University of Mannheim

Scientific Computing, B6 26, C306, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#9

Due on 07.05.2023 (before 13:00).

1. Tangent Cone

Let $X:=\left\{x \in \mathbb{R}^{2}: x_{1} \geq x_{2}^{2}, x_{2} \geq x_{1}^{2}\right\}$.
Draw a sketch of the feasible region X. Determine $\mathcal{T}\left(X,(0,0)^{\top}\right)$ and add it to the sketch.

2. Tangent Cone Describes Admissible Directions

We introduced the tangent cone $\mathcal{T}(X, d)$ to describe "admissible directions". A much more intuitive description for the set of admissible directions woule be given in the set

$$
\mathcal{Z}(X, x)=\left\{d \in \mathbb{R}^{n}: \exists \bar{\alpha}>0: x+\alpha d \in X \forall \alpha \in[0, \bar{\alpha}]\right\}
$$

Consider now the constrained optimization problem

$$
\begin{aligned}
\min f\left(x_{1}, x_{2}\right) & \\
\text { s.t. } x_{2}-\left(x_{1}^{3}+x_{1}\right) & =0 \\
x_{1}+1 & \geq 0
\end{aligned}
$$

with $f\left(x_{1}, x_{2}\right)=x_{2}$.
(i) Sketch the feasible region $X \subset \mathbb{R}^{2}$.
(ii) Determine the tangent cone $\mathcal{T}(X, x)$ w.r.t. the feasible region X for the points $(0,0)^{\top}$ and $(-1,-2)^{\top}$, and verify the necessary optimality conditions of Theorem 11.5.
(iii) Determine the set of admissible directions $\mathcal{Z}(X, x)$ for the points $(0,0)^{\top}$ and $(-1,-2)^{\top}$. Use the result to explain the necessity of the tangent cone for the formulation of useful optimality conditions.

Hint: You might use $\mathcal{T}(X, x) \subseteq \mathcal{T}_{l}(g, h, x)$.

3. Constraint Qualification

[4 points]
Show the first statement of Theorem 11.9, i.e. show that the following condition is a constraint qualification at $x \in X$: The functions g_{i} for $i \in \mathcal{A}(x)$ are concave and h is affine linear, i.e.

$$
g_{i}(y) \leq g_{i}(x)+\nabla g_{i}(x)^{T}(y-x) \quad \forall i \in \mathcal{A}(x), y \in X \quad \text { and } \quad h(x)=B x-b
$$

with $B \in \mathbb{R}^{p \times n}, b \in \mathbb{R}^{p}$.

4. Karush-Kuhn-Tucker Conditions

Consider the optimization problem

$$
\begin{equation*}
\min f(x) \quad \text { s.t. } \quad g(x)=x_{1}^{2}-x_{2} \leq 0 \tag{1}
\end{equation*}
$$

with $f(x)=-x_{1}^{2}+2 x_{2}$.
(a) Show that a constraint qualification is satisfied at $x \in X$.
(b) Use the KKT conditions to determine all candidates for minimizers of (1).
(c) Show that a KKT point from (b) is a minimizer of (1).

