Aufgabe 1 (1+1+1+1+2+1+2=9 Punkte)

erhaltene Punkte:

Sei K ein Körper, sei $n \in \mathbb{N}$.

- (a) Wieviele Elemente hat die symmetrische Gruppe S_n ?
- (b) Wann heißt eine Familie $(v_i)_{i \in I}$ von Vektoren $v_i \in V$ eines K-Vektorraums V linear unabhängig?
- (c) Sei V ein K-Vektorraum der Dimension n, sei $(v_1, ..., v_n)$ eine Basis von V, und sei $(w_1, ..., w_k)$ ein Tupel von linear unabhängigen Vektoren. Was sagt hier der Basisaustauschsatz?
- (d) Wie sieht eine Vandermonde-Matrix in $M(n \times n, K)$ aus? Wie lautet die Formel für ihre Determinante?
- (e) Sei V ein K-Vektorraum. Geben Sie die vier Formeln an, die beschreiben, in welcher Weise die skalare Multiplikation $K \times V \to V$ mit der Multiplikation auf K, mit dem Eins-Element 1_K von K, mit der Addition auf K und mit der Addition auf V verträglich ist. Schreiben Sie Elemente von K als λ oder λ_1, λ_2 und Elemente von V als v oder v_1, v_2 (je nach Bedarf).
- (f) Sei V ein Euklidischer Vektorraum mit Skalarprodukt ϕ . Formulieren Sie die Cauchy-Schwarzsche Ungleichung (Sie müssen nicht zusätzlich festhalten, wann Gleichheit gilt).
- (g) Sei X eine nichtleere Menge, und sei $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Abbildung. Welche drei Eigenschaften muß d erfüllen, damit es eine Metrik ist?

.

Aufgabe 2 (2+1+1+1=5 Punkte)

erhaltene Punkte:

(a) Schreiben Sie die Permutationen

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 1 & 6 & 7 & 5 & 8 & 2 \end{pmatrix} \in S_8$$
 und $\beta = (1\ 2)(1\ 3)(1\ 4)(1\ 5) \in S_5$

als Produkte zyklischer Permutationen mit disjunkten Trägern.

(b) Vervollständigen Sie die folgende Tabelle: Schreiben Sie in die obere Zeile der Größe nach sortiert die Elemente von \mathbb{Z}_9 , die ein Inverses bezüglich der Multiplikation \cdot_9 in \mathbb{Z}_9 haben, und schreiben Sie in die untere Zeile die inversen Elemente. (\mathbb{Z}_9 enthält nur die Zahlen 0,1,2,3,4,5,6,7,8; wir möchten hier und im Teil (c) keine anderen Zahlen sehen.)

1	2		
1	5		

(c) Schreiben Sie in die mittlere Zeile der folgenden Tabelle die Potenzen $2^j \in \mathbb{Z}_9$ und in die untere Zeile die Potenzen $4^j \in \mathbb{Z}_9$, jeweils für $j \in \{0, 1, 2, 3, 4, 5, 6\}$.

\int	0	1	2	3	4	5	6
2^{j}							
4^{j}							

(d) Berechnen Sie den Realteil $\Re(z)$ und den Imaginärteil $\Im(z)$ der komplexen Zahl $z=\frac{20}{3+2i}$.

Aufgabe 3 (5 Punkte)

erhaltene Punkte:

Seien

$$A := \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix} \in M(3 \times 4, \mathbb{F}_3) \quad \text{und} \quad b := \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \in M(3 \times 1, \mathbb{F}_3).$$

Bestimmen Sie eine Lösung $y_{inh} \in M(4 \times 1, \mathbb{F}_3)$ des inhomogenen Gleichungssystems Ax = b, und bestimmen Sie den Lösungsraum Lös(A,0) des homogenen Gleichungssystems Ax = 0. Bringen Sie dazu die Matrix A mindestens auf Zeilenstufenform, und schreiben Sie den Vektor b rechts neben die Matrix A und transformieren ihn gleich mit. Schreiben Sie hinreichend viele Zwischenschritte auf, so dass wir sehen können, wie Sie gerechnet haben. ($\mathbb{F}_3 = \mathbb{Z}_3$ enthält nur die Zahlen 0,1,2; wir möchten hier keine anderen Zahlen sehen.)

Aufgabe 4 (2+2=4 Punkte)

erhaltene Punkte:

(a) Berechnen Sie irgendwie die Determinanten der beiden Matrizen

$$A := \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \\ 5 & 6 & 9 & 10 \\ 7 & 8 & 11 & 12 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 10 \end{pmatrix}.$$

(b) Sei $n \in \mathbb{N}$, sei K ein Körper, sei $\lambda \in K$, und sei $p(t) = t^n + p_{n-1}t^{n-1} + ... + p_1t + p_0 \in K[t]$ ein Polynom mit $p(\lambda) = 0$. Finden Sie einen Eigenvektor mit Eigenwert λ der Matrix

$$A := \begin{pmatrix} 1 & & & \\ & & \ddots & \\ & & & 1 \\ -p_0 & -p_1 & \cdots & -p_{n-1} \end{pmatrix} \in M(n \times n, K),$$

(wo nichts steht, stehen Nullen) und beweisen Sie, dass er ein Eigenvektor ist.

Aufgabe 5 (2+3=5 Punkte)

erhaltene Punkte:

Betrachten Sie den \mathbb{R}^3 mit dem Standardskalarprodukt ϕ . Die Vektoren

$$a_1 := (1, 1, 0), \quad a_2 := (0, 1, 1), \quad a_3 := (-1, 0, 0)$$

bilden eine Basis des \mathbb{R}^3 .

(a) Der Winkel zwischen a_i und a_j für $(i,j) \in \{(1,2),(1,3),(2,3)\}$ sei α_{ij} . Geben Sie die Formel an, die $\cos \alpha_{ij}$ mit dem Skalarprodukt und den Normen von a_i und a_j ausdrückt. Schreiben Sie in die folgende Tabelle die Werte rein.

$\ a_1\ $	$ a_2 $	$ a_3 $	$\cos \alpha_{12}$	$\cos \alpha_{13}$	$\cos \alpha_{23}$	α_{12}	α_{13}	α_{23}

(b) Wenden Sie auf diese Basis das Gram-Schmidtsche Orthogonalisierungsverfahren an. Nennen Sie die erhaltene Orthogonalbasis (b_1, b_2, b_3) . Normieren Sie sie zu einer ON-Basis (c_1, c_2, c_3) . Schreiben Sie alle Rechnungen und die Basen (b_1, b_2, b_3) und (c_1, c_2, c_3) auf.

Aufgabe 6 (1+3=4 Punkte)

erhaltene Punkte:

Sei V ein K-Vektorraum der Dimension $n \in \mathbb{N}$. Sei $g: V \to V$ ein Automorphismus, sei $h: V \to V$ ein Endomorphismus, und sei $\mathcal{B} = (b_1, ..., b_n)$ eine Basis von V. Dann ist auch $\mathcal{C} := g(\mathcal{B}) := (g(b_1), ..., g(b_n))$ eine Basis von V. Die Basiswechselmatrix $M(\mathcal{B}, \mathcal{C})$ mit $\mathcal{C} = \mathcal{B} \cdot M(\mathcal{B}, \mathcal{C})$ ist in GL(n, K), sie erfüllt $M(\mathcal{C}, \mathcal{B}) = M(\mathcal{B}, \mathcal{C})^{-1}$, und sie ist gleich zur Matrix $M(\mathcal{B}, g, \mathcal{B})$ (denn $g(\mathcal{B}) = \mathcal{B} \cdot M(\mathcal{B}, g, \mathcal{B})$).

- (a) Drücken Sie $M(\mathcal{C}, h, \mathcal{C})$ mithilfe der Matrizen $M(\mathcal{B}, \mathcal{C})$ und $M(\mathcal{B}, h, \mathcal{B})$ aus.
- (b) Zeigen Sie:

$$g \circ h = h \circ g \iff M(\mathcal{B}, h, \mathcal{B}) = M(\mathcal{C}, h, \mathcal{C}).$$

Hinweis: $g \circ h = h \circ g$ ist äquivalent zu $M(\mathcal{B}, g \circ h, \mathcal{B}) = M(\mathcal{B}, h \circ g, \mathcal{B})$.

Aufgabe 7 (4 Punkte)

erhaltene Punkte:

Sei V ein K-Vektorraum der Dimension $n \in \mathbb{N}$. Die Menge $\operatorname{End}(V)$ der Endomorphismen von V ist ein K-Vektorraum der Dimension n^2 . Für jedes $h \in \operatorname{End}(V)$ ist die Menge $\{g \in \operatorname{End}(V) \mid g \circ h = h \circ g\}$ ein Untervektorraum von $\operatorname{End}(V)$ (das brauchen Sie nicht zu zeigen).

Sei nun $h \in \text{End}(V)$, und sei $v_0 \in V$ ein Vektor, so dass $(v_0, h(v_0), h^2(v_0), ..., h^{n-1}(v_0))$ eine Basis von V ist. Zeigen Sie, dass dann (id, $h, h^2, ..., h^{n-1}$) eine Basis von $\{g \in \text{End}(V) \mid g \circ h = h \circ g\}$ ist.