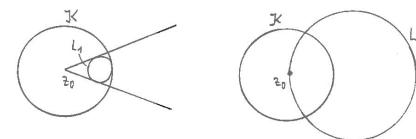
Übungsaufgaben zur Geometrie

1. (1+2 Punkte)

- (a) Sei \mathcal{K} ein Kreis in \mathbb{C} mit Mittelpunkt z_0 und Radius r. Die Inversion $S_{\mathcal{K}}: \mathbb{C} \{z_0\} \to \mathbb{C} \{z_0\}$ am Kreis \mathcal{K} bildet jeden Punkt $z \in \mathbb{C} \{z_0\}$ auf einen Punkt z^* ab. z^* ist dadurch bestimmt, dass z und z^* auf der gleichen Halbgeraden liegen, die in z_0 anfängt, und dass sie eine bestimmte Gleichung erfüllen.
 - Geben Sie die Gleichung an.
- (b) Die folgenden beiden Skizzen zeigen jeweils \mathcal{K} und einen zweiten Kreis L_1 bzw. L_2 . Die erste Skizze zeigt auch 2 Halbgeraden.
 - Kopieren Sie die Skizzen auf ein Lösungsblatt und tragen Sie die (oder aussagekräftige Teile von ihnen) verallgemeinerten Kreise $S_{\mathcal{K}}(L_1)$ bzw. $S_{\mathcal{K}}(L_2)$ ein.



- 2. $(2+5+2 \ Punkte)$ Ein Polytop ist ein Durchschnitt im \mathbb{R}^3 von endlich vielen Halbräumen, sofern dieser Durchschnitt beschränkt ist. Dann ist
 - e := die Anzahl der Ecken des Polytops,
 - für $s \in \mathbb{N}_{\geq 3}$ e_s := die Anzahl der Ecken des Polytops, von denen s Kanten ausgehen,
 - k := die Anzahl der Kanten des Polytops,
 - f := die Anzahl der Polygonflächen des Polytops,
 - für $t \in \mathbb{N}_{\geq 3}$ $f_t :=$ die Anzahl der Polygonflächen des Polytops, die t Ecken haben.
 - (a) Formulieren Sie 3 Formeln (ohne Beweise): die Eulersche Polyederformel; eine Formel, die k und das Tupel $(e_s)_{s\geq 3}$ verbindet; eine Formel, die k und das Tupel $(f_t)_{t\geq 3}$ verbindet.
 - (b) Die 5 platonischen Körper sind seit über 2000 Jahren bekannt. Jeder sollte sie kennen. Füllen Sie die folgende Tabelle aus. Es gibt jeweils nur ein s mit $e_s \neq 0$ und nur ein t mit $f_t \neq 0$.

$s \text{ mit } e_s \neq 0$	$t \min f_t \neq 0$	$e = e_s$	$\mid k \mid$	$f = f_t$	
					Tetraeder
					$W\ddot{u}rfel = Hexaeder$
					Oktaeder
					Dodekaeder
					Ikosaeder

- (c) Aus dem Ikosaeder erhält man durch geeignetes Abschneiden von Umgebungen der Ecken das abgestumpfte Ikosaeder, ein archimedisches Polytop, dessen Polygonflächen regelmäßige Fünfecke und Sechsecke sind. Geben Sie f_5 , f_6 , k und alle s und e_s mit $e_s \neq 0$ an.
- 3. $(3+3 \ Punkte)$ Hier wird der \mathbb{R}^3 mit dem Spaltenvektorraum $M(3\times 1,\mathbb{R})$ identifiziert. Dann operieren Matrizen in $M(3\times 3,\mathbb{R})$ durch Linksmultiplikation auf \mathbb{R}^3 . Dann ist

$$SO(3) = \{ A \in SL(3, \mathbb{R}) \, | \, A^t = A^{-1} \}$$

die Gruppe der Drehungen des \mathbb{R}^3 mit Drehachsen durch 0. Außer bei id = $\mathbf{1}_3$ sind die Drehachsen genau die Eigenräume mit Eigenwert 1 der Drehungen.

Die 5 Platonischen Körper werden so in den \mathbb{R}^3 eingebettet, dass ihr Mittelpunkt der Nullpunkt ist. Dann ist für jeden Platonischen Körper die Gruppe der Drehungen, die ihn auf sich abbilden (d.h. die ihn *invariant* lassen), eine endliche Untergruppe von SO(3).

Die folgende Tabelle gibt Informationen über die (endliche) Gruppe \mathcal{O} der "orientierungserhaltenden Symmetrien" des Würfels, d.h. der Elemente von SO(3), die einen Würfel im \mathbb{R}^3 mit Mittelpunkt in 0 auf sich abbilden.

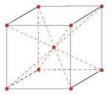
X :=Anzahl der Drehachsen eines Typs,

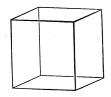
Y :=Anzahl der Drehungen um Drehachsen eines Typs,

X	Typ der Drehachsen	Drehwinkel			
_	_	0	(id:) 1		
3	durch gegenüberliegende Flächenmittelpunkte	$0 \\ \frac{1}{2}\pi, \ \pi, \ \frac{3}{2}\pi$	$3 \cdot 3 = 9$		
6	durch gegenüberliegende Kantenmittelpunkte	π	6		
4	durch gegenüberliegende Ecken	$\frac{2}{3}\pi, \frac{4}{3}\pi$	$4 \cdot 2 = 8$		
$\Rightarrow \mathcal{O} = 1 + 9 + 6 + 8 = 24.$					

- (a) Machen Sie eine analoge Tabelle für die Gruppe \mathcal{T} der orientierungserhaltenden Symmetrien eines Tetraeders und bestimmen Sie $|\mathcal{T}|$.
- (b) Machen Sie eine analoge Tabelle für die Gruppe \mathcal{I} der orientierungserhaltenden Symmetrien eines Dodekaeders und bestimmen Sie $|\mathcal{I}|$.

Tetraeder





Würfel

Dodekaeder

Ikosaeder

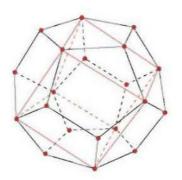
Bemerkung: Es gilt

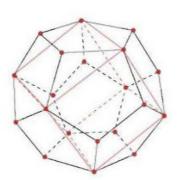
$$\mathcal{T} \cong A_4, \quad \mathcal{O} \cong S_4, \quad \mathcal{I} \cong A_5.$$

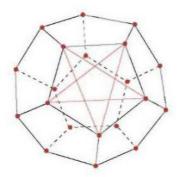
Bei \mathcal{T} werden die 4 Ecken permutiert. Man überprüft leicht, dass die Drehungen genau die geraden Permutationen geben.

Bei \mathcal{O} muß man die Operation auf den 4 Raumdiagonalen im Würfel ansehen. Jedes Element von \mathcal{O} permutiert diese. Wegen $|\mathcal{O}| = 24 = |S_4|$ wird jede Permutation als Drehung realisiert.

Bei \mathcal{I} muß man zuerst einmal wissen und verstehen, dass es im Dodekaeder genau 5 regelmäßige Würfel gibt, deren Ecken Ecken des Platonischen Körpers sind. Diese werden durch die Drehungen in \mathcal{I} permutiert. Es erfordert aber noch Anstrengung zu sehen, dass genau die geraden Permutationen realisiert werden.







4. $(3+3 \ Punkte)$ Hier wird der \mathbb{R}^2 mit dem Spaltenvektorraum $M(2 \times 1, \mathbb{R})$ identifiziert. Dann operieren Matrizen in $M(2 \times 2, \mathbb{R})$ durch Linksmultiplikation auf \mathbb{R}^2 . Dann ist

$$SO(2) = \{ A \in SL(2, \mathbb{R}) \mid A^t = A^{-1} \} = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \mid \alpha \in [0, 2\pi) \right\}$$

die Gruppe der Drehungen d_{α} um Winkel $\alpha \in [0, 2\pi)$ und mit Mittelpunkt 0. Und die Gruppe

$$O(2) = SO(2) \cup SO(2) \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= SO(2) \cup \left\{ \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix} \mid \alpha \in [0, 2\pi) \right\} \stackrel{\text{(als Menge)}}{\approx} S^1 \cup S^1$$

enthält neben den Drehungen auch die Spiegelungen s_v an Geraden $\mathbb{R} \cdot v$ mit $v \in \mathbb{R}^2 - \{0\}$. Bei O(2) parametrisiert die eine S^1 die Drehungswinkel der Drehungen, und die andere S^1 parametrisiert die Spiegelungsachsen der Spiegelungen.

Drehungen und Spiegelungen kommutieren nicht, sondern es gilt die Beziehung

$$d_{\alpha} \circ s_{v} \circ d_{\alpha}^{-1} = s_{d_{\alpha}(v)}.$$

- (a) Beweisen Sie diese Formel und machen Sie eine Skizze dazu.
- (b) Vervollständigen Sie (ohne Beweis) die folgende Tabelle zur Gruppenstruktur von O(2). Der Winkel zwischen w und v soll γ genannt werden (also ist $-\gamma$ der Winkel zwischen v und w).

0	d_{eta}	s_w	
d_{α}	$d_{\alpha} \circ d_{\beta} = d_{\alpha + \beta}$	$d_{\alpha} \circ s_w = s_{\dots}$	
s_v	$s_v \circ d_\beta = s_{\dots}$	$s_v \circ s_w = d_{\dots}$	