
University of Mannheim
Scientific Computing, B6 26, C306, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet #8

Due on 30.04.2023 (before 13:00).

A näıve implementation of Quasi-Newton methods as introduced in the lecture requires the
(explicit) calculation and construction of the (inverse) Hessian approximation Bk ∈ IRn×n. For
large-scale problems, i.e. n is large, the required space O(n2) might be infeasible.

Limited-memory Quasi-Newton methods store only a limited subset of curvature information
(i.e. sk and yk), that is, only the last m vectors. Furthermore, the Bk matrices are never explicitly
formed. Instead, the matrix-vector products Bk · x are directly computed, reducing the required
memory to O(m · n).

In this exercise, you will implement a limited memory inverse BFGS algorithm (see exercise 1)
without explicit formation of the inverse Hessian matrix approximations, and test its effectiveness
on the extended Rosenbrock function.

General remarks to the exercise

� Test and helper functions can be downloaded from the course homepage:
i) Extended Rosenbrock function: extRosenbrock.m and extRosenbrockGradient.m

ii) Powell-Wolfe step size strategy: powellwolfe.m

iii) Iteration output function: outputIteration.m

iv) Explicit DFP and BFGS update functions: updateBFGS.m and updateDFP.m

v) The full-matrix inverse BFGS method (see below) for comparison: bfgsinverse.m

� Inverse BFGS Method
For comparison, the globalized inverse BFGS method (algorithm 12) with Powell-Wolfe step
size strategy for globalization is implemented in bfgsinverse.m. The algorithm stops if either
∥∇f(xk)∥ ≤ tol or a maximum number of iterations is exceeded.
The function header is given as

function X = bfgsinverse(f, gradf, B0, x0, tol, maxit, gamma, eta, output)

where f is a function handle to the objective, gradf a function handle to the objective’s gradient,
B0 an initial inverse Hessian approximation, x0 the initial guess, tol the stopping criterion
tolerance, maxit the maximum number of iterations, and gamma and eta are the parameters of
the Powell-Wolfe step size strategy. The result matrix X contains all generated iterates.
When output is set to true , the algorithm prints in every iteration in a single line: the iteration
number, the norm of the gradient, the contraction rate, the function value, the step size, and
the first 10 components of the current iterate xk.

� Test your program with the extended Rosenbrock function:

f(x) :=

n/2∑
i=1

(
α(x2i − x2

2i−1)
2 + (1− x2i−1)

2
)

for x ∈ IRn with n even

The larger the parameter α, the higher the non-linearity of the problem (and the more difficult
it is to solve). The solution is always x̃ = (1, 1, ..., 1)⊤ with f(x̃) = 0.

� The initial guesses can be generated by x0 = random(’normal’, 0.0, 20.0, [n 1]);

Hint: For testing purposes, it is useful to always initialize the random number generator with a
fixed seed, e.g. 1234, by calling rng(1234) before generating the initial guess.

� Time measurements can be done using the function pair tic() and toc().
When measuring the time, make sure that the output in every iteration is disabled (!)



1. Implement the Limited Memory Inverse BFGS Method (L-BFGS) [6+6 points]

In this exersice, you first implement an algorithm for efficiently calculating a Quasi-Newton
direction without explicitly building the inverse Hessian approximation Bk. In a second step,
you implement a limited-memory BFGS method with Powell-Wolfe step-size strategy for
globalization. Finally, you test the program on an extended (high-dimensional) Rosenbrock
function

We use the following notations:

sk := xk+1 − xk , yk := ∇f(xk+1)−∇f(xk) , ρk :=
1

(yk)⊤sk

Given the current iterate number k, the current gradient ∇f(xk), and the “history” of
curvature information up to now, i.e. all ρi, s

i, yi for i = 0, ..., k, the following algorithm can
be used to calculate the product Bk∇f(xk) (note: no minus sign!):

Algorithm (X1): L-BFGS two-loop recursion

Input: current gradient ∇f(xk), memory size m, history ρi, s
i, yi (i = 0, ..., k).

1: q := ∇f(xk)
2: for i = k − 1, k − 2, . . . , k −m do
3: αi := ρi(s

i)⊤q
4: q := q − αiy

i

5: end for
6: d := B0

kq
7: for i = k −m, k −m+ 1, . . . , k − 1 do
8: β := ρi(y

i)⊤d
9: d := d+ si(αi − β)

10: end for

The initial inverse Hessian approximation B0
k can be freely chosen in every iteration. An

effective choice is to choose a scaled version of the unit matrix I ∈ IRn×n:

B0
k :=

(sk−1)⊤yk−1

(yk−1)⊤yk−1
· I

However, the matrix B0
k is also not explicitly formed (as it would require O(n2) storage).

Instead, in the above formulation, only the scaling factor in front of the unit matrix is used.

In a first step, implement algorithm (X1) in a Matlab function with header

function d = lbfgsinverse evalBkd(gradfxk, k, m, rho, s, y)

that gets as input the current gradient ∇f(xk) in gradfxk, the current iteration number k,
the memory size m, and the full curvature history in cell arrays rho, s, y. Here, full means
that these arrays store all generated scalings ρk and vectors sk, yk, although only the last
m are used during optimization. The result variable d contains the product Bk∇f(xk).

Hint: You may use the given function lbfgsinverse buildBk.m to explicitly build the ma-
trix Bk from sk, yk and ρk. This might prove useful to verify whether the product Bkd

k is
computed correctly by your implementation of algorithm (X1).
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In a second step, implement the limited memory inverse BFGS algorithm:

Algorithm (X2): L-BFGS method

Input: initial guess x0, memory size m > 0, tolerance tol
1: STOP, if ∥∇f(x0)∥ ≤ tol
2: for k = 0, 1, 2, ... do
3: if k = 0 then
4: Use d0 = −∇f(x0) as initial search direction
5: else
6: Determine search direction dk = −Bk∇f(xk) using algorithm (X1)
7: end if
8: Compute step size σk > 0 with Powell-Wolfe step size strategy
9: xk+1 := xk + σkd

k

10: STOP, if ∥∇f(xk+1)∥ ≤ tol
11: Compute and store curvature information:

sk := xk+1 − xk , yk := ∇f(xk+1)−∇f(xk) , ρk :=
1

(yk)⊤sk

12: end for

Test your program with the extended Rosenbrock function: For α = 1 as well as α = 10,
choose all combinations of history sizes m = 1, m = 5, and m = 20, and dimensions n = 100,
n = 1000, and n = 10000.

Measure the required time, number of iterations, and function evaluations.

As initial guess, choose a random vector x0 ∈ IRn with normally distributed components
with mean zero and standard deviation twenty. Make sure that you are always using the
same initial guess by fixing the random seed.

Use the following parameters: maxiter=10000, tol=1.0d-6, eta=0.9, gamma=1.0d-4.

Measure the required time and the count the number of iterations and function evaluations.

Hint: To verify your code, you can compare your results to the full-matrix inverse BFGS
implementation in bfgsinverse.m (possible only for the smaller n).

Further reading: Nocedal & Wright, Numerical Optimization, Chapter 9: L-BFGS method.
Note that there the inverse Hessian approximation is denoted as Hk.

Put all files into a single zip-archive, named by the lexicographically ordered family names of all group
members separated by a hyphen, and send the zip-file to ansommer@mail.uni-mannheim.de.
Add printouts (PDFs) from code and output to your submissions.
Comment your code intensely. Use a complete header that describes input and output arguments and also
comment the implementation where appropriate (see the examples at the course web site).
Avoid obvious inefficiencies like repeated evaluation of identical/unchanged expressions.
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