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1. Invariance of Newton’s method [4 points]

Let f : Rn → R be twice continuously differentiable, A ∈ Rn×n invertible and c ∈ Rn be
given. Furthermore, assume that the sequence {xk} are the iterates of Newton’s method for
the minimization of the function f with starting point x0 ∈ Rn.

Show that Newton’s method for the minimization of the function g(y) := f(Ay + c) with
starting point y0 = A−1(x0 − c) gives the sequence of iterates {yk}, yk = A−1(xk − c).

2. Local convergence of full-step Newton method [4 points]

Consider f : R → R with

f(x) =
√

x2 + 1 .

(a) Show that second order sufficient optimality conditions are satisfied at x̃ = 0.

(b) Compute the kth iterate xk (with respect to the starting point x0) generated by New-
ton’s method (Algorithm (5)).

(c) Show that Newton’s method converges only for starting point x0 with |x0| < 1.

3. Alternative motivation of Newton’s method [4 points]

Consider the minimization of a twice continuously differential function f : IRn → IR.

Show that (local/full-step) Newton’s method corresponds to iteratively solving quadratic
approximations of the objective (Remark after Algorithm (5)).

(a) Determine a quadratic approximation qk(d) ≈ f(xk + d) of the objective function f
using Taylor’s theorem.

(b) Assume that ∇2f(xk) is positive definite at the current iterate xk, so that qk has a
unique minimum d∗k. Show that choosing

xk+1 = xk + d∗k

delivers the local Newton method (Algorithm (5)).

Note: You may use that, if (SOC2) holds at a local minimum x̃ of f , then there exists a
whole neighborhood Bε(x̃) on which the Hessian ∇2f is positive definite.



4. Programming assignment: Local Newton Method [5 points]

Put all files into a single zip-archive, named by the lexicographically ordered family names
of all group members separated by a hyphen, and send the zip-file to ansommer@mail.uni-
mannheim.de. Please add printouts from code and output to your submissions.
Comment your code intensely. Use a complete header that describes input and output ar-
guments and also comment the implementation where appropriate (see the examples at the
course web site). Avoid obvious inefficiencies like repeated evaluation of identical/unchanged
expressions.

Implement the local Newton method (Algorithm (5)). Use a function header

function X = localnewton(f, gradf, hessf, x0, e, maxit)

Here, f, gradf and hessf are functions which return for given x the functional value f(x),
the gradient ∇f(x) and the Hessian ∇2f(x), and further x0 denotes the starting point.
The iteration should be terminated if ∥∇f(xk)∥ ≤ ϵ for a given tolerance e = ϵ > 0 or
if a maximum number of iterations maxit has been reached. The return value contains all
iterates xk as a matrix.

Test your implementation with the Rosenbrock function f(x1, x2) = 100(x2−x2
1)

2+(1−x1)
2.

Use as starting points x0 = (1,−0, 5)⊤ and x0 = (−1.2, 1)⊤ and as stationarity threshold
ϵ = 10−9 (nine!), set maxit = 10000.

Plot the trajectories of the iterates with the Rosenbrock function for each starting value.
How many iterations are needed until stationarity ∇f(xk) = 0 (with equality) is reached?

Compare your results to the results of the steepest descent algorithm.

[NOTE: Do not calculate matrix inverses!]
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