

Updates must be handled using a delta.

6.6.2 Hekaton

Hekaton is the SQL Server main memory row store. Several papers describe
various aspects of it [12, 82, 86, 97, 162, 138, 174].

The goal of Hekaton was to improve the throughput of SQL Server by 10x-
100x. The following back of the envelop calculation showed this is not possible
by small code rewrites [82].

The performance of any OLTP system can be expressed as

SP = BP ∗ SFlog2(N)

where

70 CHAPTER 6. STORAGE LAYOUT

SP = system performance
BP = performance of a single core
SF = scalability factor
N = number of cores

Using

IR = instructions retired
CPI = cycles per instruction

we can rewrite the above to

SP = IR ∗ CPI ∗ SFlog2(N)

Observations on SQL Server on some common OLTP benchmarks:

• CPI of less than 1.6 (which is fairly good)

• SF is 1.89 up to 256 cores (which is also fairly good)

At 256 cores SQL Server throughput increases by factor of

1.898 = 162.8

Ideally, a factor of 256 would be achieved. Thus, the maximal possible improve-
ment factor gainable from increasing SF is

256/162.8 = 1.57

Further, an extraordinarily good CPI 0.8 would give another factor of 2 im-
provement for SP. Giving a total of

2 ∗ 1.57 = 3.14

Thus, to achive 10x-100x a drastic decrease (90% to 99%) of IR is necessary!
Analysis of existing systems shows where the time executing a request is

spent [126, 143]. Based this experience, the Hekaton design team came up with
the following architectural principles for Hekaton:

1. optimize indexes for main memory
(classical B-tree lookup: thousands of instructions)

2. eliminate latches and locks
(latch-free data structures, optimistic multi-version concurrency control)

3. compile into native code

Storage and indexing of Hekaton tables:

• Hekaton table is completely contained in main memory

• two types of indexes:

– Bw-Tree (latch-free [138])

6.6. SQL SERVER 71

Begin End . . . Pointer Name City Amount

Header Links Payload

Record format

London10 20 John

Tx75

15

30

inf

100

100

Jane

Larry Rome

Paris 150

20 John London 110

Tx75 Inf John London

170

100

Tx75
100

Tx75 inf Larry Rome 150
100

Old

New
130

Old

New

B-tree

Hash index
on Name

Ordered index
on City

J

L

Figure 6.1: Storage Layout in Hekaton

– hash index (latch-free [190])

• a table can have multiple indexes

• record lookup is always by indexes

Fig. 6.1 shows the storage layout of a hekaton table containing bank account
data. The table contains 6 versioned records. The record format is shown at
the top of the figure.

• Name, City, Amount: regular attributes of the relation

• begin/end: validity interval

• link fields: one per index chaining entries for that index

In the example there exist two indices. The hash index on name takes for
implicitly as a hash function only the first character of the name. Collisions
are chained via the black pointers in the figure. The second index is a B-Tree,
giving rise to the blue pointers which link together records with the same key.

Read. Reading is performed for a specific time. For any time only one version
of a record qualifies.

Update. Assume transaction 75 transfers 20 Yen from Larry’s account to
John’s account. This creates a new version of both account records. The
old version receive a 75 as their end-timestamp and the new versions have a

72 CHAPTER 6. STORAGE LAYOUT

75 in their begin-timestamps. At commit time, both these begin- and end-
timestamps are updated to the timestamp at which transaction 75 commits.
Assume this is 100. Then, the 75 entries in begin- and end-timestamps are
replaced by 100. For details on transaction management see [82].

6.7 Large Objects

starburst long field manager, exodus long field manager etc.

Chapter 7

Physical Algebra: Processing
Modes

7.1 Pull Algebra

Traditional pull-based algebra interface (as in DBSI):

• open

• next

• close

next is called once per tuple.

7.2 Push Algebra

7.2.1 Interface

Producer interface:

• run

Consumer interface:

• init

• step

• fin

step is called once per tuple.

7.2.2 Scan

Sample code for scan:

73

74 CHAPTER 7. PHYSICAL ALGEBRA: PROCESSING MODES

class Scan : public Producer {
void run(Segment S) {

foreach page P in S {
foreach tuple T on page P {

consumer->step(T)
}

}
}
Consumer* consumer;

};

7.2.3 Select

Sample code for selection:

class Select : public Consumer {
void step(Tuple T) {

if((* predicate)(T))
consumer->step(T);

}
Consumer* consumer;
Predicate* predicate;

};

7.2.4 Simplest Hash-Join

The hash-join is split into two parts:

1. build (build hash table)

2. probe (probe other relation and build result tuples)

Ht

HtProbe HtBuild

scan (R) scan (S)

Evaluation of R 1hj S proceeds in two steps:

1. execute run on build relation (S)

2. execute run on probe relation (R)

Pseudocode: For simplicity, we assume that

7.2. PUSH ALGEBRA 75

• the argument to the step function is a rid (i.e., the type of Tuple is uint)
and every function knows how to access the right parts of the tuple.

• the hash functions hr and hs are somehow known and return an unsigned
int (uint)

• the hash functions hr and hs take a rid as argument and implicitly know
where to find the join attributes.

• we only store the rid of the tuple in the hash table

• all required functions work with rids

• the result of the join is represented as pairs of rids of the joining tuples
represented by two aligned vectors Sres, Rres.

typedef std::unordered map<uint, std::vector<uint>> hashtable t;
class HJoinBuild {

void step(Tuple s) {
ht[hs(s)].push back(s);

}
hashtable t ht;

}
class HJoinProbe {

void step(Tuple r) {
for(auto s : ht[hr(r)]) {

if(JoinPredicate(r, s)) {
Rres.push back(r);
Sres.push back(s);

}
}
hashtable t& ht;

}

In general, some order must be observed when executing strands. In the
following figure, there are three strands. Here, the build input is on the left-
hand side of every join:

76 CHAPTER 7. PHYSICAL ALGEBRA: PROCESSING MODES

BB

BA

S R

v vT

v

Discussion:

• push-based algebraic operators are easier to implement than their pull-
based counterparts

• needs some runtime coordination: strands

• push-based algebra are good for code-generation (one code-fragment per
strand)

• push-based algebra has low overhead (when compiled)

Exercise:

1. discuss the simplifying assumptions

2. discuss the case of a key-foreign-key-join

3. discuss how template classes for hash-table functions and instances thereof
containing pointers to columns might help to implement a generic version
with little code.

4. what happens if the join predicate is an equi-join over several attributes?
how can this case be handled?

5. how can we implement non-equi joins, outerjoins, semijoins, antijoins,
groupjoins?

6. how can we implement the different set operations and duplicate elimina-
tion?

7.3. MATERIALIZATION GRANULARITY/CALL GRANULARITY 77

7.3 Materialization Granularity/Call Granularity

7.3.1 Tuple-wise (single tuple materialization)

As in the above code, per call to next/step one tuple is processed. This results
in some performance penalties:

• function call overheads: next/step and predicate/subscript

• lack of code locality (L1i misses)

The advantage is that there is only one tuple to be materialized. That is, the
memory can be reused for every tuple processed (except for pipeline breakers
(see DBSI)).

7.3.2 Complete (full materialization)

An alternative is that every operator of the physical algebra produces a com-
pletely materialized result. This disadvantage here is that a huge amount of
memory is needed and likewise a fair amount of memory-bandwidth.

7.3.3 Blockwise (partial materialization)

This is the middle way. In each call to next/step a bunch of tuples is processed.
Memory for this bunch has to be allocated (best: if it fits into some cache). The
size of a bunch of tuples can be determined by the number of tuples contained
in it or by some size in bytes.

Two alternatives are possible for pipelining blocks/chunks/bunches:

• one input bunch of tuples produces one output bunch of tuples.
This simplifies the logic but, e.g. after a selection, the ouput bunch of
tuples may contain very few tuples (overhead is back).

• many input bunches of tuples can produce one output bunch of tuples.

Remark: In case of full and blockwise materialization, we can materialize
either in row or in column format, independently of the input storage format.

Exercise:

1. sketch the code for push-algebra with full materialization.

2. sketch the code for push-algebra with blockwise materialization.

78 CHAPTER 7. PHYSICAL ALGEBRA: PROCESSING MODES

Chapter 8

Expression Evaluation

8.1 Introduction

Several operators take subscripts/functions/programs which must be evalu-
ated. For example: selection predicates, join predicates, projection lists, map-
expressions.

some operators may take several subscripts/programs: e.g., the hash-join
operator:

• calculate hash-function for right input

• calculate hash-function for left input

• calculate result of join predicate

• concatenate two input tuples

In a push-based algebra, it is rather simple to compose complex expressions
which evaluate a sequence of pipelined algebraic operators (strand):

• scan-[select,map,semijoin,antijoin,project]-mat

Such a complex program would be given to the scan operator.
In general there are two possibilities to evaluate these expressions: interpre-

tation and compilation. For each of them, we have different sub-possibilities:

• interpretation

– operator tree with eval

– virtual machine

• compilation

– C or similar

– LLVM [197, 198, 48]

– machine code [160, 180]

Before we discuss these possibilities, let us look at alternative result repre-
sentations.

79

80 CHAPTER 8. EXPRESSION EVALUATION

8.2 Result Representation

• tuples in any of the storage layouts (col,row,. . .)

• and additionally

– to represent the result of a selection:

∗ list of indices (pointers/rids/tids) of qualifying tuples

∗ bitvector of qualifying tuples

– to represent result of join:

∗ pairs of indices (pointers/rids/tids)

8.3 Interpretation: Operator Tree

Every operation for every supported type is encapsulated within a class. The
common superclass has the interface

typedef unsigned char byte t;
class SimpleOpBase {

virtual byte t* eval() = 0;
SimpleOpBase* args[MAXARGS];

}

To avoid byte t pointers, one can define a union-type uval t containing
the union of all supported types (and more):

typedef union {
int32 t i32;
double f64;
. . .

} uval t;

Exercise:

• change the interface of SimpleOpBase using uval t

• implement a few operators with both interfaces

• discuss the pros and cons of each approach

8.4 Interpretation: A Virtual Machine (AVM)

All virtual machines need some instruction set:

8.4. INTERPRETATION: A VIRTUAL MACHINE (AVM) 81

enum avm instr e {
kAvmStop = 0,
kAvmAddI32 = 1,
kAvmSubI32 = 2,
kAvmMulI32 = 3,
kAvmDivI32 = 4,
kAvmModI32 = 5,
kAvmEqI32 = 6,
. . .
kAvmNoOp = MAXNOOP

};

A program is a sequence of uint32 t reflecting a sequence of op-codes fol-
lowed by arguments:

1. op-code from avm instr e

2. zero or more arguments in the form of attribute numbers or offsets into
row-tuples depending on the storage layout.

Putting together a program (here for row format):

uint32 t lProg[7];

lProg[0] = kAvmEqI32;

lProg[1] = 0; // offset of arg 1

lProg[2] = 4; // offset of arg 2

lProg[3] = kAvmStop;

8.4.1 AVM: row: single tuple

Two general approaches: switch vs. function pointers.
This program is then interpreted by some interpreter functions, e.g.

/*
* a simple avm interpreter processing one tuple in row format at a time
* aTuple: pointer to tuple
* aProg: pointer to avm program
* this one is implemented with a switch statement
*/
int avm itp row single switch(byte t* restrict aTuple, uint32 t* restrict aProg);
/*
* a simple avm interpreter processing one tuple in row format at a time
* aTuple: pointer to tuple
* aProg: pointer to avm program
* this one is implemented with an array of function pointers
*/
int avm itp row single funptr(byte t* restrict aTuple, uint32 t* restrict aProg);

Here is how the variant using a switch-statement looks like:

82 CHAPTER 8. EXPRESSION EVALUATION

#define OP(a1, a2, a3, op, T) (*(T*)(a1)) = (*(T*)(a2)) op (*(T*)(a3))

int

avm itp row single switch(byte t* restrict t, uint32 t* restrict p) {
int lRes = 0;

byte t *a1, *a2, *a3; // pointers to attribute values

LOOP:

switch(*p++) {
case kAvmStop : goto END;

case kAvmAddI32:

a1 = t + *p++; // add offset to tuple base pointer

a2 = t + *p++;

a3 = t + *p++;

OP(a1, a2, a3, +, int32 t);

break;

...

case kAvmEqI32:

a1 = t + *p++; // add offset to tuple base pointer

a2 = t + *p++;

lRes = ((* (int*) a1) == (* (int*) a2));

break;

...

}
goto LOOP;

END:

return lRes;

}

For the variant using function pointers, we first need an array of function
pointers:

typedef int (*op fun t)(byte t* a, byte t* b, byte t* c);

op fun t gOpFunArr[] = { 0, &fun addi32, &fun subi32, &fun muli32,

&fun divi32, &fun modi32 };

where the functions fun XXX have to be implemented somewhere. Just to give
an example:

int fun addi32 (byte t* a, byte t* b, byte t* c) {
OP(a, b, c, +, int32 t);

return 0;

}

Using the array of function pointers, we can code an interpreter:

int

avm itp row single funptr(byte t* restrict aTuple, uint32 t* restrict p) {
int lRes = 0;

byte t* restrict t = aTuple;

8.4. INTERPRETATION: A VIRTUAL MACHINE (AVM) 83

int lOp = 0;

LOOP:

lOp = *p++;

if(kAvmStop == lOp) {
goto END;

}
lRes = (gOpFunArr[lOp])((t + *p), (t + *(p+1)), (t + *(p+2)));

p += 3;

goto LOOP;

END:

return lRes;

}

Exercise:

1. Implement a push-based selection using a pointer to a program to evaluate
its selection predicate.

2. How can we deal with operations of different arity in the function pointer
case?

3. How can we deal with NULL-values?

8.4.2 AVM: row: vectorized

The general problem with the above approach is that for every tuple there is
a call to the interpreter and for every operation within the program there is
either a goto (switch) or a function call. This overhead is compared to the time
it costs to, e.g., add two numbers, gigantic.

The idea is to reduce this overhead by moving the loop over tuples into the
interpreter. Thus, a single add-operation now copes with many tuples instead
of one. This helps amortizing the goto/function-call overhead.

Again, we have two possibilities: switch and function pointers.

t tuple pointer

n number of tuples

w tuple width

p program

int

avm itp row vectorized(byte t* t, int n, int w, uint32 t* p) {
int i;

byte t* *a1, *a2, *a3; // pointers to attribute values

LOOP:

switch(*p++) {
case kAvmStop : goto END;

case kAvmAddI32:

84 CHAPTER 8. EXPRESSION EVALUATION

a1 = t + *p++; // get pointers to attributes

a2 = t + *p++; // by adding offsets

a3 = t + *p++; // contained in avm program

for(i = 0; i < n; ++i) {
OP(a1, a2, a3, +, int32 t);

a1 += w; // advance attribute pointers by tuple width

a2 += w; // advance attribute pointers by tuple width

a3 += w; // advance attribute pointers by tuple width

}
break;

...

}
goto LOOP;

END:

return n;

}

Exercise:

1. Implement a switch-based vectorized expression evaluator.

2. Discuss the problem occuring with selection predicates in the vectorized
context. How could it be solved?

3. Discuss the problem occuring with varying tuple width in the vectorized
context. How could it be solved?

8.4.3 AVM: col: single

Here, instead of offsets into tuples, the arguments of every AVM-operation are
column indices identifying a column. Here is a switch-based implementation:

int

avm itp col single(byte t* aColPtrs[], int aTupleNo, int* p) {
int lRes = 0;

byte t *a1, *a2, *a3; // pointers to attribute values

LOOP:

switch(*p++) {
case kAvmStop : goto END;

case kAvmAddI32:

a1 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));

a2 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));

a3 = aColPtrs[*p++] + (aTupleNo * sizeof(int32 t));

OP(a1, a2, a3, +, int32 t);

break;

...

}
goto LOOP;

END:

8.4. INTERPRETATION: A VIRTUAL MACHINE (AVM) 85

return lRes;

}

8.4.4 AVM: col: vectorized

int

avm itp col vectorized(byte t* aColPtrs[],

const int aStartRid,

const int aNoTuples,

int* p) {
byte t *a1, *a2, *a3; // pointers to attribute values

LOOP:

switch(*p++) {
case kAvmStop : goto END;

case kAvmAddI32:

a1 = aColPtrs[*p++] + (aStartRid * sizeof(int));

a2 = aColPtrs[*p++] + (aStartRid * sizeof(int));

a3 = aColPtrs[*p++] + (aStartRid * sizeof(int));

for(int i = 0; i < aNoTuples; ++i) {
OP(a1, a2, a3, +, int32 t);

a1 += sizeof(int);

a2 += sizeof(int);

a3 += sizeof(int);

}
break;

}
goto LOOP;

END:

return n;

}

Exercise:

1. Implement a function pointer based version of avm.col.vectorized.

2. Look at the generated assembler code of these functions. Do they contain
SIMD-instructions? [can use godbolt]

8.4.5 AVM: col: vectorized with SIMD

Two possibilites:

1. rely on compiler

2. use intrinsics

Normally solution (1) sufficies since the loops are very stylized and the com-
piler is able to generate SIMD-code. Since the compiler does not know about
alignments that maybe guaranteed by the QEE, the code generated is typically
a bit more complex and a little less efficient.

86 CHAPTER 8. EXPRESSION EVALUATION

8.5 Compilation

C/C++:

• simplest to implement

• results in fast expression evaluation

• compiler call is mostly unacceptably costly

LLVM:

• a little more difficult to implement

• results in fast expression evaluation

• compiler call maybe too expensive, especially for short-running ad-hoc
queries

MachineCode/Assembler:

• tedious to implement

• lower ’compilation’ overhead

• results in fast expression evaluation

• not portable

8.6 Comparison: simple map program

Evaluation time for a simple program adding/subtracting five integer attribute
values and assign the result to some other attribute. More specifically, the
program measured corresponds to

A[0] = A[0] + A[1] - A[2] + A[3] - A[4]

where A[i] denotes the i-th integer attribute. The relation contained a total
of 90 integer attributes and no other ones. The following figures contain the
runtime results for both row and column stores. Abbreviations used:

rs row store, avm interpreter, single tuple, switch

rs2 row store, avm interpreter, single tuple, function pointer

rsc row store, compiled, single tuple

rv row store, avm interpreter, vectorized

rv2 row store, avm interpreter, vectorized (different implementation)

rc row store, compiled, vectorized

cs column store, avm interpreter, single tuple, switch

8.6. COMPARISON: SIMPLE MAP PROGRAM 87

cs2 column store, avm interpreter, single tuple, function pointer

cv column store, avm interpeter, vectorized, switch

cc column store, compiled, vectorized, no SIMD

ccs column store, compiled, vectorized, with SIMD

row:

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000 100000 1x106

p
er

 t
u
p
le

 c
os

t
[n

s]

block size [#tuple]

apollo4: add/sub(4): row

rs
rs2
rsc
rv

rv2
rc

col:

88 CHAPTER 8. EXPRESSION EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 10 100 1000 10000 100000 1x106

p
er

 t
u
p
le

 c
os

t
[n

s]

block size [#tuple]

apollo4: add/sub(4): col

cs
cs2
cv
cc

ccs

all:

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000 100000 1x106

p
er

 t
u
p
le

 c
os

t
[n

s]

block size [#tuple]

apollo4: add/sub(4): all

rs
rs2
rsc
rv

rv2
rc
cs

cs2
cv
cc

ccs

8.7 AVM: col: Vectorized SIMD: selection

During the above discussion it became clear that there is a problem with selec-
tion operators under vectorization as not every input tuple produces an output
tuple. The output of a selection can be:

8.7. AVM: COL: VECTORIZED SIMD: SELECTION 89

• produce column projection, i.e., vectors containing the key column and
one or more payload columns

• a vector of indices of qualifying tuples

• a bitvector with ’1’ for qualifying tuples

We discuss the first possibility and leave the others as an exercise. In the latter
two cases, there must be (variants of the) algebraic operators that take an index
vector/bitvector as an additional input.

We give Algorithm 3 of [214] to implement a SIMD-based selection with
a between predicate. In order to avoid using special SIMD-instruction, which
makes the code somewhat more difficult to read, we use the notation developed
in [214].

• W is the number of entries in one SIMD-register.
For example: W = 4 in case of 4-byte integers in a 128 bit SSE or NEON
register.

• To denote a SIMD-register, vector notation is used: ~r.

• ← denotes assignment.

• masked or selective assignment is denoted by ~r ←m ~p for a mask m
indicating which entries of ~p are copied to ~r.

The code uses a software-managed buffer B. The idea here is that it remains
in the cache and streaming write is used to flush it to main memory.

The following algorithm produces for some input column Tin for every index
i such that klb ≤ Tin[i] ≤ kub an output column Tout containing the qualifying
key from Tin and an output column Pout containing values from a corresponding
input column Pin. Adding more of these is easy. If only a set of indices is needed
as output, the code can be simplified accordingly.

SELECT BETWEEN

i, j, l← 0 // index for in/out/buffer

~r ← [0, . . . ,W − 1] // input indices

for(i = 0, i < |Tin|; i+ = W) // for each lane
~k ← Tin[i] // read W input values

m← (~klb ≤ ~k)&(~k ≤ ~kub) // ’between’ to mask

if(0 6= m) // at least one qualifying input key?

B[l]←m ~r // selectively store indices

l← l + |m| // inc each component by |m|
if(|B| −W < l) // buffer almost full?

for(b = 0; b < |B| −W; b+ = W)// step through buffer

~x← B[b] // load idx of qualifying tuples
~k ← Tin[x] // load qualifying keys

~p← Pin[x] // load qualifying payload

Tout[j + b]← ~k // store key values

90 CHAPTER 8. EXPRESSION EVALUATION

Pout[j + b]← ~p // store payload

~p← B[|B| −W] // move overflow ..

B[0]← ~p // .. to buffer begin

j ← j + |B| −W // update output index

l← l − |B|+W // update buffer index

~r ← ~r +W // update index vector

// after loop: flush remaining items in buffer

Exercise:

1. Implement the code for a SIMD vectorized column-based between-predicate
where the result contains only the indices of qualifying input tuples. There
is no need for a software-managed buffer here. Measure performance.
Hint: Appendix D of [214] contains two SIMD-implementations of the
above pseudocode.

2. Implement the code for a SIMD vectorized column-based between-predicate
where the result is represented as a bitvector. Measure performance. Hint:
See [271, 214, 203]

Chapter 9

Physical Algebra:
Implementation

9.1 General Implementation Techniques

When implementing algorithms for a DBMS, the following points have to be
taken into account:

• avoid branch-misprediction (e.g. by predicated code)

• avoid interpretation overhead (e.g. by vectorization or compilation)

• avoid cache misses (make algorithms cache conscious)

• avoid TLB misses

The following techniques exist to make algorithms cache conscious [237]:

1. Blocking/Tiling

2. Partitioning

3. Extraction

4. Loop Fusion

A general treatment of cache conscious pointer-based data structures can be
found in [64].

Just to have a complete list of techniques, we mention the others here. They
are treated in other sections.

1. software managed buffers (see, e.g. Sec. 8.7, Sec. 9.4)

2. explicit prefetching

3. streaming stores (possibly with software write-combining)

91

92 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

9.1.1 Blocking/Tiling

Assume we implement something like a nested loop join where each element
from one input is compared to each element with some other input. Further
assume that both inputs are available as arrays X and Y . Consider the following
code fragment [237]:

for(i = 0; i < m; + + i)
for(j = 0; j < n; + + j)

process(X[i], Y [j])

Assume that Y does not fit into the cache. Then, many cache misses occur
in this code. (Alghough in this case it might not be that bad since we have
sequential access to Y and the prefetcher helps hiding latencies.) If we process
Y in blocks/tiles each fitting into the cache, we can get better cache-locality
and, hence, performance. Let B be the block-size chosen such that B elements
of Y fit into some cache. Consider the following code where b denotes the block
number:

for(b = 0; b < n/B; + + b)
for(j = 0; j < n; + + j)

for(j = b ∗B; j < (b+ 1) ∗B; + + j)
process(X[i], Y [j])

Exercise

1. Discuss the similarities/differences with the regular nested-loop join and
the blockwise nested loop join.

9.1.2 Partitioning

Consider a simple sort operation of an array X of size n:

quicksort(X, n)

Due to the workings of quicksort, this results in many cache-misses if X is large.

An alternative is to partition X into small partitions, sort them individually
and then merge the results:

partition X into partitions x of size m < cache size
for each partition x

quicksort(x,m)
merge all partitions

This is the essential idea of the in-memory Alpha-Sort [201], an extremely fast
sort algorithm.

9.2. SCAN/SELECT 93

9.1.3 Extraction

Extracting only the data needed for the next step is often another good idea.
Instead of sorting (and thus copying around) whole tuples, it might be beneficial
to extract only the (sort-) key and a pointer to a tuple. This miminizes the
amount of data to be accessed during the actual sort. If the (sort-) key is long,
it might even be beneficial to extract just a prefix (as done in Alpha-Sort [201]).
For building a hash-table might be equally beneficial to extract the key (or its
hash) and a pointer/rid/tid.

9.1.4 Loop Fusion

If we have two subsequent loops that range over the same data it might be
beneficial to apply loop fusion. Here, we see extraction and hash-table insert
implemented with two separate loops:

for(i = 0; i < n; + + i)
A[i].key = relation[i].key
A[i].ptr = relation[i].ptr;

for(i = 0; i < n; + + i)
insert into hashtable(A[i])

This can be improved by loop fusion as in

for(i = 0; i < n; + + i)
A[i].key = relation[i].key
A[i].ptr = relation[i].ptr;
insert into hashtable(A[i])

because most probably A[i] will be in the cache, if not in some register.
Exercise:

1. measure building a hash table containing 100.000 tuples containing each
90 integer attributes

2. apply extraction and measure again

9.2 Scan/Select

We have discussed most alternatives already:

• branching code (Sec. 2.2.3) versus predicated code (Sec. 2.2.3)

• SIMD Sec. 8.7

9.3 Join

We first discuss two improvements (extraction, partitioning) of the simplest
hash join from Sec. 7.2.4 as discussed by Shatdal, Kant, and Naughton [237].

94 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

9.3.1 Simple Hash Table

The simplest implementation of the hash join builds a complete hash table for
the inner R and then probe with the outer S (as in Sec. 7.2.4):

HtBuild(HR, R)
for each s ∈ S

Probe(s, HR)

Here, whole tuples of R are stored in the hash-table. If R is small (smaller than
some cache and TLB is no issue), this algorithm should perform well.

9.3.2 Extraction

A first improvement results from extracting key-pointer-pairs from R and in-
serting these into the hash-table:

for each r ∈ R
HR.insert(ExtractKeyPointer(r))

for each s ∈ S
Probe(s, HR)

This increases locality and if the size of HR is not too large (cache/TLB), this
algorithm should perform well.

9.3.3 Partitioning

The next step is to partition both relations similar to the Grace-Hash-Join
discussed in DBSI. We also use extraction for this algorithm:

PartitionedHashJoin(R, S)
Partition(ExtractKeyPointer(R))
Partition(ExtractKeyPointer(S))
for each partition i

HtBuild(HRi , Ri)
for each s ∈ Si

Probe(s, HRi)

If the partitions are rather (very) small, we can use a nested loop join to
join the partitions:

PartitionedNestedLoopJoin(R, S)
Partition(ExtractKeyPointer(R))
Partition(ExtractKeyPointer(S))
for each partition i

NestedLoopJoin(Ri, Si)

This avoids the overhead of building a hash table.

This pseudocode leaves out the details of partitioning. These are discussed
in the next section.

9.3. JOIN 95

9.3.4 Software Prefetching

Last in this section let us consider software prefetching as a means to accellate
the hash-join. Here, the code contains explicit prefetch instructions to make
sure that the hash directory entries and collision chain elements are in the cache
when needed. We discuss several techniques proposed in the literature.

9.3.5 Group Prefetchin

Chen, Ailamaki, Gibbons, Mowry compare group prefetching and software-
pipelined prefetching as two prefetching strategies. In group prefetching, input
tuples are partitioned into small groups and the statements in the build/probe-
phase are applied to each tuple in a group with prefetching commands included.
The following pseudocode illustrates group prefetching for the probe-phase:

foreach group of tuples in probe partition
foreach tuple in the group

compute hash bucket number
prefetch the target hash bucket

foreach tuple in the group
visit hash bucket header
prefetch collision chain next (if necessary)

foreach tuple in the group
visit the collision chain (if necessary)

foreach tuple in the group
visit matching build tuples

to compare keys and produce output tuple

[here: entries consist of hash-value and pointer to tuple]

Disadvantages of group-prefetching:

1. bursts of prefetches

2. complexity

9.3.6 Software-Pipelined Prefetching

Software-pipelined prefetching goes as follows:

prologue;
for j=0; j< N - 3D; ++j

tuple j+3D: compute hash bucket number
prefetch the target bucket header

tuple j+2D: visit the hash bucket header
tuple j+D; visit the collision chain

prefetch the matching build tuple
tuple j: visit the matching build tuple

compare keys and produce output tuple
epilogue;

96 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

Disadvantages of software-pipelined prefetching:

1. pipelining in probe too short, even shorter in build

2. complexity

9.3.7 Rolling Prefetching

Hence, we introduce a third alternative, which we call rolling prefetching. It
has a parameter k which indicate how many intermediate hash codes we store.
An implementation for k = 2 looks as follows:

template<class Tuint, class Tbun, class Thashfun>
void
build rp 2(const std::vector<Tbun>& aBun) {

const size t m = size();
const size t n = aBun.size();
Tuint lIdxA = 0;
Tuint lIdxB = 0;
if(2 < n) {

lIdxA = Thashfun()(aBun[0].key()) % m;
lIdxB = Thashfun()(aBun[1].key()) % m;

builtin prefetch(&(dir[lIdxA]), 1, 0); // optional
builtin prefetch(&(dir[lIdxB]), 1, 0); // optional

const size t nx = n - 2;
for(size t i = 0; i < nx; ++i) {

insert at(aBun[i], lIdxA);
lIdxA = lIdxB;
lIdxB = Thashfun()(aBun[i+2].key()) % m;

builtin prefetch(&(dir[lIdxB]), 1, 0);
}
for(size t i = nx; i < n; ++i) {

insert(aBun[i]);
}

} else {
build(aBun); // regular build for small relations

}
}

Using local variables lIdxC, lIdxD and so forth, leads to k = 3, k = 4 and
so forth. However, this is a little too tedious (and expensive). Here is an
alternative implementation for k = 8:

template<class Tuint, class Tbun, class Thashfun>
void
build rp 8(const std::vector<Tbun>& aBun) {

const size t m = size();
const size t n = aBun.size();
Tuint lIdx[8];

9.3. JOIN 97

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 100 1000 10000 100000 1x106 1x107 1x108 1x109

tp
t

[n
s]

|S|

apollo: ht.0/hf.id/buildrp: build time per tuple [ns]

rnd1
rnd2
seq1
seq2

rndRp2
seqRp2
rndRp3
seqRp3
rndRp4
seqRp4
rndRp5
seqRp5
rndRp6
seqRp6
rndRp7
seqRp7
rndRp8
seqRp8

Figure 9.1: Runtime of build with and without rolling prefetch for i7-4790

if(8 < n) {
for(int i = 0; i < 8; ++i) {

lIdx[i] = Thashfun()(aBun[i].key()) % m;
builtin prefetch(&(dir[lIdx[i]]), 1, 0);

}
const size t nx = n - 8;
const uint32 t lMask = 0x7;
uint32 t lCurr = 0;
for(size t i = 0; i < nx; ++i, ++lCurr) {

insert at(aBun[i], lIdx[lCurr & lMask]);
lIdx[lCurr & lMask] = Thashfun()(aBun[i+8].key()) % m;

builtin prefetch(&(dir[lIdx[lCurr & lMask]]), 1, 0);
}
for(size t i = nx; i < n; ++i) {

insert(aBun[i]);
}

} else {
build(aBun); // regular build for small relations

}
}

Figures 9.1, 9.2, 9.3 contain the runtimes of the rolling prefetched versions
for different platforms. [hash function: id; seq: sequential key insert, rnd: ran-
dom key insert; md1/2: regular non-prefetched implementations, Rpk: rolling
prefetch k]

Rolling prefetching has the disadvantage that it only prefetches the directory
entries. This is sufficient if there exist only very few collisions since one entry
is stored within the directory itself. However, if there are collisions, e.g. in case
of a non-key join attribute and skew, walking the collision chain will result in
expensive L3 misses and main-memory accesses. Hence, we discuss an extension

98 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

 0

 50

 100

 150

 200

 250

 300

 100 1000 10000 100000 1x106 1x107 1x108 1x109

tp
t

[n
s]

|S|

raspi3: ht.0/hf.id: build time per tuple [ns]

rnd1
seq1

rndRp8
seqRp8

Figure 9.2: Runtime of build with and without rolling prefetch for Raspberry
Pi 3

 0

 20

 40

 60

 80

 100

 120

 140

 100 1000 10000 100000 1x106 1x107 1x108 1x109

tp
t

[n
s]

|S|

bilbo: ht.0/hf.id: build time per tuple [ns]

rnd1
seq1

rndRp8
seqRp8

Figure 9.3: Runtime of build with and without rolling prefetch for XU-4

9.3. JOIN 99

called AMAC.

9.3.8 Asynchronous Memory Access Chaining (AMAC)

The main idea of AMAC is to keep the state of memory accesses and executions
within a small array. This array implements are ring buffer similar to rolling
prefetching. However, every entry contains a complete description of the state.
For the probe phase this state descriptor looks as follows:

struct state t {
uint64 t idx; // index/rid of current input element
uint64 t key; // key of the current input element (cmp. bun t)
uint64 t pload; // payload of the current input element (cmp. bun t)
node t* ptr; // either to a hash directory entry or to a collision chain element
int32 t stage; // handle directory entry or collision chain element

};

With this state descriptor, we can modify the code for a probe such that we
can emit timely prefetches.

Before we give the pseudocode for the probe procedure, let us clarify some
details. First, it is assumed that the structure of hash directory entry equals
the structure of the collision chain elements. Thus, they can be handled each
by the same code fragment. Consequently, we need to distinguish two states:

1. hashing and prefetching

2. access and comparison and conditionally prefetching the next entry

In the code fragments of both cases, the state will be updated accordingly. The
following gives the pseudocode for probe:

100 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

void probe(bun t* input, uint64 t N, hashtable t& ht, bun t* out) {
state t s[SIZE]; // ring buffer of states
int32 t k; // index into ring buffer of states
int32 t i; // index into input array
/* prologue: omitted here */
while(i < N) {

k = (k == (SIZE − 1) ? 0 : k);
if(1 == s[k].stage) {

entry t* n = s[k].ptr; // collision chain entry
if(n→key == s[k].key) {

/* handle match: omitted here */
s[k].stage = 0; // assume key, otherwise no ’else’

} else if (s->next) {
prefetch(n→next);
s[k].ptr = n→next;

} else {
/* initialize new lookup (Code 0) */

}
} else if (0 == s[k].stage) {

/* Code 0: hash input key, calculate bucket address */
uint64 t h = HASH(input[i].key);
bucket t* ptr = &ht[h];
prefetch(ptr);
/* update state */
s[k].idx = ++i;
s[k].key = input[i].key;
s[k].ptr = ptr;
s[k].stage = 1;
/* optionally: prefetch payload to emit result */
s[k].pload = input[i].pload;

}
++k;

}
/* epilogue: omitted here */

}

Note that AMAC introduces likely branch mispredictions when interpreting
the status.

Exercises:

1. implement the probe phase with rolling prefetching.

2. discuss the role of miss status handling registers (MSHR)

3. work out the details of AMAC probe

4. work out the details of AMAC build

5. introduce multiple state buffers to avoid branch mispredictions

9.4. PARTITIONING 101

Ht

Figure 9.4: Simple partitioning/clustering

9.4 Partitioning

Partitioning is often applied to partition a big input into smaller parts each
fitting some cache. The idea is to reduce random memory accesses resulting
in many cache misses. Typically, a goal of partitioning is to store items in the
partitions in close neighborhood, i.e., clustered.

We start with a very simple partitioning/clustering algorithm filling a struc-
ture as in Fig. 9.4. A simple hashtable is used to point to the partitions which
are allocated in chunks and possibly chained.

A typical code fragment could look as follows [181]:

#define HASH(v) ((v >> 21) XOR (v >> 13) XOR (v >> 7) XOR v)
typdef struct { int v1, v2; } bun t;
radix cluster(bun t* dst[2D], // output buffer begin

bun t* dst end[2D], // output buffer end
bun t* rel, // input relation begin
bun t* rel end, // input relation end
int R, // radix bits (position)
int D) { // #radix bits (depth)

int idx, M = (1 << D) - 1;
for(bun t* cur = rel; cur < rel end; ++cur) {

idx = ((*HF)(cur→v2) >> R) & M; // use HASH
memcpy(dst[idx], cur, sizeof(bun t)); // use assignment
if(++dst[idx] ≥ dst end[idx])

REALLOC(dst[idx], dst end[idx]);
}
}

where REALLOC can have several meanings:

• add a new chunk to the chain

• perform a real realloc

102 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

no 012

50 010
32 000
72 000
68 001
1 100

59 110
66 010
72 000
36 001
45 101

=⇒
2msb

no 012

32 000
72 000
1 100

72 000

50 010
59 110
66 010

68 001
36 001
45 101

=⇒
1lsb

no 012

32 000
72 000
72 000

1 100

50 010
66 010

59 110

68 001
36 001

45 101

Figure 9.5: 2-pass radix partitioning

The code contains two comments concerning some optimization potential. In-
stead of a function call to the hash function and memcpy, specialized code can
be used for some types.

The code is a little more complicated than expected because it can be used
to radix-partition an input relation in more than one pass. To see why this
might be useful, consider the cases where

• 2D pointers are larger than Ld1/2/3, TLB1/2.

• 2D exceeds the number of TLB1/2 entries.

Since the algorithm if used as a one-pass algorithm ignores cache properties, it
is sometimes called cache-oblivious or, since it works best if everything fits into
the cache in-cache [203].

A two pass radix-partitioning is illustrated in Fig. 9.5. Adding more passes
during partitioning is a general technique to reduce the cache/TLB misses.

One problem with the approach of having chained output chunks is a pos-
sible underutilization of memory as some chunks maybe partially filled.

In order to produce a dense output, some partitioning algorithms produce
a histogram first. In the following f is the function used for partitioning. It
can be a combination of a hash function and selecting some appropriate bits as
in the radix cluster algorithm. The purpose of the histogram is to count the
number of entries having a certain value under f . Let T be some input table
with an attribute key.

build hist(H, T) {
H = {0};
for(int i = 0; i < |T |; ++i) H[f(T [i].key)]++;

}

Taking the prefix sums of the histogram, we can calculate the start offsets
of each partition. Let H be some input histogram and O the offset array to be
produced.

9.4. PARTITIONING 103

offset start(O, H) {
int off = 0;
for(int i = 0; i < H.size(); ++i) {

O[i] = off;
off += H[i];

}
}

The actual cache-oblivious partitioning then looks as follows:

part0(S, O, T) {
for(int i = 0; i < |T |; ++i) {

t = T [i]; // input tuple t
off = O[f(t.key)] + +; // output index
S[off] = t; // write output tuple to partition P

}
}

Again, if the offset array and the number of output partitions are large, there
are the usual problems with caches and TLBs.

These can be avoided by using multiple passes. In this case, an in-place
partitioning would be helpful. Therefore, we need to calculate the offsets of the
ends of each partition:

offset end(O, H) {
int off = 0;
for(int i = 0; i < H.size(); ++i) {

off += H[i];
O[i] = off;

}
}

If T is now the input and output table, O the offset array produced by offset end,
H is the histogram, and P is the number of partitions, in-place partioning works
as follows [203]:

part in place(O, T , H, P) {
int off = 0, p = 0, i = 0;
while(0 == H[p]) ++p; // skip empty partitions
do {

t = T[i];
do {

p = f(t.key); // determine partition
off = −−O[p]; // determine/update offset
swap(T[off],t); // swap current tuple with contents of destination

} while(off != i); // until we found something for the original place
do {

i += H[p++]; // skip empty/processed partitions
} while((p < P) && (i == O[p]));

104 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

} while(p < P);
}

The algorithms works by finding the correct partition for some item t. And this
item is then swapped with the item t′ stored at this position to allow t to be
stored there. Next, we need to find a place for t′. This is done the same way
until we find an item that goes to the original place T [i]. This closes one swap
cycle.

The following figure shows the runtime of the out-of-place, in-place, and
radix-cluster algorithms presented above. The x-axis contains cardinality of
the input relation. The number of partitions is chosen such that a partition
fits into the L1 cache. The experiment was run on a Intel Xeon E5-2620 v4
(2.10 GHz).

 10

 20

 30

 40

 50

 60

 70

 80

 1000 10000 100000 1x106 1x107 1x108 1x109

ti
m

e
p
er

 t
u
p
le

 [
n
s]

|T|

runtime of naive partitioning (fyndhorn)

in-place
out-of-place

radix

In the next step, we improve this algorithm by introducing a software man-
aged buffer. The size of the buffer will be one cache line. We assume that L
entries fit into a buffer. We use the last entry buffer[L-1] to store the offset
so that we don’t need an extra offset array. P denotes the number of partitions,
H the histogram, S the output, T the input. The following algorithm works
out-of-place [203]:

partition smb(S, T, H, P) {
int off = 0;
for(int p = 0; p < P; ++p) {

buffer[p][L-1] = off; // store offset of partition p
off += H[p];

}
for(int i = 0; i < T.size(); ++i) {

t = T[i]; // get next tuple
p = f(t.key); // determine its partition
off = buffer[p][L-1]++; // its offset
buffer[p][off mod L] = t; // store t in buffer
if((off mod L) == (L - 1)) {

// flush buffer to S[off] using streaming store

9.5. SORT OPERATOR 105

buffer[p][L-1] = off + 1;
}

}
}

An in place version of this algorithm is also presented in [203].

9.5 Sort Operator

9.6 Grouping and Aggregation

• hash-based, sort-based

• horizontal SIMD

106 CHAPTER 9. PHYSICAL ALGEBRA: IMPLEMENTATION

Chapter 10

Indexing

Most index structure use pointers. The problem of storage layouts for pointered
data structures while miminizing cache and TLB misses is discussed in [64].

10.1 T-Tree

Lehman and Carey [165] describe the T-Tree as an index structure useful for
in-memory databases and show its superiority compared to the AVL-Tree and
the traditional B-tree.

10.2 Cache Conscious B+-Tree

The cache-conscious B+-Tree (CSB+-Tree) was developed by Rao and Ross
[220]. It comes in several different flavors. The idea is to reduce the amount
of memory used by pointers to child nodes. Instead of k + 1 child pointers
for k keys, the CSB+-Tree stores only one or a few child points. We discuss
only the former case. One child pointer suffices if successive child nodes are
stored consecutively in memory. Then, a pointer to the first child is sufficient
because subsequent sibling nodes can be accessed by offsets. This saving of
child pointers results in better performance if key sizes are small. For large
keys (much larger than a pointer size), the saving becomes less prominent.

In its simplest variant (full CSB+-Tree), there is always (!) space allocated
for the maximum number of child nodes. Further, Rao and Ross propose to
use much smaller node sizes than for regular B+-Trees: one cache line or a few
thereof.

As usual, a CSB+-Tree of order d contains k keys with d ≤ k ≤ 2d. The
layout of an inner node of the size of a 64-byte cache line can be described as
follows:

struct csb node inner t {
csb node inner t* childs; // 8 Bytes
uint16 t leaf indicator; // 2 Bytes
uint16 t no keys; // 2 Bytes
uint32 t unused; // 4 Byte

107

108 CHAPTER 10. INDEXING

int32 t keys[12]; // 2d keys, d = 6
}

All child nodes of an inner node are contained in one node group allocated
together. There are different choices possible:

1. whenever there is an inner node, all 2d + 1 child nodes are allocated in
one node group.
This results in the full CSB+-Tree.

2. only those nodes which are actually present are allocated

3. more than one pointer (say 2 or 3) are used in inner nodes and a node
group is split into node segments.
This results in the segmented CSB+-Tree.

Memory management is simpler in the first case and it is faster if the up-
date/search ratio increases. However, some space is wasted.

Rao and Ross like leaf nodes to be chained (for the same reason as for B+-
Trees). Thus, any leaf node could be equipped with two pointers. However,
since addresses to sibling leaf nodes can easily be calculated if they lie in the
same node-group, only the first and the last leaf node in a node group need one
pointer. The rest of the nodes is filled with key-tid-pairs. Thus, there are two
different leaf page layouts.

The bulkload, insert, delete, search algorithms remain mainly the same
as for regular B+-Trees except that memory management (performed in node
groups) becomes a little more complicated and some more copying is necessary.

10.3 Skip Lists

10.4 ART

Leis, Kemper, Neumann developed the adaptive radix tree (ART) with different
node layouts [170].

Exercise:

1. Many index structures use ordered arrays of keys and apply binary search
to find a match. Discuss a straight-forward implementation of binary
search and try to find improvements.

Chapter 11

Boolean Expressions

Read [145, 146, 147]

109

110 CHAPTER 11. BOOLEAN EXPRESSIONS

Chapter 12

Cardinality Estimation

Many techniques:

1. histograms

2. sampling

3. sketches

• to estimate the number of distinct value

• to estimate the self-join and join sizes

4. compression using DCT, wavelets, etc.

For histograms and sketches to estimate the number of distinct values, see
’Building Query Optimizers’ or [74]. The latter contains an overview of many
different estmation techniques.

12.1 Sketches for Joins

12.1.1 Tug-Of-War (AGMS)

Self-Join Size

The Tug-Of-War algorithm was presented in [13, 14]. Although both papers
contained more sketches, this sketch became later known as the AGMS sketch.
We first start out by giving the AGMS sketch to estimate the self-join size of
some relation, which coinsides with the second frequency moment. Then, we
extend this procedure to produce join size estimates.

Let ~f = (f1, . . . , fn) be a frequency vector for values v1, . . . , vn. Define
frequency moments

Fk :=
n∑
i=1

fki

Then,

• F0: number of occurring distinct values ≤ n

111

112 CHAPTER 12. CARDINALITY ESTIMATION

• F1: cardinality (sum of the frequencies)

• F2: sum of square of frequencies: selfjoin size

Let ζi random variables in {−1,+1}. Then E(ζi) = 0 for all i.
Define a random variable

Z =

n∑
i=1

ζifi

The trick of using this kind of random variables defined in {−1,+1} was already
used in earlier papers on sketches (e.g. [58]).

Using the random variable Z, define the random variable X as

X = Z2.

We show that
E(X) = F2

Proof: With E(ζi) = 0 and two-way independence we have

E(X) = E(Z2)

= E
((n∑

i=1

ζifi
)2)

=
n∑
i=1

f2i E(ζ2i) + 2
∑

1≤i<j≤n
fifjE(ζi)E(ζj)

=
n∑
i=1

f2i

= F2

2

Next, we show that
Var(X) ≤ 2F 2

2

Proof: Similar to the above, using 4-way independence it follows that

E(X2) =

n∑
i=1

f4i + 6
∑

1≤i<j≤n
f2i f

2
j

(Note:
(
4
2

)
= 6, and due to 4-way independence we have E(ζi1ζi2ζi3ζi4) =

E(ζi1)E(ζi2)E(ζi3)E(ζi4)) It follows that

Var(X) = E(X2)− E(X)2

= 4
∑

1≤i<j≤n
f2i f

2
j

≤ 2F 2
2

2

12.1. SKETCHES FOR JOINS 113

Alghough the variance is bounded, it is quite high. Thus, we take many
counters and calculate their averages and then the median of the averages to
make the estimate more precise and reliable. Let s1, s2 be positive integers.
Let ζi,j be 4-universal hash functions.

1. define s := s1s2 random variables

Zi,j =
n∑
v=1

ζi,j(v)fv

for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2. and another s random variables

Xi,j = Z2
i,j

2. define s1 random variables

Yi = (1/s2)

s2∑
j=1

Xi,j

for 1 ≤ i ≤ s1.

3. define a random variable Z containing the median of the Yj .

Then Z is the estimate of F2.
Increasing s1 increases precision, while increasing s2 increases confidence.

So far, this prodedure works nicely for self-join estimates. We have the following
theorem [13, 14]:

Theorem 1 Let R be a relation with a frequency vector f , numbers s1, s2, and
the random variable Y as above. Then

Prob

(
|Y − SJ(R)|

SJ(R)
≤ 4
√
s1

)
≥ 1− 2−s2/2

where SJ(R) denotes the selfjoin size of R.

Join Size

We now extend the above AGMS sketch for selfjoin size estimation to estimate
join sizes. Instead of one counter for one relation, we now need two counters, one
for each relation. Assume the relations are R1 and R2. Then, the corresponding
counters Z1 and Z2 are defined as

Z1 :=

n∑
i=1

ζifi

Z2 :=

n∑
i=1

ζigi

where fi is the frequency of the value of value i in R1 and gi is the frequency
of the value i in R2. Then, the estimate is

Z := Z1 ∗ Z2.

114 CHAPTER 12. CARDINALITY ESTIMATION

Then

E(Z) = |R1 BR2|
Var(Z) ≤ 2SJ(R1)SJ(R2)

where JS(Ri) is the self-join size of Ri.
[Note: The AGMS sketch, like all sketches in this section, require a 4-

universal family of hash functions. Those by Dietzfelbinger introduced earlier
can be used.]

For the implementation, we again average and median. We need

• two numbers s1 and s2

• define s = s1s2

• the counters: two vectors of size s: Z[2]

The insert procedure of AGMS (Tug-of-War):

insert(const int aVal, const int aCount, const uint aRelNo) {
for(uint i = 0; i < s(); ++i) {

Z[aRelNo][i] += hash(aVal, i) * aCount;
}

}

where hash(v,i) applies the i-th hash function to the value v.
The estimate procedure:

double
estimate(const uint aRelNo1, const uint aRelNo2) const {

double vt v(s2());
// 1. calculate averages
uint k = 0;
for(uint j = 0; j < s2(); ++j) {

v[j] = 0;
for(uint i = 0; i < s1(); ++i) {

v[j] += Z[aRelNo1][k] * Z[aRelNo2][k];
++k;

}
v[j] /= s1();

}
// calculate median by sorting
std::sort(v.begin(), v.end());
if(0 == (v.size() & 0x1)) {

return (v[v.size() / 2 - 1] + v[v.size() / 2]) / 2 ;
}
return v[v.size() / 2];

}

The major problem with the AGMS sketch (tug-of-war) is its insertion time:
for every tuple every counter has to be updated. This is remedied by the
FastAGMS sketch discussed next.

12.1. SKETCHES FOR JOINS 115

12.1.2 FastAGMS

FastAGMS sketches where proposed in [73] as a refinement of the Tug-Of-War
(AGMS) sketch [13, 14]. Instead of updating s counters, only s2 counters are
updated.

In the FastAGMS sketch, s2 sketch vectors exist for both a relation and each
sketch vector Zi consists of s1 counters. Let U = {v1, . . . , vn} be the domain of
the join attribute. Next, we need a family of hash functions h1,j (1 ≤ j ≤ s2)
to map values to counters in the sketch vector (here treated as a hash table).
As in the AGMS sketch, we need a familiy of hash functions h2,j to map values
to ±1.

• h1,j : U → {1, . . . , s1} to map a value to a counter

• h2,j : U → {−1,+1} as before

Upon an insertion or deletion with count c, we update only s2 counters:

insert(const int v, const int aCount, const uint aRelNo)
for(uint j = 0; j < s2; ++j)

ZaRelNo[j ∗ s1 + h1,j(v)] += aCount * h2,j(v);

The estimation procedure now takes the median of s2 dot products of the
frequency vectors

estimate(a, b) := median1≤j≤s2Za[j] · Zb[j]

for relation numbers a and b in {0, 1}. In pseudocode:

double
estimate(const uint aRelNo1, const uint aRelNo2) const

double vt v(s2());
uint k = 0;
for(uint j = 0; j < s2(); ++j)

v[j] = 0;
for(uint i = 0; i < s1(); ++i)

v[j] += ZaRelNo1[k] ∗ ZaRelNo2[k];
++k;

std::sort(v.begin(), v.end());
if(0 == (v.size() & 0x1))

return (v[v.size() / 2 - 1] + v[v.size() / 2]) / 2 ;
return v[v.size() / 2];

12.1.3 FastCount

FastCount sketches where proposed in [249].

12.1.4 CountMin

CountMin sketches where proposed in [75].

116 CHAPTER 12. CARDINALITY ESTIMATION

Chapter 13

Parallelism

13.1 Amdahl’s Law

Given some task t, such that a fraction x of it is parallelizable. Thus, 1− x is
the sequential fraction of t. For a given degree of parallelism n we can calculate
the speedup factor according to Amdahl’s law as

speedup =
1

1− x+ x/n

Plotting this formula for different n results in:

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

sp
e
e
d
u
p
 f

a
ct

o
r

fraction parallelizable

Amdahl's law, n = degree of parallelism, x = fraction parallelizable

n=2
n=3
n=5

n=10
n=20
n=50

n=100

Fortunately, in the database context, we do the same task on many tuples (data
parallelism).

13.2 Parallelization Constructs, Frameworks, and Li-
braries

• low-level: C++ threads, pthreads and synchronization primivites

• parallel patterns: parallel for, parallel reduce, fork/join parallelism

• parallel frameworks: Intel Thread Building Blocks (TBB), OpenMP, Cilk
Plus

117

118 CHAPTER 13. PARALLELISM

13.3 Kinds of Parallelism

Consider the following simple plan1:

BB

BA

S R

v vT

v

kinds of parallelism

• inter-query parallelism

– run independent queries in parallel

• intra-query parallelism:

– partition relation and process partitions in parallel (within strands)

– process indendent strands in parallel (bushy parallelism)

13.4 Morsel-Driven Parallelism

The general idea of morsel-driven parallelism [169] is the same as used in DB2
BLU, where a morsel is called a stride [90]. No matter how you name it, it is
just a bunch of tuples, typically in the thousands. It is used for load-balancing
by work stealing. In DB2, the number of tuples in a stride is adjusted to cache
size.

We discuss the morsel-driven parallelism since the paper contains more de-
tails. Consider the plan RBA S BB T . The following picture shows the details
of the last strand of the above plan:

1Thanks to Thomas for the pictures in this chapter.

13.4. MORSEL-DRIVEN PARALLELISM 119

A
16

18
27

5

7

B
8

33
10

5

23

B
8
33
10

5

23

C
v
x
y

z

u

HT(S)HT(T)

A
16
7
10
27
18
5
7
5
...
...
...
...
...

Z
a
c
i
b
e
j
d
f
...
...
...
...
...

RZ
a
...
...

A
16
...
...

B
8
...
...

C
v
...
...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z
b
...
...

A
27
...
...

B
10
...
...

C
y
...
...

morsel

morselDispatcher

A strand is called evaluation chain in the context of DB2 BLU.

• relation R is partitioned into ’small’ partitions called morsels (at least
10.000 tuples)

• each morsel is processed by some worker-thread

• the dispatcher determines the worker-thread

• there is one worker-thread for every hardware thread

A complete picture for the whole plan looks as follows:

Build HT(S)

Build HT(T)

Pipe 1

s...

Scan T

Pipe 1

s...

Scan T

Pipe 1

s...

Scan T

Pipe 2

s...

Scan S

Pipe 2

s...

Scan S

Pipe 2

s...

Scan S

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

How do we achieve NUMA-awareness?

• relation partitioned

• each partition stored at some NUMA-node

• goal: minimize traffic between NUMA-nodes

120 CHAPTER 13. PARALLELISM

We discuss first the build-phase, then the probe phase.

Build:

• build-phase split into two phases:

Mat materializes the input

HtBuild builds the hash-table

• while scanning a morsel of the input relation on a certain NUMA-node,
materialization takes place on the same NUMA-node.

[Note: after materialization the exact size of the input relation is available and
it can be used to allocate a hash table of perfect size.]

This is illustrated in the following figure. Colors encode worker threads
confined to NUMA-nodes and memory areas belonging to NUMA-nodes.

HT(T)

global
Hash Table

morsel

T

P
h

as
e

 1
: p

ro
ce

ss
 T

 m
o

rs
el

-w
is

e
an

d
 s

to
re

 N
U

M
A

-l
o

ca
lly

P
h

as
e

 2
: s

ca
n

 N
U

M
A

-l
o

ca
l s

to
ra

ge
 a

re
a

an
d

 in
se

rt
 p

o
in

te
rs

 in
to

 H
T

ne
xt

 m
or

se
l

Storage
area of

red core

Storage
area of

green core

Storage
area of

blue coresc
an

sc
an

Insert the pointer

into HT

...(T)v ...(T)v...(T)v

Probe:

13.4. MORSEL-DRIVEN PARALLELISM 121

morsel

R

Storage
area of

red core

HT(T) HT(S)

Storage
area of

green core

Storage
area of

blue core

ne
xt

 m
or

se
l

...(R)v ...(R)v...(R)v

Details:

• QEPobject

• Dispatcher

• latch-free hashtable

Dispatcher:

122 CHAPTER 13. PARALLELISM

Dispatcher

(J
1, M

r1)

A
ssign Pipeline-Jo

b J
1 o

n

m
o

rsel M
r to

 C
o

re0

Pipeline-
Job
J1

Pipeline-
Job
J2

Mr1

Mr2

Mr3

Mg1

Mg2

Mg3

Mb1

Mb2

Mb3

(virtual) lists of morsels to be processed
(colors indicates on what socket/core the morsel is located)

List of pending pipeline-jobs (possibly of different queries)

Core0 Core Core Core

Core Core Core Core

D
R

A
M

Core8 Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Socket Socket

inter connect

SocketSocket

Example NUMA Multi-Core Server with 4 Sockets and 32 Cores

Pipeline-
Job
J3

dispatch(Core0)

Scheduler (beyond the scope of this paper)
prioritize Pipeline Jobs according to Quality of Service constraints

Remarks:

• the pipeline only contains jobs whose prerequisites are fulfilled

• the dispatcher is implemented as a latch-free datastructure

• QEPobject is implemented as a state-machine.

• the dispatcher code is executed by some worker thread looking for work
(not as its own thread)

• the dispatcher calls QEPobject to generate new entries. again, this is done
by a worker-thread looking for work

• although possible, Thomas stays away from bushy parallelism
(reason: cache locality (discuss))

• aborting a query:

– at any abort inducing event: mark query as aborted

– check query after a morsel finishes

• work-stealing is supported, prefer close NUMA-nodes

13.5. SYNCHRONIZATION OF INDEX STRUCTURES 123

13.5 Synchronization of Index Structures

Take ART as an example [171].

124 CHAPTER 13. PARALLELISM

Chapter 14

Memory Management

Alternatives:

1. rely on malloc/free

2. have distinguished allocators

3. do it variable-sized or in chunks/pages

McAuliff, Carey, Solomon [184]:

• 4 bits per page indicates fill degree

• additional datastructure to allow fast access

– histogram

– cache

125

126 CHAPTER 14. MEMORY MANAGEMENT

Chapter 15

Thread Architecture

127

128 CHAPTER 15. THREAD ARCHITECTURE

Chapter 16

Transaction Processing

16.1 Handling updates

• in-place

• delta/staging

16.2 Lock Manager

Remember compabibility matrix for multi-granularity locking from DBSI [117]:

compatibility matrix

already granted

requested NONE IS IX S SIX U X

IS + + + + + - -
IX + + + - - - -
S + + - + - - -

SIX + + - - - - -
U + - - + - - -
X + - - - - - -

which has been extended by the deadlock-preventing U lock mode. Note the
asymmetry of the U -lock.

If one transaction holds a lock and requests another one, we need the lock
conversion table (used to calculate lock max):

compatibility matrix

already granted

requested NONE IS IX S SIX U X

IS IS IS IX S SIX U X
IX IX IX IX SIX SIX X X
S S S SIX S SIX U X

SIX SIX SIX SIX SIX SIX SIX X
U U U X U SIX U X
X X X X X X X X

129

130 CHAPTER 16. TRANSACTION PROCESSING

Figure 16.1: Gray Reuter Lock Manager

16.2.1 The Gray/Reuter Lock Manager

In this section we briefly discuss the lock manager as described by Gray and
Reuter [117]. Fig. 16.1 contains an overview of the data structures used.

Subsequently, we assume that a transaction control block has at least the
following members:

struct TransCB {
lock request* locks; // locks hold by TA
lock request* wait; // lock TA is waiting for
TransCB* cycle; // used by deadlock detector

};

The interface to the lock manager can easily be described:

enum LOCK REPLY { LOCK OK,
LOCK TIMEOUT,
LOCK DEADLOCK,
LOCK NOT LOCKED };

LOCK REPLY lock(lock name name, lock mode mode, lock class class, long timeout);
LOCK REPLY unlock(lock name name);

The major components of the lock manager are:

lock hash table map data item to lock (chain), each hash directory entry
contains a lock hash struct

16.2. LOCK MANAGER 131

lock head contains lock name, next pointer, latch, summary information about
the lock queue, lock headers are pointed to by the hash directory and
they are chained.

lock request a lock points to a list of lock requests containing owner, mode,
duration, etc, and a pointer to the lock header

transaction lock list for every transaction, the transaction control block holds
a list of locks (see locks of TransCB) held by it.

pools for efficient memory management, we have lock header free pool.

enum LOCK MODE { . . . SIX . . . };

Sometimes it is helpful to know for how long a lock will be requested:

enum LOCK CLASS {
LOCK INSTANT, // unlock: almost directly after lock
LOCK SHORT, // unlock: end of statement
LOCK MEDIUM, // lock/unlock: explicit (for cursor stability)
LOCK LONG, // unlock: end of transaction
LOCK VERY LONG // unlock: end of transaction, by class unlock

};

struct {
xlatch t latch; // protect collision chain
lock head* chain; // collision chain

} lock hash[MAXHASH];

struct lock head {
xlatch t latch; // protect lock queue
lock head* next; // next in collision chain
lock name name; // name of this lock
lock request* queue; // requests for this lock
lock mode granted mode; // granted group mode
bool waiting; // someone waiting?

};

enum LOCK STATUS { LOCK GRANTED,
LOCK CONVERTING,
LOCK WAITING,
LOCK DENIED

};

struct lock request {
lock request* queue; // pointer to next in lock queue
lock head* head; // pointer back to head of queue
LOCK STATUS status; // granted, waiting, . . .
LOCK MODE mode; // mode requested (and granted)

132 CHAPTER 16. TRANSACTION PROCESSING

LOCK MODE convmode; // if in convert wait, mode desired
int count; // number of times lock was locked
LOCK CLASS class; // class in which lock is held (duration)
PCB* process; // process to wake up when lock is granted
TransCB* ta cb; // transaction that requested/holds lock
lock request* ta prev; // list of locks per transaction
lock request* ta next; // list of locks per transaction

};

lock is split into several parts.
Part 1: signature and local variable declarations:

LOCK REPLY // returns ok, deadlock, or timeout
lock(LOCK NAME aName, LOCK MODE aMode, LOCK CLASS aClass, long aTimeout) {

long bucket; //
lock head* lock; //
lock request* request; // this lock request
lock request* last; // queue end
TransCb* me = . . .; // pointer to callers TransCB
LOCK STATUS lStat; // failure reason in case of failure
LOCK REPLY lRes; // result of lock()

. . .

Part 2: find lock and is free case:

bucket = lockhash(name); // eval hash function
acquire(lock hash[bucket]. latch); // acquire bucket latch
lock = lock hash[bucket]. chain; // get lock list
while((lock != 0) && (lock-> name != aName)) // walk lock list

lock = lock-> next; // walk lock list
if (lock == NULL) { // lock is free case

lock = lock head get(aName, aMode); // allocate lock header
lock-> chain = lock hash[bucket]. chain // list insert
lock hash[bucket]. chain = lock; // list insert
release(lock hash[bucket]. latch); // release bucket latch
return LOCK OK; // return ok

}

Part 3: lock not free, rerequest?

acquire(lock-> latch); // acquire lock latch
release(lock hash[bucket]. latch); // release bucket latch
for(request = lock-> queue; request != NULL; request = request-> queue) {

if(request-> ta cb == me)
break; // rerequest!

last = request; // remember last lock in queue
}
if(request == NULL) {

// new request, see below

16.2. LOCK MANAGER 133

} else {
// deal with lock conversion, not handled (excercise)

}

Part 4: new lock request by this transaction

if(request == NULL) { // new request
request = lock request get(aLock, aMode, aClass); // allocate lock request
last-> queue = request; // append lock request
if((!lock-> waiting) && lock compatible(aMode, lock-> granted mode)) {

lock-> granted mode = lock max(aMode, lock-> granted mode);
release(lock-> latch);
return LOCK OK;

} else {
lock-> waiting = true;
request-> status = LOCK WAITING;
release(lock-> latch);
wait(aTimeout);
// after wakeup
lStat = request-> status;
if(lStat == LOCK GRANTED);

return LOCK OK;
if(lStat == LOCK WAITING)

lRes = LOCK TIMEOUT;
// release/free request: use unlock

request-> class = LOCK INSTANT; // make sure unlock will work
unlock(request); // use unlock to release/free request
return lRes;

}
} else {

// deal with lock conversion, not handled (excercise)
}

Remarks:

• sporadic wake-ups

• race conditions (see footnote 5 on page 475 of [117])

• observe state-machine on lock status

• some systems use bitmap of locks instead of max in granted mode

Now, we come to unlock. Part 1 contains the signature and local variable
declarations:

lock reply
unlock(lock name aName) {

134 CHAPTER 16. TRANSACTION PROCESSING

long bucket; // index of hash bucket
lock head* lock; // pointer to lock header block
lock head* prev = NULL; // previous (for list remove)
lock request* request; // current lock request in queue
lock request* prev request; // prev lock request in queue
TransCB* me; // callers TaCB
lock reply lRes; // return code

. . .
}

Part 2 finds the requestor’s request

bucket = lockhash(aName);
acquire(lock hash[bucket]. latch);
// find lock in chain
lock = lock hash[bucket]. chain;
while((lock != NULL) && (lock-> name != aName)) {

prev = lock;
lock = lock-> next;

}
if(lock == NULL)

goto B;
acquire(lock-> latch);
// find request in queue
for(request = lock-> queue; request != NULL; request = request-> queue) {

if(request-> ta cb == me)
break;

prev request = request;
}

Part 3 handles the case of long locks, which are released by class and not
by transaction. It also handles the case that a lock has been granted multiple
times.

if(request-> class == LOCK LONG ||
request-> count > 1) {
−−request-> count;
goto A;
}

Part 4 handles the case that only me has a request

if(lock-> queue == request &&
request-> queue == NULL) {
// remove lock from list
if(prev == NULL) {

lock hash[bucket]. chain = lock-> next;
else

prev-> next = lock-> next;

16.2. LOCK MANAGER 135

free(lock);
free(request);
goto B;
}

Part 5 handles the interesting case:

if(prev req != NULL)
prev req-> queue = request-> queue; // remove request from queue

else
lock-> queue = request-> queue;

free(request);
// recalculate group mode and wake-up waiters
lock-> waiting = false;
lock-> granted mode = LOCK FREE;
for(request = lock-> queue; request != NULL; request = request-> queue) {

if(request-> status == LOCK GRANTED)
lock-> granted mode = lock max(lock-> granted mode, request-> mode);

else
if(request-> status == LOCK WAITING) {

if(lock compatible(request-> mode, lock-> granted mode)) {
request-> status = LOCK GRANTED;
lock-> granted mode = lock max(request-> mode, lock-> granted mode);
wakeup(request-> process);

} else {
lock-> waiting = true;
break; // FIFO

}
} else {

// convert waits not handled
}

}

Part 6 does the latch release and return

. . .
A: release(lock-> latch);
B: release(lock hash[bucket]. latch);
return LOCK OK;

}

Not covered: lock escalation/deescalation, deadlock detection, system startup/shutdown.

16.2.2 Starburst Lock Manager

• partition: fixed size (similar to page)

• segment: as ususal

• LCB: lock control block

136 CHAPTER 16. TRANSACTION PROCESSING

Figure 16.2: Starburst Lock Manager

• LRB: lock request block

• note: free LCB pool in slot

16.2.3 Starburst MM Lock Manager [104]

The main points of the Starburst MM Lock Manager are:

• only one latch per table protects it and all related data structures
no extra latches for partition, index, locks

• no need for a hash table

• two levels/granularities: tables and tuples

• lock info directly attached to tables and tuples

• locking granularity flag kept in table to indicate current locking granular-
ity

• MMM LM allows for lock escalation and deescalation (dynamically)

16.2. LOCK MANAGER 137

Figure 16.3: Starburst MM Lock Manager [104, 166]

• partition: fixed size (similar to page)
slots contain real main memory pointers to tuples withing partition

• segment: variable number of partitions

In the Starburst MM Lock Manager no intention locks are used. Instead, a flag
per table indicates whether locking takes place at the granularity level of a table
or a tuple. If this flag indicates locking at the table granularity, all tuple level
locks are automatically converted to table locks. The tuple level locks are kept
in a remembered locks list. If the lock manager decides upon deescalation, all
remembered locks are converted to real tuple locks. In case of escalation, this
process is reversed.

16.2.4 Fekete Lock Manager

16.2.5 Pointers to Literature

• Agrawal, Carey, Livny: Performance of Concurrency Protocols [5]

• Blasgen, Gray, Mitoma, Price: Convoy problem [36]

138 CHAPTER 16. TRANSACTION PROCESSING

16.3 Snapshot isolation

16.4 Logging

Chapter 17

The End

observations made lately:

• main memory can be too small

• main memory is expensive (compared to disk/ssd)

Thus, those parts of the data not frequently in use should reside on disk.
Distinguish:

• hot data (needed)

• cold data (not needed)

hot data will be in main memory, cold data will be on disk.
Needed:

• buffer manager

And we are back in the 80s.
Acknowledgement. I thank Simone Seeger for all the beautiful pictures

except those in the chapter on parallelization. They were provided by Thomas
Neumann.

139

140 CHAPTER 17. THE END

Appendix A

Tools and System Calls

file systems and tools for inspection

• /proc and /sys file system

• cpuid

• lscpu, lshw, lspci, lsblk, lsscsi, lsusb, lstopo

• hwlock-*

• nproc

• getconf

• hdparm

• hardinfo

• sensors (aus package lm-sensors), hddtemp

tools for measuring:

cache/memory [264, 265], [68], [93]
X-ray [266] [many parameters]
chi-PC, chi-T [4] [Abel’s beautiful master thesis on caches]

Tools for Performance Monitoring

• gcc -pg, gprof

• perf

• quartz for parallel apps

• MemSpy for memory system bottlenecks

• Intel Performance Counter Monitoring

• Intel Amplifier XE

• Intel Memory Latency Checker

141

142 APPENDIX A. TOOLS AND SYSTEM CALLS

Appendix B

Pointers to the Literature

B.1 Overview Papers/Books

Database specific:

1993 Graefe: Query Evaluation Techniques [107, 108]

1999 Härder, Rahm: Datenbanksysteme [125]

2007 Hellerstein, Stonebraker, Hamilton [130]
(they also discuss things not discussed in textbooks: e.g.: thread archi-
tecture, memory allocators)

2012 Abadi, Boncz, Harizopoulos, Idreos, Madden: Column Stores [1]

2015 Zhang, Chen, Ooi, Tan, Zhang: In-Memory Data Management [267]

2016 Färber, Kemper, Larson, Levandoski, Neumann, Pavlo [91]

2017 Ailamaki, Liarou, Tözün, Porobic, Psaroudakis [9]

Parallel Programming:

• Herlihy, Shavit: The Art of Multiprocessor Programming [133]

• Williams: C++ Concurrency in Action [261]

• Matt Kline: What every systems programmer should know about concur-
rency

Benchmarking/Performance:

• Gray (ed): The Benchmark Handbook for Database and Transaction Pro-
cessing Systems

• Gregg: Systems Performance [118]

Computer Architecture/Assembler/ARM:

• Hennessy, Patterson: Computer Architecture: A Quantitative Approach
[132]

143

144 APPENDIX B. POINTERS TO THE LITERATURE

• Patterson, Hennessy: Computer Organization and Design: ARM Edition
[211]

• Pyeatt: Modern Assembly Language Programming with the ARM pro-
cessor [215]

Programming:

• B. Stroustrup: The C++ Programming Language [245]

• Lipmann, Lajoie: C++ Primer (5th Edition), 2012.

• S. Myers: (More) Effective C++

• Steve McConnell: Code Complete

Programming Techniques (General):

• Roth, Sohi: prefetching for pointer-based data structures [228]

• Chilimbi, Hill, Larus: cache-consciousness for pointer-based data struc-
tures [64]

• Meyer, Sanders, Sibeyn (eds): algorithms memory hierarchies [189]

Using Compiler/Linker:

• M. Stevanovic: C and C++ Compiling

Building Compiler:

• Drachenbuch: Aho, (Lam), Sethi, Ullman: Compiler/Compilerbau (Vol1/2)

• Wait, Goos: Compiler Construction

• Wilhelm, Maurer: Compiler Design [258]

• Cooper, Torczon: Engineering a Compiler

• Srikant, Shankar (ed): The Compiler Design Handbook

• Muchnick: Advanced Compiler Design and Implementation

Operating Systems:

• Tanenbaum, Bos: Modern Operating Systems (4th Edition), 2014.

• Silberschatz, Galvin: Operating System Concepts, 2012.

• Anderson, Dahlin: Operating Systems: Principles and Practice, 2014.

B.2. TIMELINE (MILESTONES) 145

B.2 Timeline (Milestones)

1984 Bratbergsengen: invention of hash-join [45]

1985 Copeland, Khoshavian: NSM, DSM [first to question NSM] [69]

1994 Shatdal, Kant, Naughton: Cache Conscious Algorithms [all techniques]
[237]

1996 Boncz, Quak, Kersten: Monet DB [most influential DSM System] [41]

1997 Bratbergsengen, Norvag: partitioning on disks [46]

1998 Moerkotte: Small Materialized Aggregates [191]

1998 Helmer, Westmann, Moerkotte: Diag-Join [131]

1999 Boncz, Manegold, Kersten: bottleneck: memory [40] new version [39].

1999 Ailamaki et al.: Where does time go? [8]

2001 Rinfret et al.: Bit-slicing [224]

2001 Ailamiki et al.: PAX [7]

2002 Ross: Predicated Code [225, 226]

2003 Hankins, Patel: Data Morphing (dynamic reorganization to change stor-
age layout) [123]

2005 Boncz et al.: MonetDB/X100 [42]

2006 Halverson et al.: Compare Disk-based Col-Store and Row-Store [121]

2009 Willhalm et al.: SIMD Scans in HANA [260]

2010 Grund et al.: HYRISE [120]

2011 Neumann: Efficiently Compiling Efficient Query Plans for Modern Hard-
ware [197, 198]

2012 Abadi et al.: Column Oriented DBMSs (overview 2012) [1]

2013 Chasseur, Patel: Quickstep (block size matters) [59]

146 APPENDIX B. POINTERS TO THE LITERATURE

B.3 Storage Layouts

storage model citations comment

NSM [69]
DSM [69]
PDSM [123, 213] partially decomposed storage model = vertical partitioning
PAX [7] colocate (sub-)set of columns in a page
vector-blocks [42] similar to PAX
multi-column blocks [3] similar to PAX
column groups [27] pack groups of columns into matrix (IBM Blink)
bit packing [259, 260] Hana
bitslicing [224]
Bitweaving/H,V [177] here renamed to BitSliceH/V
bit packing [95]
padded encoding [176]
byte slicing [96] use bytes instead of bits

B.4 Memory Management

• Carey on Shore: [184]

• Wu: [263]

B.5 Hashing

Hash functions:

introductory article [152]
universal hashing [55, 256]
tabulation hashing [210, 212, 249, 250, 251]
string hashing [212, 248]

minimal perfect hash functions for strings [79]

Hash table organization:

chaining [72, 153]
open adressing [72, 153]
double hashing [129] (performance several open addressing schemes)
Cuckoo [206]
Hopscotch [134]
Robin Hood [56, 253]
comparison [223]
collision [22] cache-conscious, string hash tables

Hashing and SIMD

B.6. COMPRESSION 147

Cuckoo Hashing Zukowski, Heman, Boncz [273]
Cuckoo Hashing Ross [227]
Cuckoo Hashing Polychroniou, Raghavan, Ross [214]

The web-page https://www.strchr.com/hash functions?allcomments=1 con-
tains a comparison of hash functions.

B.6 Compression

topic citations comment

[15]
[128]
[140]
[70]

general compr. techniques [172]
[175]

general compr. [111, 236]
[43, 44]

compr. sparse bitmaps [192]
[229]

compr. and prefetching [78]
[137]
[18]
[200]
[222]

row store record layout [257]
integration into colum store [2]
compression, tuned to cpu [135] length-lookup table for Huffman codes

[259] Hana
Simple8, Simple9 [16, 17] Anh, Moffat

[244] Stepanov et al.
bitmap/inverted list compression [254] Wang et al.
decoding integers using SIMD [173] Lemire, Boytsov

B.7 Expression Evaluation Techniques

148 APPENDIX B. POINTERS TO THE LITERATURE

technique citations comment

interpreted/compiled tuple-wise [167] Lehman, Shekita, Cabrera compare AVM and compilation in Starburst
interpreted vect. full mat. [38] Monet, Boncz thesis
interpreted/chunk-wise [42] X100
vertical SIMD []
horizontal SIMD [213]
code generation/compilation [219] Rao, Pirahesh, Mohan, Lohman
code generation/compilation [155] Krikellas, Viglas, Cintra
code generation/compilation [197] Neumann
compilation vs. vectorization [240, 241] Sompolski, Zukowski, Boncz
code generation/compilation [97] Freedman, Ismert, Larson (Hekaton)
compilation (overview) [252] Viglas
vectorization vs. compilation [207] Pantela, Idreos (tiny paper)
code generation/compilation [159] Lang, Mühlbauer, Funke, Boncz, Neumann, Kemper
compilation/vectorization/prefetching [188] Menon, Mowry, Pavlo
compilation/vectorization [89] Kersten, Leis, Kemper, and more: comparison, but insufficient

B.8 Indexes

technique citations comment

T-Tree [165] compares
B-Tree [220, 124] cache conscious B+-tree
ART [170, 262] Radix Tree, different node layouts
HAT-trie [21] cache-conscious trie for variable length strings
B-Tree [63] improve B-Tree by prefetching
Bw-Tree [138] improved B-Tree

B.9 Physical Algebra

B.10. PREFETCHING 149

keyword citations comment

pull-model [23] since System R and then everywhere
push-model Krämer, Seeger: PIPES, 2004. Some stream paper?
partitioning [235] Schuhknecht, Khanchandani, Dittrich: Radix Partitioning
hash-join [45] invention of hash join
Division [105] 4 algorithms
GRACE-Hash Join [99, 150, 151, 196] disk-based, tuning
Hybrid-Hash Join [102] disk-based
Hash Join [179] eliminate random I/O in hash joins
Heap-Filter Merge Join [106]
several joins [34, 24, 26] mm, comparison
mm hash join [28] IBM, simply the best
mm joins [35]
NUMA-aware join [157]
NUMA-aware join [230]
NUMA-aware join [158]
NUMA-aware sort-merge join [10]
join [11] numa-aware, non-inner
sort vs. hash [110, 25, 149] disk, mm, par
DBJ [269, 270] balancing in multi-processor environment
partitioned sort [203] radix-sort, comparison-sort
hash join [62] prefetching
Sorting [136] SIMD-based sort

[238] sorting large sets of strings
[255] parallel radix sort

Intersection [234] SIMD-based intersection
hash join [61] Inspector Join
hash join [100, 101] parallel
hash join [221] parallel
hash join [40, 182] radix join
grouping/aggregation [42] X100
grouping/aggregation [271] SIMD
grouping/aggregation [195] comparison/evaluation
grouping/aggregation [193] hashing is sorting
compilation templates [155] join, grouping/aggregation

B.10 Prefetching

group prefetching hash join [60, 62]
software pipelined prefetching hash join [60, 62]
Prefetching B+-Tree (pB+-Tree index [63]
asynchronous memory access chaining (AMAC) hash join/grouping/index [154]

Disadvantages:

1. group prefetching: high bursts of prefetch operations

150 APPENDIX B. POINTERS TO THE LITERATURE

2. software pipelined prefetching: ineffective for short pipelines

3. AMAc: buffer need structs with 5 entries, one of which is the stage of
processing. if-stmt (branch!) used to execute code corresponding to the
stage.

B.11 Instruction-Level Parallelism (ILP, SIMD)

SIMD overview [127]
Bloom filters [204]
scansel, partition, hash [214]
Compression [205]
selection, hash, partitioning [271, 214]
hashing [227]

B.12 Thread-Level Parallelism (TLP)

• Mrunal Gawade, Martin L. Kersten: Adaptive query parallelization in
multi-core column stores. EDBT 2016: 353-364.

• Morsel [169]

• [164] minimize shared LLC problems

• [216] scan sharing in BLINK

• Shatdal, Naughton: Adaptive Parallel Aggregation Algorithms. SIGMOD
95.

B.13 NUMA

• Mrunal Gawade, Martin L. Kersten: NUMA obliviousness through mem-
ory mapping. DaMoN 2015: 4:1-4:7

• Li, Pandis, Mueller, Raman, Lohman: NUMA-aware algorithms: the case
of data shuffling. CIDR 2013.

B.14 Cost Models

Hybrid-Hash Join [209] disk, cost model
memory [181] cost models for memory hierarchy
instructions count
microbenchmark-based

B.15 Code Generation

• Mehta [187]

B.16. BUFFER MANAGEMENT 151

B.16 Buffer Management

B.16.1 Buffer Manager

1966 Belady: replacement algorithms [30]

1971 Aho, Denning, Ullman: replacement algorithms [6]

1977 Lang, Wood, Fernandez: DBMS buffer and OS buffer [161]

1982 Sacco, Schkolnick: managing buffer pool [232]

1984* Effelsberg, Härder: Principles of Buffer Management [85]

1985* Chou, DeWitt: Evaluation of Buffer Management Strategies [65]

1986 Sacco, Schkolnick: buffer mgmt [233]

1987 Saccl: index access with finite buffer [231]

1989 Cornell, Yu: integration of buffer mgmt and query opt [76, 92]

1990 Dan, Dias, Yu: Skewed Data and Buffer [80]

1990 Jauhari, Carey, Livny: Priority Hints [141]

1991 Ng, Faloutsos, Sellis: Buffer Allocation [199]

1992 Jian: DFS traversal and buffering [142]

1996 Brown, Carey, Livny: Goal-Oriented Buffer Management [47]

1999* O’Neil, O’Neil, Weikum: LRU-k replacement [202]

2004 Megiddo, MOdha: adaptive replacement [186]

2012 Switakoswki, Boncz, Zukowski: Cooperative Scans, Predictive Buffer Mngmt
[246]

2014* Graefe et al: Buffer for In-Memory DBMS [112]

Five-Minute Rules:

1987 Gray, Putholu [114, 115]

1997 Gray, Graefe [113]

2007 Graefe [109]

2017 Appuswamy, Gorovica-Gajic, Graefe, Ailamaki [19]

see also Gray and Shenoy: Rules of Thumb in Data Engineering [116].

152 APPENDIX B. POINTERS TO THE LITERATURE

B.16.2 Buffering Without Buffermanager

2013 DeBrabant et al: Anti-caching [81]

2013 Larson et al: Siberia [12, 86, 174]

2015 Zhang, Chen, Ooi, Wong: Anti-Caching for bit data [268]

B.17 Recovery/Checkpointing

1993 JaSiSu93

1997 PaBi97

2009 LeKiWoChKi09 (FLASH)

B.18 Storage Manager

1976 System R [23]

1985 Wisconsin Storage Manager ChDeKl85 [66]

1989 Exodus storage manager CaDeGrHaRiScShVa88,CaDe87,CaDeVa88,CaWiFrGrMuRiSh86,CaDeGrHaRiShShVa89,CaDeRiSh90 [51,
53, 54, 87, 50, 52]

1994 Shore storage manager CaDeFrHaMcNaScSoTaTsWhZw94 [49]

1994 EOS storage manager BiPa94 [31]

1995 BeSS storage manager BiPa95,BiPa96 [32, 33]

1997 Dali main memory storage manager BoLiRaSiSeSu97,JaLiRaSiSu94 [37,
139]

1998 Xmax main memory storage manager ChPaPa97 [57]

1989 Datablitz main memory storage manager BaBoKhKo98 [29]

2009 Shore-MT scalable storage manager JoPaHaAiFa09 [143]

1992 Starburst main memory storage manager LeShCa92 [167]

2005 General Considerations for Lightweight Storage Manager LeApSa05 [168]

2010 HYRISE main memory hybrid storage engine GrKrPlZeCuMa10 [120]

Evaluation of Storage Managers (emphasis: main memory vs. disk-based):

1992 Lehman: Starburst MM LeShCa92 [167]

1999 Shore-MT scalable storage manager JoPaHaAiFa09 [143]

2008 Harizopoulos et al.: Looking Glass HaAbMaSt08 [126]

B.19. SYSTEM OVERVIEWS 153

B.19 System Overviews

• DB2blu [90]

• SQL Server Apollo/Hekaton

• Hyper

• Hana

B.20 todo

• [46] Bratbergsengen, Norvag: partitioning on disks

• [272] instruction cache performance improvement by blocking

• [67] small overview article by Cieslewicz and Ross

• [28] IBM’s memory efficient hash join

154 APPENDIX B. POINTERS TO THE LITERATURE

Bibliography

[1] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The
design and implementation of modern column-oriented database systems.
Foundations and Trends in Databases, 5(3):197–280, 2012.

[2] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and
execution in column-oriented database systems. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 671–682, 2006.

[3] D. Abadi, D. Myers, D. DeWitt, and S. Madden. Materialization strate-
gies in a column-oriented DBMS. In Proc. IEEE Conference on Data
Engineering, pages 466–475, 2007.

[4] A. Abel. Measurement-based inference of the cache hierarchy. Master
Thesis, U. Saarland, 2012.

[5] R. Agrawal, M. Carey, and M. Livny. Concurrency control performance
modeling: Alternatives and implications. ACM Trans. on Database Sys-
tems, 12(4):609–654, 1987.

[6] A. Aho, P. Denning, and J. Ullman. Principles of optimal page replace-
ment. Journal of the ACM, 18(1):80–93, 1971.

[7] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weaving relations
for cache performance. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 169–180, 2001.

[8] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs on a modern
processor: Where does time go? In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 266–277, 1999.

[9] A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, and I. Psaroudakis.
Databases on Modern Hardware. Morgan&Claypool, 2017.

[10] M.-C. Albitiu, A. Kemper, and T. Neumann. Massively parallel sort-
merge joins in main memory multi-core database systems. PVLDB, 5(10),
2012.

[11] M.-C. Albutiu, A. Kemper, and T. Neumann. Extending the MPSM join.
In BTW, pages 57–72, 2013.

155

156 BIBLIOGRAPHY

[12] K. Alexiou, D. Kossmann, and P. Larson. Adaptive range filters for cold
data: Avoiding trips to siberia. Proc. of the VLDB Endowment (PVLDB),
6(14):1714–1725, 2013.

[13] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-
join sizes in limited storage. J. Comput System Sciences, 35(4):391–432,
2002.

[14] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approx-
imating the frequency moments. J. of Computer and System Sciences,
58(1):137–147, 1999.

[15] P. Alsberg. Space and time savings through large database compression
and dynamic restructuring. In Proc IEEE 63,8, Aug. 1975.

[16] N. Anh and A. Moffat. Inverted index compression using word-aligned
binary codes. Information Retrieval, 8(1):151–166, 2005.

[17] N. Anh and A. Moffat. Index compression using 64-bit words. Software
– Practice and Experience, 40:131–147, 2010.

[18] G. Antoshenkov, D. Lomet, and J. Murray. Order preserving key com-
pression. Technical Report CRL 94/3, Digital Equipment Corporation,
June 1994.

[19] R. Appuswamy, R. Borovica-Gajic, G. Graefe, and A. Ailamaki. The five-
minute rule thirty years later and its impact on the storage hierarchy. In
ADMS, 2017.

[20] ARM. ARM Synchronization Primitives, 2009.

[21] N. Askitis and R. Sinha. HAT-trie: A cache-conscious trie-based data
structure for strings. In ACSC, pages 97–105, 2007.

[22] N. Askitis and J. Zobel. Cache-conscious collision resolution in string
hash tables. In SPIRE 2005, LNCS 3772, pages 91–102, 2005.

[23] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N.
Gray, P.P. Griffiths, W.F. King, R.A. Lorie, P.R. Mc Jones, J.W. Mehl,
G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson. System R:
relational approach to database management. ACM Transactions on
Database Systems, 1(2):97–137, June 1976.

[24] C. Balkesen, J. Teubner, G. Alonso, and T. Özsu. Main-memory hash
joins on multi-core CPUs: Tuning to the underlying hardware. Technical
Report Technical Report Nr. 779, ETH Zürich, 2012.

[25] C. Balkesen, J. Teubner, G. Alonso, and T. Özsu. Multi-core, main-
memory joins: Sort vs. hash revisited. Proc. of the VLDB Endowment
(PVLDB), 7(1):85–96, 2014.

BIBLIOGRAPHY 157

[26] C. Balkesen, J. Teubner, G. Alonso, and T. Özsu. Main-memory hash
joins on modern processor architectures. IEEE Trans. on Knowledge and
Data Engineering, 27(7):1754–1766, 2015.

[27] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreso, M.-
S. Kim, O. Koeth, J.-G. Lee, T. Li, G. Lohman, K. Morfonios, R. Müller,
K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle, K. Stolze, and S. Sz-
abo. Business analytics in (a) Blink. IEEE Data Engineering Bulletin,
35(1):9–14, 2012.

[28] R. Barber, G. Lohman, I. Pandis, G. Attaluri, N. Chainani, S. Lightstone,
V. Raman, R. Sidle, and D. Sharpe. Memory-efficient hash joins. Proc.
of the VLDB Endowment (PVLDB), 8(4), 2014.

[29] J. Baulier, P. Bohannona, A. Khivesara, H. Korth, R. Rastogi, A. Silber-
schatz, and S. Sudarshan. The DataBlitz main-memory storage manager:
Architecture, performance, and expercience. found on the internet, 1998.

[30] L. A. Belady. A study of replacement algorithms for virtual storage com-
puters. IBM Systems Journal, 5(2):78–101, 1966.

[31] A. Biliris and E. Panagos. EOS user’s guide. Technical Report Release
2.2, AT&T Bell Laboratories, Murray Hill, NJ 07974, 1994.

[32] A. Biliris and E. Panagos. A high performance configurable storage man-
ager. In Proc. IEEE Conference on Data Engineering, pages 35–43, 1995.

[33] A. Biliris and E. Panagos. The BeSS object storage manager: Architec-
ture overview. ACM SIGMOD Record, 25(3):53–58, 1996.

[34] J. Blakeley and N. Martin. Join index, materialized view, and hybrid
hash-join: a performance analysis. In Proc. IEEE Conference on Data
Engineering, pages 256–236, 1990.

[35] S. Blanas and J. Patel. Memory footprint matters: Efficient equi-join
algorithms for main memory data processing. In SoCC, 2013.

[36] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The convoy phenomenon.
ACM SIGOPS Operating Systems Review, 13(2):20–25, 1979.

[37] P. Bohannon, D. Lieuwen, R. Rastogi, S. Seshadri, and S. Sudarshan.
The architecture of the dali main-memory storage manager. Bell Labs
Technical Journal, pages 1–46, 1997.

[38] P. Boncz. Monet: A Next-Generation DBMS Kernel for Query Intensive
Applications. PhD thesis, Wiskunde en Informatica, 2002.

[39] P. Boncz, M. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Communications of the ACM, 51(12):77–85, 2008.

[40] P. Boncz, S. Manegold, and M. Kersten. Database architecture optimized
for the new bottleneck: Memory access. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 54–65, 1999.

158 BIBLIOGRAPHY

[41] P. Boncz, W. Quak, and M. Kersten. Monet and its geographical exten-
sions: A novel appraoch to high performance GIS processing. In EDBT,
pages 145–166, 1996.

[42] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining
query execution. In CIDR, pages 225–237, 2005.

[43] A. Bookstein and S. Klein. Construction of optimal graphs for bit-vector
compression. In SIGIR, pages 327–342, 1990.

[44] A. Bookstein and S. Klein. Compression of correlated bit-vectors. Infor-
mation Systems, 16(4):387–400, 1991.

[45] K. Bratbergsengen. Hashing methods and relational algebra operations.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 323–333,
1984.

[46] K. Bratbergsengen and K. Norvag. Improved and optimized partitioning
techniques in database query procesing. In Advances in Databases, 15th
British National Conference on Databases, pages 69–83, 1997.

[47] K. Brown, M. Carey, and M. Livny. Goal-oriented buffer management
revisited. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 353–364, Montreal, Canada, Jun 1996.

[48] D. Butterstein and T. Grust. Precisoin performance surgery for Post-
greSQL. PVLDB, 9(13), 2016.

[49] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton,
D. Schuh, M. Solomon, C. Tan, O. Tsatalos, S. White, and M. Zwilling.
Shoring up persistent applications. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 383–394, 1994.

[50] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh,
E. Shekita, and S. Vandenberg. The EXODUS extensible DBMS project:
An overview. In S. Zdonik and D. Maier, editors, Readings in Object-
Oriented Databases, pages 474–499. Morgan-Kaufman, 1989.

[51] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, E. Shekita,
and S. Vandenberg. The EXODUS extensible DBMS project: An
overview. Technical Report TR808, U Wisconsin, Maddison, 1988.

[52] M. Carey, D. DeWitt, J. Richardson, and E. Shekita. Kim, Lochovsky:
[148], chapter Storage Management for Objects in EXODUS. Addison
Wesley, 1990.

[53] M. Carey and D. J. DeWitt. An overview of the EXODUS project. IEEE
Database Engineering, 10(2):47–53, Jun 1987.

[54] M. J. Carey, D. J. DeWitt, and S. L. Vandenberg. A data model and
query language for EXODUS. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 413–423, Chicago, Il., Jun 1988.

BIBLIOGRAPHY 159

[55] L. Carter and M. Wegman. Universal classes of hash functions. J. Comp.
and Sys. Sci., 18(2):143–154, 1979.

[56] P. Celis. Robin Hood Hashing. PhD thesis, 1986.

[57] S. K. Cha, J. H. Park, and B. D. Park. Xmas: An extensible main-memory
storage system. In CIKM, pages 356–362, 1997.

[58] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In Proc. Int. Colloquium on Automata, Languages and
Programming, pages 693–703, 2002.

[59] C. Chasseur and J. Patel. Design and implementation of storage organi-
zations for read-optimized main memory databases. PVLDB, 6(13):1474–
1485, 2013.

[60] S. Chen, A. Ailamaki, P. Gibbons, and T. Mowry. Improving hash join
performance through prefetching. In Proc. IEEE Conference on Data
Engineering, pages 116–127, 2004.

[61] S. Chen, A. Ailamaki, P. Gibbons, and T. Mowry. Inspector joins. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 817–828, 2005.

[62] S. Chen, A. Ailamaki, P. Gibbons, and T. Mowry. Improving hash join
performance through prefetching. ACM Trans. on Database Systems,
32(3):17, 2007.

[63] S. Chen, P. Gibbons, and T. Mowry. Improving index performance
through prefetching. In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 235–246, 2001.

[64] T. Chilimbi, M. Hill, and J. Larus. Making pointer-based data structures
cache conscious. IEEE Computer, 33(12):67–74, 2000.

[65] H.-T. Chou and D. DeWitt. An evaluation of buffer management strate-
gies for relational database systems. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 127–141, 1985.

[66] H.-T. Chou, D. DeWitt, and A. Klug. Design and implementation
of the wisconsin storage manager. Software: Practice and Experience,
15(10):943–962, 1985.

[67] J. Cieslewicz and K. Ross. Database optimizations for modern hardware.
Proc. of the IEEE, 96(5), 2008.

[68] K. Cooper and J. Sandoval. Portable techniques to find effective memory
hierarchy parameters. Technical Report CS TR11-06, Rice University,
2011.

[69] G. Copeland and S. Khoshafian. A decomposition storage model. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 268–
279, Austin, TX, 1985.

160 BIBLIOGRAPHY

[70] G. Cormack. Data compression on a database system. Communications
of the ACM, 28(12):1336–1342, 1985.

[71] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[72] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001. 2nd Edition.

[73] G. Cormode and M. Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 13–24, 2005.

[74] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synopses for
Massive Data: Samples, Histograms, Wavelets, Sketches. NOW Press,
2012.

[75] G. Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its application. J. Algor, 55(1):58–75, 2005.

[76] D. Cornell and P. Yu. Integration of buffer management and query op-
timization in relational database environments. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 247–255, 1989.

[77] D. Culler, J. Singh, and A. Gupta. Parallel Computer ARchitecture: A
Hardware/Software Approach. Morgan Kaufman, 1999.

[78] K. Curewith, P. Krishnan, and J. Vitter. Practical prefetching via data
compression. In Proc. of the ACM SIGMOD Conf. on Management of
Data, page 257, 1993.

[79] Z. Czech, G. Havas, and B. Majewski. An optimal algorithm for gen-
erating minimal perfect hash functions. Information Processing Letter,
43:257–264, 1992.

[80] A. Dan, D. Dias, and P. Yu. The effect of skewed data access on buffer
hits and data connection in a data sharing environment. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 419–431, 1990.

[81] Justin DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik. Anti-
caching: A new approach to database management system architecture.
Proc. of the VLDB Endowment (PVLDB), 6(14):1942–1953, 2013.

[82] C. Diaconu, C. Freeman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s memory-
optimized OLTP engine. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, 2013.

[83] M. Dietzfelbinger. Universal hashing and k-wise independent random
variables via integer arithmetic without primes. In STOCS, pages 569–
580, 1996.

BIBLIOGRAPHY 161

[84] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reli-
able randomized algorithm for the closest-pair problem. J. of Algorithms,
25(1):19–51, 1997.

[85] W. Effelsberg and T. Härder. Principles of database buffer management.
ACM Trans. on Database Systems, 9(4):560–595, 1984.

[86] A. Eldawy, J. Levandoski, and P. Larson. Trekking through siberia: Man-
aging cold data in a memory-optimized database. Proc. of the VLDB
Endowment (PVLDB), 7(11):931–942, 2014.

[87] M. J. Carey et al. The architecture of the EXODUS extensible DBMS.
In Workshop on Object-Oriented Database Systems, pages 52–65, 1986.

[88] P. Larson et. al. Enhancements to SQL server column stores. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 1159–1168,
2013.

[89] T. Kersten et al. Everything you always wanted to know about com-
piled and vectorized queries but were afraid to ask. Proc. of the VLDB
Endowment (PVLDB), 11(13):2209–2221, 2018.

[90] V. Raman et. al. DB2 with BLU acceleration: So much more than just a
column store. In Proc. of the VLDB Endowment (PVLDB), pages 1080–
1091, 2013.

[91] F. Faerber, A. Kemper, P.-A. Larson, J. Levandoski, T. Neumann, and
A. Pavlo. Main Memory Database Systems. NOW, 2016.

[92] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control for flexible
buffer allocation. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 265–274, 1989.

[93] Z. Fang, S. Mehta, P.-C. Yew, A. Zhai, J. Greensky, G. Beeraka, and
B. Zang. Measuring microarchitectural details of multi- and many-core
memory systems through microbenchmarking. TACO, 11(4):55, 2014.

[94] F. Färber, N. May, W. Lehner, P. Große, I. Müeller, H. Rauhe, and
J. Dees. The SAP HANA database: An architecture overview. IEEE
Data Engineering Bulletin, 2012.

[95] M. Faust, M. Grund, T. Berning, D. Schwalb, and H. Plattner. Verti-
cal bit-packing: Optimizing operations on bit-packed vectors leveraging
SIMD instructions. In DASFAA, pages 132–145, 2014.

[96] Z. Feng, E. Lo, B. Kao, and W. Xu. ByteSlice: Pushing the envelop of
main memory data processing with a new storage layout. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 31–46, 2015.

[97] C. Freedman, E. Ismert, and P. Larson. Compilation in the microsoft
SQL server hekaton engine. IEEE Data Engineering Bulletin, 37(1):22–
30, 2014.

162 BIBLIOGRAPHY

[98] F. Funke, A. Kemper, and T. Neumann. HyPer-sonic combined transac-
tion and query processing. PVLDB, 4(12), 2011.

[99] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the systems
software of a parallel relational database machine: GRACE. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 209–219, 1986.

[100] P. Garcia and H. Korth. Database hash-join algorithms on multithreaded
computer architectures. In Proc. Conf. On Computing Frontiers, pages
241–252, 2006.

[101] P. Garcia and H. Korth. Pipelined hash-join on multithreaded architec-
tures. In DaMoN, page 1, 2007.

[102] R. Gerber. Dataflow Query Processing using Multiprocessor Hash-
Partitioned Algorithms. PhD thesis, UNIV of Wisconsin, Madison, 1986.

[103] G. Gonnet. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM, 28(2):289–304, 1981.

[104] V. Gottemukkala and T. Lehman. Locking and latching in a memory-
resident database system. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 533–544, 1992.

[105] G. Graefe. Relational division: Four algorithms and their performance.
In Proc. IEEE Conference on Data Engineering, pages 94–101, 1989.

[106] G. Graefe. Heap-filter merge join: A new algorithm for joining medium-
size inputs. IEEE Trans. on Software Eng., 17(9):979–982, 1991.

[107] G. Graefe. Query evaluation techniques for large databases. Shortened
version: [108], July 1993.

[108] G. Graefe. Query evaluation techniques for large databases. ACM Com-
puting Surveys, 25(2), June 1993.

[109] G. Graefe. The five-minute rule twenty years later, and how flash mem-
ory changes the rules. In Int. Workshop on Data Management on New
Hardware (DaMoN), 2007.

[110] G. Graefe, A. Linville, and L. Shapiro. Sort versus hash revisited. IEEE
Trans. on Knowledge and Data Eng., 6(6):934–944, Dec. 1994.

[111] G. Graefe and L. Shapiro. Data compression and database performance.
In Proc. ACM/IEEE-CS Symp. on Applied Computing, April 1991.

[112] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge, and
A. Veitch. In-memory performance for big data. Proc. of the VLDB
Endowment (PVLDB), 8(1):37–48, 2014.

[113] J. Gray and G. Graefe. The five-minute rule ten years later, and other
computer storage rules of thumb. ACM SIGMOD Record, 26(4):63–68,
1997.

BIBLIOGRAPHY 163

[114] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disk
accesses and the 5 byte rule for trading memory for CPU time. Technical
Report TR86.1, Tandem, 1986.

[115] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disk
accesses and the 10 byte rule for trading memory for CPU time. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 395–398,
1987.

[116] J. Gray and P. Shenoy. Rules of thumb in data engineering. Technical
Report MS-TR-99-100, Microsoft, 1999.

[117] P. Gray and A. Reuter. Transaction Processing: Concepts and Technol-
ogy. Morgan Kaufmann Publishers, San Mateo, Ca, 1993.

[118] B. Gregg. Systems Performance. Prentice Hall, 2014.

[119] R. Grisenthwaite. ARM Barrier Litnus Tests and Cookbook. ARM, 2009.
PRD03-GENC-007826.

[120] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. HYRISE — a main memory hybrid storage engine. Proc. of
the VLDB Endowment (PVLDB), 4(2):105–116, 2010.

[121] A. Halverson, J. Beckmann, J. Naughton, and D. DeWitt. A comparison
of C-Store and Row-Store in a common framework. Technical report,
University of Wisconsin, Madison, 2006.

[122] P. Hammarlund, A. Martinez, A. Bajwa, D. Hill, E. Hallnor, H. Jiang,
M. Dixon, M. Derr, M. Hunsakar, R. Kumar, R. Osborne, R. Rajwar,
R. Singhal, R. D’Sa, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther,
T. Piazza, and T. Burton. Haswell: The fourth-generation intel core
processor. IEEE Micro, 34(2), 2014.

[123] R. Hankins and J. Patel. Data morphing: An adaptive, cache-conscious
storage technique. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 417–428, 2003.

[124] R. Hankins and J. Patel. Effect of node size on the performance of cache-
concsious B+-trees. SIGMETRICS Perform. Eval. Rev., 31(1), 2003.

[125] T. Härder and E. Rahm. Datenbanksysteme. Springer, 1999.

[126] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker. OLTP
through the looking glass, and what we found there. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 981–992, 2008.

[127] M. Hassablallah, S. Omran, and Y. Mahdy. A review of SIMD multimedia
extensions and their usage in scientific and engineering applications. The
Computer Journal, 51(6):630–649, 2008.

164 BIBLIOGRAPHY

[128] K. Hazboun and M. Bassiouni. A multi-group technique for data com-
pression. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 284–292, 1982.

[129] G. Heilemann and W. Luo. How caching affects hashing. In Proc. 7th
Workshop on Algorithm Engineering and Experiments (ALENEX), pages
141–154, 2005.

[130] J. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a
database system. Foundations and Trends in Databases, 1(2), 2007.

[131] S. Helmer, T. Westmann, and G. Moerkotte. Diag-join: An opportunistic
join algorithm for 1:n relationships. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 98–109, 1998.

[132] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 4th edition, 2007.

[133] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann, 2012.

[134] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In DISC,
pages 350–364, 2008.

[135] A. Holloway, V. Raman, G. Swart, and D. DeWitt. How to barter bits
for chronons: compression and bandwidth trade offs for database scans.
In Proc. of the ACM SIGMOD Conf. on Management of Data, 2007.

[136] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani. AA-sort: A new
parallel sorting algorithm for multi-core SIMD processors. In Proc. Int.
Conf. on Parallel Architecture and Compilation Techniques, pages 189–
198, 2007.

[137] B. Iyer and D. Wilhite. Data compression support in databases. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 695–704, 1994.

[138] S. Sengupta J. Levandoski, D. Lomet. The bw-tree: A b-tree for new
hardware platforms. In Proc. IEEE Conference on Data Engineering,
2013.

[139] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudar-
shan. Dali: A high performance main memory storage manager. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 48–59, 1994.

[140] M. Jakobsson. Evaluation of a hierarchical bit-vector compression tech-
nique. Information Processing Letters, 14(4):147–149, 1982.

[141] R. Jauhari, M. Carey, and M. Livny. Priority-hints: An algorithm for
priority-based buffer management. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 708–721, 1990.

BIBLIOGRAPHY 165

[142] B. Jian. DFS-traversing graphs in a paging environment, LRU or MRU?
Information Processing Letters, 40(4):193–196, 1992.

[143] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-
MT: A scalable storage manager for the multicore era. In Proc. European
Conf. on Extending Database Technology (EDBT), pages 24–35, 2009.

[144] R. Johnson, V. Raman, R. Sidle, and G. Swart. Row-wise parallel predi-
cate evaluation. pages 622–634, 2008.

[145] F. Kastrati and G. Moerkotte. Optimization of conjunctive predicates for
main memory column stores. Proc. of the VLDB Endowment (PVLDB),
9(12):1125–1136, 2016.

[146] F. Kastrati and G. Moerkotte. Optimization of disjunctive predicates for
main memory column stores. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 731–744, 2017.

[147] F. Kastrati and G. Moerkotte. Generating optimal plans for boolean
expressions. In Proc. IEEE Conference on Data Engineering, 2018.

[148] M. Kifer and E. Lozinskii. On compile-time query optimization in de-
ductive databases by means of static filtering. ACM Trans. on Database
Systems, 15(4):385–426, 1990.

[149] C. Kim, T. Kaldewey, V. Lee, E. Sadlar, A. Nguyen, N. Satish, J. Chugani,
A. DiBlas, and P. Dubey. Sort vs. hash revisited: fast join implementa-
tion on multi-core CPUs. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 1378–1389, 2009.

[150] M. Kitsuregawa, M. Nakayama, and M. Takagi. The effect of bucket size
tuning in the dynamic hybrid GRACE hash join method. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 257–266, 1989.

[151] M. Kitsuregawa and Y. Ogawa. Bucket spreading parallel hash: A new,
robust, parallel hash join method for data skew in the super database
computer (SDC). In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 210–221, 1990.

[152] G. Knott. Hashing functions. Comp. J., 18(3):265–278, 1974.

[153] D. Knuth. The Art of Computer Programming; Volume 3: Sorting and
Searching. Addison Wesley, 2000.

[154] O. Kocberber, B. Falsafi, and B. Grot. Asynchronous memory access
chaining. VLDB Journal, 9(4):252–263, 2015.

[155] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query
evaluation. In Proc. IEEE Conference on Data Engineering, pages 613–
624, 2010.

166 BIBLIOGRAPHY

[156] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier. Fast updates on read-optimized
databases using multi-core CPUs. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 61–72, 2012.

[157] H. Lang, M.-C. Albutiu, T. Neumann, and A. Kemper. Massively parallel
NUMA-aware hash joins. In In-Memory Data Management and Analysis
(IMDM), pages 3–14, 2015.

[158] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and A. Kemper. Massively
parallel numa-aware hash joins. In IMDM, pages 3–14, 2015.

[159] H. Lang, T. Mühlbauer, F. Funke, P. Boncz, T. Neumann, and A. Kem-
per. Data blocks: Hybrid OLTP and OLAP on compressed storage using
both vectorization and compilation. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 311–326, 2016.

[160] T. Lang, E. Fernandez, and R. Summers. A system architecture for
compile-time actions in databases. In Proc. ACM Annual Converence,
pages 11–15, 1977.

[161] T. Lang, C. Wood, and I. Fernandez. Database buffer paging in virtual
storage systems. ACM Trans. on Database Systems, 2(4):339–351, 1977.

[162] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel, and
M. Zwillling. High-performance concurrency control mechanisms for
main-memory databases. Proc. of the VLDB Endowment (PVLDB),
pages 298–309, 2011.

[163] P.-A. Larson, C. Clinciu, E. Hanson, A. Oks, S. Price, S. Rangajaran,
A. Surna, and Q. Zhou. SQL server column store indexes. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 1177–1184, 2011.

[164] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. MCC-DB: Minimizing
cache conflicts in multi-core processors for databases. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 373–384, 2009.

[165] T. Lehman and M. Carey. A study of index structures for main memory
database management systems. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 294–303, 1986.

[166] T. Lehman and V. Gottemukkala. The design ande performance evalua-
tion of a lock manger for a memory-resident database system. Technical
Report, 1994.

[167] T. Lehman, E. Shekita, and L.-F. Cabrera. An evaluation of starburst’s
memory resident storage component. IEEE Trans. on Knowledge and
Data Engineering, 4(6):555–566, 1992.

[168] T. Leich, S. Apel, and G. Saake. Using step-wise refinement to build a
flexible lightweight storage manager. In ABDIS, 2005.

BIBLIOGRAPHY 167

[169] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven par-
allelism: a NUMA-aware query evaluation framework for the many-core
age. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
743–754, 2014.

[170] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In ICDE, pages 38–49, 2013.

[171] V. Leis, F. Schreiber, A. Kemper, and T. Neumann. The ART of prac-
tical synchronization. In Int. Workshop on Data Management on New
Hardware (DaMoN), 2016.

[172] D. Lelewer and D. Hirschberg. Data compression. ACM Computing Sur-
veys, 19(3):261–296, 1987.

[173] D. Lemire and L. Boytsov. Decoding billions of integers per second
through vectorization. Software – Practice and Experience, 45:1–29, 2015.

[174] J. Levandoski, P. Larson, and R. Stoica. Identifying hot and cold data in
main-memory databases. In Proc. IEEE Conference on Data Engineering,
pages 26–37, 2013.

[175] J. Li, D. Rotem, and H. Wong. A new compression method with fast
searching on large data bases. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), page 311, Brighton, England, 1987.

[176] Y. Li, C. Chasseur, and J. Patel. A padded encoding scheme to acceler-
ate scans by leveraging skew. In Proc. of the ACM SIGMOD Conf. on
Management of Data, 2015.

[177] Y. Li and J. Patel. BitWeaving: Fast scans for main memory data pro-
cessing. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 289–300, 2013.

[178] Y. Li and J. Patel. BitWeaving: Fast scans for main memory data pro-
cessing. Technical report, U. Wisc, 2013.

[179] M.-L. Lo and C. Ravishankar. Towards eliminating random I/O in hash
joins. In Proc. IEEE Conference on Data Engineering, pages 422–429,
1996.

[180] R. Lorie and B. Wade. The compilation of a high level data langauge.
Technical report, IBM Research Laboratory, San Jose, 1979.

[181] S. Manegold, P. Boncz, and M. Kersten. Generic database cost models for
hierarchical memory systems. Technical report, CWI Amsterdam, 2002.

[182] S. Manegold, P. Boncz, and M. Kersten. Optimizing main memory join for
on modern hardware. IEEE Trans. on Knowledge and Data Engineering,
14(4):709–730, 2002.

168 BIBLIOGRAPHY

[183] S. Manegold, M. Kersten, and P. Boncz. Database architectures evolution:
Mammals flourished long before dinosaurs became extinct. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 1648–1653, 2009.

[184] M. McAuliffe, M. Carey, and M. Solomon. Towards effective and effi-
cient free space management. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 398–400, 1996.

[185] P. McKenney. Memory barries: A hardware view for software hackers.
freely available, 2010.

[186] N. Megiddo and D. Modha. Outperforming LRU with an adpative re-
placement cache algorithm. IEEE Computer, 37(4):58–65, 2004.

[187] S. Mehta. Scalable Compiler Optimizations for Improving Memory Sys-
tem Performance in Multi- and Many-core Processors. PhD thesis, U
Minnesota, 2014.

[188] P. Menon, T. Mowry, and A. Pavlo. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching
work together at last. VLDB Journal, 11(1):1–13, 2017.

[189] U. Meyer, P. Sanders, and J. Sibeyn. Algorithms for Memory Hierarchies.
LNCS 2625. Springer, 2003.

[190] M. Michael. High performance dynamic lock-free hash tables and list-
based sets. In ACM Symp. on Par. Alg. and Arch. (SPAA), pages 73–82,
2002.

[191] G. Moerkotte. Small materialized aggregates: A light weight index struc-
ture for data warehousing. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 476–487, 1998.

[192] A. Moffat and J. Zobel. Parameterised compression for sparse bitmaps.
In SIGIR, pages 274–285, 1992.

[193] I. Müeller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber. Cache-
efficient aggregation: Hashing is sorting. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 1123–1136, 2015.

[194] W. Mula, N. Kurz, and D. Lemire. Faster population counts using AVX2
instructions. arXiv, 1611.07612v3, 2016.

[195] S. Müller and H. Plattner. An in-depth analysis of data aggregation cost
factors in a columnar in-memory database. In DOLAP, pages 65–72,
2012.

[196] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join
method using dynamic destaging strategy. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 468–478, 1988.

BIBLIOGRAPHY 169

[197] T. Neumann. Efficiently compiling efficient query plans for modern hard-
ware. PVLDB, 4(9), 2011.

[198] T. Neumann and V. Leis. Compiling database queries into machine code.
IEEE Data Engineering Bulletin, 37(1):3–11, 2014.

[199] R. Ng, C. Faloutsos, and T. Sellis. Flexible buffer allocation based on
marginal gains. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 387–396, 1991.

[200] W. Ng and C. Ravishankar. Relational database compression using aug-
mented vector quantization. In Proc. IEEE Conference on Data Engi-
neering, pages 540–549, 1995.

[201] C. Nyberg, T. Barclay, Z. Cventanovic, J. Gray, and D. Lomet. Alpha-
Sort: A RISC machine sort. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 233–242, 1994.

[202] E. O’Neil, P. O’Neil, and G. Weikum. An optimality proof for the LRU-k
page replacement algorithm. Journal of the ACM, 46(1):92–112, 1999.

[203] O.Polychroniou and K. Ross. A comprehensive study of main-memory
partitioning and its application to large-scale comparison- and radix-sort.
In Proc. of the ACM SIGMOD Conf. on Management of Data, 2014.

[204] O.Polychroniou and K. Ross. Vectorized Bloom filters for advanced SIMD
processors. In Int. Workshop on Data Management on New Hardware
(DaMoN), 2014.

[205] O.Polychroniou and K. Ross. Efficient lightweight compression alongside
fast SIMD. In Int. Workshop on Data Management on New Hardware
(DaMoN), 2015.

[206] R. Pagh and F. Rodler. Cuckoo hashing. J. of Algorithms, 51:122–144,
2004.

[207] S. Pantela and S. Idreos. One loop does not fit all. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 2073–2074, 2015.

[208] M. Paradies, C. Lemke, H. Plattner, W. Lehner, K.-U. Sattler, A. Zeier,
and J. Krueger. How to juggle columns: An entropy-based approach for
table compression. In IDEAS, 2010.

[209] J. Patel, M. Carey, and M. Vernon. Accurate modeling of the hybrid hash
join algorithm. In Proc. ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 56–66, 1994.

[210] M. Patrascu and M. Thorup. The power of tabulation hashing. J. ACM,
59(3):14, 2012.

[211] D. Patterson and J. Hennessy. Computer Organization and Design: ARM
Edition. Morgan Kaufmann, 2017.

170 BIBLIOGRAPHY

[212] P. Pearson. Fast hashing of variable-length text strings. Communications
of the ACM, 33:677–680, 1990.

[213] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold,
A. Kemper, and M. Kersten. CPU and Cache efficient management of
memory-resident databases. In Proc. IEEE Conference on Data Engi-
neering, pages 14–25, 2013.

[214] O. Polychroniou, A. Raghavan, and K. Ross. Rethinking SIMD vector-
ization for in-memory databases. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 1493–1508, 2015.

[215] L. Pyeatt. Modern Assembly Language Programming with the ARM Pro-
cessor. Newnew, 2016.

[216] L. Qiao, V. Raman, F. Reiss, P. Haas, and G. Lohman. Main-memory scan
sharing for multi-core CPUs. Proc. of the VLDB Endowment (PVLDB),
pages 610–621, 2008.

[217] M. V. Ramakrishna and J. Zobel. Performance in practice of string hash-
ing functions. In DASFAA, pages 215–224, 1997.

[218] V. Raman, G. Swart, L. Quian, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle. Constant-time query processing. In Proc. IEEE
Conference on Data Engineering, pages 60–69, 2008.

[219] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled query execu-
tion engine using JVM. In Proc. IEEE Conference on Data Engineering,
2006.

[220] J. Rao and K. Ross. Making b+-trees cache conscious in main memory.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
475–486, 2000.

[221] L. Rashid, W. Hassanein, and M. Hammad. Exploiting multithreaded
architectures to improve the hash join operation. In MEDEA, pages 46–
53, 2008.

[222] G. Ray, J. Haritsa, and S. Seshadri. Database compression: A perfor-
mance enhancement tool. In COMAD, 1995.

[223] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of
hashing methods and its implications on query processing. Proc. of the
VLDB Endowment (PVLDB), 9(3), 2015.

[224] D. Rinfret, P. O’Neil, and E. O’Neil. Bit-sliced index arithmetic. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 47–57, 2001.

[225] K. Ross. Conjunctive selection conditions in main memory. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 108–120, 2002.

BIBLIOGRAPHY 171

[226] K. Ross. Selection conditions in main memory. ACM Trans. on Database
Systems, 23(1):132–161, 2004.

[227] K. Ross. Efficient hash probes on modern processors. In Proc. IEEE
Conference on Data Engineering, pages 1297–1301, 2007.

[228] A. Roth and G. Sohi. Effective jump-pointer prefetching for linked data
structures. In Int. Symp. on Computer Architecture, pages 111–121, 1999.

[229] M. Roth and S. Horn. Database compression. SIGMOD Record, 22(3):31–
39, 1993.

[230] P. Roy, J. Teubner, and R. Gemulla. Low-latency handshake joins. Proc.
of the VLDB Endowment (PVLDB), 7(9):709–720, 2014.

[231] G. Sacco. Index access with a finite buffer. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 301–309, 1887.

[232] G. Sacco and M. Schkolnick. A technique for managing the buffer pool in
a relational system using the hot set model. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 257–262, 1982.

[233] G. Sacco and M. Schkolnick. Buffer management in relational database
systems. ACM Trans. on Database Systems, 11(4):473–498, 1986.

[234] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer compression using
SIMD instructions. In DaMoN, pages 34–40, 2010.

[235] F. Schuhknecht, P. Khanchandani, and J. Dittrich. On the surprising
difficulty of simple things: the case of radix partitioning. PVLDB, 8(9),
2015.

[236] L. Shapiro, S. Ni, and G. Graefe. Full-time data compression: An adt for
database performance. Unpublished, 1993.

[237] A. Shatdal, C. Kant, and J. Naughton. Cache conscious algorithms for re-
lational query processing. Technical Report 1234, U Wisconsin, Madison,
1994.

[238] R. Sinha and J. Zobel. Cache-conscious sorting of large sets of strings
with dynamic tries. J. of Exp. Algorithmics, 9(1.5), 2004.

[239] B. Sinharoy, J. Van Norstrand, R. Eickemeyer, H. Le, J. Leenstra,
D. Nguyen, B. Königsburg, K. Ward, M. Brown, J. Moreira, D. Lev-
itan, S. Tung, D. Hrusecky, J. Bishop, M. Gschwind, M. Boersma,
M. Kaltenbach, T. Karkhanis, and K. Fernsler. IBM POWER8 processor
core microarchitecture. IBM J. Res. & Dev., 59(1):2, 2015.

[240] J. Sompolski. Just-in-time Compilation in Vectorized Query Execution.
PhD thesis, University of Warsaw, 2011.

172 BIBLIOGRAPHY

[241] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compila-
tion in query execution. In Int. Workshop on Data Management on New
Hardware (DaMoN), 2011.

[242] D. Sorin, M. Hill, and D. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool, 2011.

[243] W. Starke, J. Stuecheli, D. Daly, J. Dodwon, F. Auernhammer, P. Sag-
meister, G. Guthrie, C. Marino, M. Siegel, and B. Blaner. The cache and
memory subsystem of the IBM POWER8 processor. IBM J. Res. & Dev.,
59(1):1, 2015.

[244] A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi. SIMD-based
decoding of posting lists. In CIKM, page 317, 2011.

[245] B. Stroustrup, editor. The C++ Programming Language. Addison-
Wesley, 4th edition, 2013.

[246] M. Switakowski, P. Boncz, and M. Zukowski. From cooperative scans to
predictive buffer management. PVLDB, 5(12):1759–1770, 2012.

[247] M. Thorup. Even strongly universal hashing is pretty fast. In SODA,
pages 496–497, 2000.

[248] M. Thorup. String hashing for linear probing. In SODA, pages 655–664,
2009.

[249] M. Thorup and Y. Zhang. Tabulation-based 4-universal hashing with
applications to second moment estimation. In SODA, pages 615–624,
2004.

[250] M. Thorup and Y. Zhang. Tabulation-based 5-universal hashing and
linear probing. In ALENEX, pages 62–76, 2010.

[251] M. Thorup and Y. Zhang. Tabulation-based 5-independent hashing with
applications to linear probing and second moment estimation. SIAM J.
Comp., 41(2):293–331, 2012.

[252] S. Viglas. Just-in-time compilation for SQL query processing. In Proc.
IEEE Conference on Data Engineering, pages 1298–1301, 2014.

[253] A. Viola. Analysis of Hashing Algorithms and a New Mathematical Trans-
form. PhD thesis, 1995.

[254] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson. An experimental
study of bitmap compression vs. inverted list compression. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 993–1008, 2017.

[255] J. Wassenberg and P. Sanders. Engineering a multi core radix sort. In
EuroPar, pages 160–169, 2011.

[256] M. Wegman and J. Carter. New classes and applicatoins of hash functions.
In Ann. Symp. on Foundations of Computer Science, 1979.

BIBLIOGRAPHY 173

[257] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The imple-
mentation and performance of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[258] R. Wilhelm and D. Maurer. Compiler Design. Addison Wesley, 1995.

[259] T. Willhalm, I. Oukid, I. Müller, and F. Färber. Vectorizing database
column scans with complex predicates. In ADMS, pages 1–12, 2013.

[260] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. SIMD-scans: Ultra fast in-memory table scan using on-
chip vector processing units. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 385–394, 2009.

[261] A. Williams. C++ Concurrency In Action. Manning, 2012.

[262] P. Wong, Z. Feng, W. Xu, E. Lo, and B. Kao. TLB misses – the missing
issue of adaptive radix tree? In DaMoN, 2015.

[263] S. Wu, Y. Shuf, H. Min, H. Franke, B. Iyer, F. Villafuerte, and J. Watts.
Analyzing and improving table space allocation. In Australasian Database
Conference (ADC), 2011.

[264] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of mem-
ory hierarchy parameters. Technical Report TR2004-1970, Cornell Uni-
versity, 2004.

[265] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of mem-
ory hierarchy parameters. In ACM SIGMETRICS, pages 181–192, 2005.

[266] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of mem-
ory hierarchy parameters. In Int. Conf. on Quantitative Evaluation of
Systems, 2005.

[267] H. Zhang, G. Chen, B. Ooi, K.-L. Tan, and M. Zhang. In-memory big
data management and processing: A survey. IEEE Trans. on Knowledge
and Data Engineering, 27(7):1920–1948, 2015.

[268] H. Zhang, G. Chen, B. Ooi, W.-F. Wong, S. Wu, and Y. Xia. Anti-
caching-based elastic memory management for big data. In Proc. IEEE
Conference on Data Engineering, 2015.

[269] X. Zhao, R. Johnson, and N. Martin. DBJ – a dynamic balancing hash
join algorithm in multiprocessor database systems. In Proc. of the Int.
Conf. on Extending Database Technology (EDBT), pages 301–308, 1994.

[270] X. Zhao, R. Johnson, and N. Martin. DBJ – a dynamic balancing hash
join algorithm in multiprocessor database systems. Information Systems,
19:89–100, 1994.

[271] J. Zhou and K. Ross. Implementing database operations using SIMD
instructions. In Proc. of the ACM SIGMOD Conf. on Management of
Data, 2002.

174 BIBLIOGRAPHY

[272] J. Zhou and K. Ross. Buffering database operations for enhanced in-
struction cache performance. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 191–202, 2004.

[273] M. Zukowski, S. Heman, and P. Boncz. Architecture-conscious hashing.
In DaMoN, 2006.

	Introduction
	Hardware
	Memory
	Aligned vs. Unaligned Access
	Address Translation (Virtual Memory)
	Caches and the Memory Hierachie
	Some Numbers of Some Processors
	Prefetching

	CPU
	Pipelining
	Out-Of-Order-Execution
	(Cost of) Branch (Mis-) Prediction
	SIMD
	Simultaneous multithreading (SMT)

	Cache Coherence
	Synchronization Primitives
	NUMA
	Performance Monitoring Unit
	References

	Operating System
	Hash Tables
	Hash Functions
	Why hash-functions matter
	Properties
	Uniformity
	Average-case Search Length
	Expected Length of the Longest Probe Sequence (llps)
	Universality
	k-Universal
	(c,k)-Universal
	Dietzfelbinger: Universality without Primes
	k-universal Hash Functions
	Tabulation Hashing
	Hashing string values

	Hash Table Organization
	Two versions of Chained Hashtable
	Cuckoo-Hashing
	Robin-Hood-Hashing
	Hopscotch-Hashing

	Compression
	Storage Layout
	Row stores and Column Stores
	Row format (NSM)
	Column format (DSM)
	Hybrid Storage Model (PDSM)
	Cache Lines in Row and Column Format

	Organization on Pages
	Row Layouts
	Column Layouts
	BitPackingH
	BitSliceH
	BitSliceV
	ByteSliceV

	DB2 BLU
	Column Groups
	Compression
	Cell/Region
	Page Format
	Page Compression
	Small Materialized Aggregates (SMA)
	Global Code
	Scan

	SQL Server
	Apollo
	Hekaton

	Large Objects

	Physical Algebra: Processing Modes
	Pull Algebra
	Push Algebra
	Interface
	Scan
	Select
	Simplest Hash-Join

	Materialization Granularity/Call Granularity
	Tuple-wise (single tuple materialization)
	Complete (full materialization)
	Blockwise (partial materialization)

	Expression Evaluation
	Introduction
	Result Representation
	Interpretation: Operator Tree
	Interpretation: A Virtual Machine (AVM)
	AVM: row: single tuple
	AVM: row: vectorized
	AVM: col: single
	AVM: col: vectorized
	AVM: col: vectorized with SIMD

	Compilation
	Comparison: simple map program
	AVM: col: Vectorized SIMD: selection

	Physical Algebra: Implementation
	General Implementation Techniques
	Blocking/Tiling
	Partitioning
	Extraction
	Loop Fusion

	Scan/Select
	Join
	Simple Hash Table
	Extraction
	Partitioning
	Software Prefetching
	Group Prefetchin
	Software-Pipelined Prefetching
	Rolling Prefetching
	Asynchronous Memory Access Chaining (AMAC)

	Partitioning
	Sort Operator
	Grouping and Aggregation

	Indexing
	T-Tree
	Cache Conscious B+-Tree
	Skip Lists
	ART

	Boolean Expressions
	Cardinality Estimation
	Sketches for Joins
	Tug-Of-War (AGMS)
	FastAGMS
	FastCount
	CountMin

	Parallelism
	Amdahl's Law
	Parallelization Constructs, Frameworks, and Libraries
	Kinds of Parallelism
	Morsel-Driven Parallelism
	Synchronization of Index Structures

	Memory Management
	Thread Architecture
	Transaction Processing
	Handling updates
	Lock Manager
	The Gray/Reuter Lock Manager
	Starburst Lock Manager
	Starburst MM Lock Manager GoLe92
	Fekete Lock Manager
	Pointers to Literature

	Snapshot isolation
	Logging

	The End
	Tools and System Calls
	Pointers to the Literature
	Overview Papers/Books
	Timeline (Milestones)
	Storage Layouts
	Memory Management
	Hashing
	Compression
	Expression Evaluation Techniques
	Indexes
	Physical Algebra
	Prefetching
	Instruction-Level Parallelism (ILP, SIMD)
	Thread-Level Parallelism (TLP)
	NUMA
	Cost Models
	Code Generation
	Buffer Management
	Buffer Manager
	Buffering Without Buffermanager

	Recovery/Checkpointing
	Storage Manager
	System Overviews
	todo

