1. Klausur zur Geometrie im FSS 2018, mit Lösungen

- 1. (3 Punkte)
 - (a) (2P) Geben Sie die Definition eines affinen Raums \mathcal{A} über einem Körper K an.
 - (b) (1P) Geben Sie ein Beispiel eines affinen Raums \mathcal{A} über einem Körper K an, bei dem es mehr Kollineationen als semiaffine bijektive Abbildungen gibt. Begründen Sie das Beispiel.

Lösung:

(a) Ein affiner Raum ist ein Tripel $(A, T(A), \varphi_A)$. Hier ist A eine nichtleere Menge, T(A) ist ein K-Vektorraum, und

$$\varphi_{\mathcal{A}}: \mathcal{A} \times \mathcal{A} \to T(\mathcal{A})$$
$$(x, y) \mapsto \overrightarrow{xy}$$

ist eine Abbildung mit den folgenden zwei Eigenschaften:

(i)
$$\forall x, y, z \in \mathcal{A}$$
 ist $\overrightarrow{xy} + \overrightarrow{yz} = \overrightarrow{xz}$.

(ii) Für jeden Punkt $p \in \mathcal{A}$ ist die Abbildung

$$\varphi_{\mathcal{A},p} =: \varphi_{\mathcal{A}}(p,.) : \mathcal{A} \to T(\mathcal{A}), \quad x \mapsto \overrightarrow{px},$$

bijektiv.

- (b) $(A, K) := (\mathbb{R}, \mathbb{R})$. Hier besteht A selbst nur aus einer einzigen Geraden. Daher ist jede Bijektion $A \to A$ eine Kollineation, insbesondere auch jede nicht stetige Bijektion. Aber jede semiaffine bijektive Abbildung ist stetig. Daher gibt es mehr Kollineationen als semiaffine bijektive Abbildungen.
- 2. (2 Punkte) Ein Polytop ist ein Durchschnitt im \mathbb{R}^3 von endlich vielen Halbräumen, sofern dieser Durchschnitt beschränkt ist. Dann ist

e := die Anzahl der Ecken des Polytops,

für $s \in \mathbb{N}_{\geq 3} \quad e_s \ := \ \operatorname{die}$ Anzahl der Ecken des Polytops, von denen s Kanten ausgehen,

k := die Anzahl der Kanten des Polytops,

f:= die Anzahl der Polygonflächen des Polytops,

für $t \in \mathbb{N}_{\geq 3}$ $f_t :=$ die Anzahl der Polygonflächen des Polytops, die t Ecken haben.

Die folgende Tabelle listet die fünf platonischen Körper auf. Bei ihnen gibt es jeweils nur ein s mit $e_s \neq 0$ und nur ein t mit $f_t \neq 0$. Füllen Sie die Tabelle aus.

s mit $e_s \neq 0$	$t \text{ mit } f_t \neq 0$	$e = e_s$	k	$\int f = f_t$	
					Tetraeder
					Würfel = Hexaeder
					Oktaeder
					Dodekaeder
					Ikosaeder

Lösung:

$s \text{ mit } e_s \neq 0$	$t \text{ mit } f_t \neq 0$	$e = e_s$	k	$\int f = f_t$	
3	3	4	6	4	Tetraeder
3	4	8	12	6	Würfel = Hexaeder
4	3	6	12	8	Oktaeder
3	5	20	30	12	Dodekaeder
5	3	12	30	20	Ikosaeder

3. (3 Punkte) Es gibt fünf Klassen von Isometrien des \mathbb{R}^2 . Geben Sie in der folgenden Tabelle ihre Namen, ihre Fixpunktmengen und die Anzahl der Parameter an.

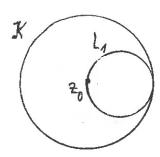
Name	Fixpunktmenge	Anzahl der Parameter

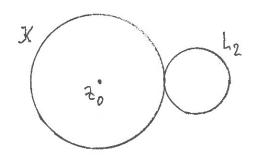
Lösung:

Name	Fixpunktmenge	Anzahl der Parameter	
id	\mathbb{R}^2	0	
Drehung	ein Punkt	3	
Spiegelung	eine Gerade	2	
Gleitspiegelung	Ø	3	
Translation	Ø	2	

4. (3 Punkte)

- (a) (1P) Sei \mathcal{K} ein Kreis in \mathbb{C} mit Mittelpunkt z_0 und Radius r. Die Inversion $S_{\mathcal{K}}: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ bildet jeden Punkt $z \in \mathbb{C} \{z_0\}$ auf einen Punkt $z^* \in \mathbb{C} \{z_0\}$ ab. Geben Sie Bedingungen an, die z^* bestimmen (es gibt mehrere Möglichkeiten).
- (b) (2P) Die folgenden beiden Skizzen zeigen jeweils \mathcal{K} und einen zweiten verallgemeinerten Kreis L_1 bzw. L_2 . Tragen Sie in der 1. Skizze den verallgemeinerten Kreis $S_{\mathcal{K}}(L_1)$ und in der 2. Skizze den verallgemeinerten Kreis $S_{\mathcal{K}}(L_2)$ ein.





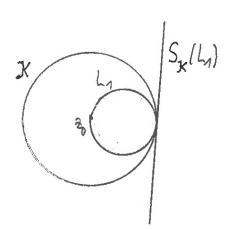
Lösung:

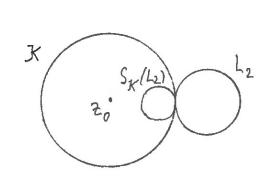
(a) 1. Lösung:

$$z^* = z_0 + \frac{r^2}{\overline{z} - \overline{z}_0}.$$

2. Lösung: z und z^* liegen auf der gleichen Halbgeraden mit Anfangspunkt z_0 und erfüllen $|z-z_0|\cdot|z^*-z_0|=r^2$.

(b) .





- 5. (3 Punkte) Die Menge der Punkte der hyperbolischen Ebene im Scheibenmodell ist das Innere des Einheitskreises, $\mathbb{D}^2 := \{z \in \mathbb{C} \mid |z| < 1\}.$
 - (a) (1P) Geben Sie die Definition einer hyperbolischen Geraden im Scheibenmodell der hyperbolischen Ebene an.
 - (b) (2P) Geben Sie die Definition des hyperbolischen Abstandes zweier Punkte $z_1, z_2 \in \mathbb{D}^2$ mit $z_1 \neq z_2$ im Scheibenmodell der hyperbolischen Ebene an.

Hinweis: Das Doppelverhältnis von vier verschiedenen Punkten $x_1, x_2, x_3, x_4 \in \mathbb{C}$ ist

$$(x_1:x_2;x_3:x_4)=\frac{x_3-x_1}{x_3-x_2}:\frac{x_4-x_1}{x_4-x_2}.$$

Lösung:

- (a) Eine hyperbolische Gerade im Scheibenmodell \mathbb{D}^2 ist der in \mathbb{D}^2 liegende Teil eines zum Rand S^1 von \mathbb{D}^2 orthogonalen verallgemeinerten Kreises.
- (b) Es seien α und β die Schnittpunkte von S^1 mit dem verallgemeinerten Kreis, dessen Schnitt mit \mathbb{D}^2 die hyperbolische Gerade durch z_1 und z_2 ist. α und β sind so benannt, dass die Punkte α, z_1, z_2 und β in dieser Reihenfolge auf dem verallgemeinerten Kreis liegen. Dann ist

$$d_{\mathbb{D}^2}(z_1, z_2) := \log((z_1 : z_2; \beta : \alpha)) = \log\left(\frac{\beta - z_1}{\beta - z_2} : \frac{\alpha - z_1}{\alpha - z_2}\right).$$

- 6. (4 Punkte)
 - (a) (2P) Eine Matrix $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{R})$ induziert eine gebrochen lineare Abbildung

$$f_A: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}, \quad z \mapsto \frac{az+b}{cz+d},$$

die $\mathbb{R} \cup \{\infty\}$ auf $\mathbb{R} \cup \{\infty\}$ und \mathbb{H} auf \mathbb{H} abbildet und die eine orientierungserhaltende Isometrie von \mathbb{H} als hyperbolischer Ebene ist. Von diesen Abbildungen gibt es drei Typen. Vervollständigen Sie die folgende Tabelle.

Name	Fixpunktmenge	char. Eigenschaft von A	
hyperbolische Transformation	zwei Punkte in $\mathbb{R} \cup \{\infty\}$	$ \mathrm{tr}A > 2$	

- (b) (1P) Geben Sie eine Matrix $A \in SL(2,\mathbb{R})$ mit $f_A = (z \mapsto z+1)$ an. Von welchem Typ ist f_A ? Was sind die Fixpunkte von f_A ?
- (c) (1P) Geben Sie eine Matrix $B \in SL(2,\mathbb{R})$ mit $f_B = (z \mapsto 1 \frac{1}{z})$ an. Von welchem Typ ist f_B ? Was sind die Fixpunkte von f_B ?

Lösung:

(a) .

Name	Fixpunktmenge	charakteristische
		Eigenschaft von A
hyperbolische Transformation	zwei Punkte in $\mathbb{R} \cup \{\infty\}$	$ \mathrm{tr}A > 2$
elliptische Transformation	ein Punkt $z \in \mathbb{H}$ und der Punkt \overline{z}	$ \mathrm{tr}A < 2$
parabolische Transformation	ein Punkt in $\mathbb{R} \cup \{\infty\}$	$ \mathrm{tr}A = 2$

- (b) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, f_A ist parabolisch, der Fixpunkt ist ∞ .
- (c) $B = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$, f_B ist elliptisch, der Fixpunkt in \mathbb{H} ist $z = e^{2\pi i/6}$, (denn

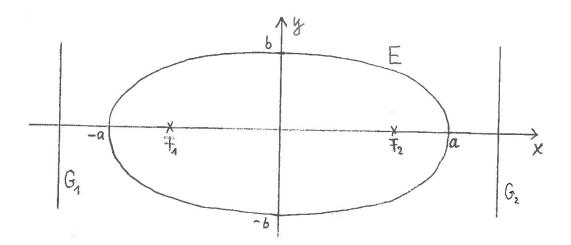
$$z = 1 - \frac{1}{z} \iff (z - 1)z = -1 \iff z^2 - z + 1 = 0 \iff z = e^{\pm 2\pi i/6},$$

der andere Fixpunkt ist $\overline{z} = e^{-2\pi i/6}$.

7. (3 Punkte) Seien $a, b \in \mathbb{R}_{>0}$ mit a > b. Die folgende Skizze zeigt die Ellipse

$$E := \{(x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\},$$

die Brennpunkte F_1 und F_2 und die Leitgeraden G_1 und G_2 .



Die Exzentrizität der Ellipse ist $\varepsilon = \sqrt{1 - \frac{b^2}{a^2}} \in \mathbb{R}_{>0}$.

Formulieren Sie die drei (in der Vorlesung so genannten) ästhetischen Eigenschaften.

Lösung:

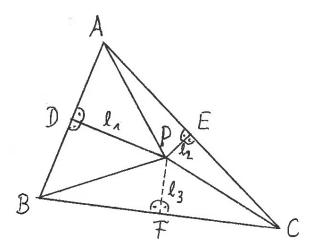
(1)
$$E=\{P\in\mathbb{R}^2\,|\,\frac{d(P,F_i)}{d(P,G_i)}=\varepsilon\}\quad\text{für }i\in\{1,2\}.$$

(2)
$$E = \{ P \in \mathbb{R}^2 \mid d(P, F_1) + d(P, F_2) \} = 2a.$$

- (3) Eintrittswinkel = Austrittswinkel. Genauer: Ein Lichtstrahl, der in F_1 startet und an der Ellipse reflektiert wird, läuft danach durch F_2 .
- 8. (3 Punkte) Satz vom Mittelsenkrechtenschnittpunkt: Die drei Mittelsenkrechten eines Dreiecks schneiden sich in einem Punkt.

Beweisen Sie diesen Satz und machen Sie eine Skizze zu Ihrem Beweis.

Lösung:



 $l_1 := \text{die Mittelsenkrechte auf } AB.$

 $D := \operatorname{der} \operatorname{Schnittpunkt} \operatorname{von} l_1 \operatorname{mit} AB.$

 $l_2 := \text{die Mittelsenkrechte auf } AC.$

 $E := \operatorname{der} \operatorname{Schnittpunkt} \operatorname{von} l_2 \operatorname{mit} AC.$

 $P := \operatorname{der} \operatorname{Schnittpunkt} \operatorname{von} l_1 \operatorname{und} l_2.$

 $l_3 := \text{das Lot von } P \text{ auf } BC.$

 $F := \operatorname{der} \operatorname{Schnittpunkt} \operatorname{von} l_3 \operatorname{mit} BC.$

Die Dreiecke $\Delta(ADP)$ und $\Delta(BDP)$ sind kongruent, denn die Winkel in D sind gleich (nämlich beide $\pi/2$) und $d(A,D)=d(B,D),\ d(D,P)=d(D,P).$ Daher ist d(B,P)=d(A,P).

Analog folgt d(A, P) = d(C, P). Es folgt d(B, P) = d(C, P).

Die Dreiecke $\Delta(BPF)$ und $\Delta(CPF)$ sind kongruent, denn zwei Seiten sind gleich lang, nämlich d(B,P)=d(C,P) und d(P,F)=d(P,F), und die der längeren Seite gegenüberliegenden Winkel sind gleich (die Winkel in F sind beide $\pi/2$).

Daher ist d(B, F) = d(C, F). Daher ist l_3 die Mittelsenkrechte auf BC. Daher ist P der Schnittpunkt der drei Mittelsenkrechten.