
University of Mannheim
Scientific Computing, B6 26, C312, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet #4

Due on 19.03.2023 (before 13:00).

1. Efficient step sizes are admissible [4 points]

Let f : IRn → IR be continuously differentiable, and let the sequences (xk), (dk), (σk) be
generated by algorithm (1). Futhermore, assume

f(xk + σkd
k) ≤ f(xk) ∀ k ≥ 0 .

Prove the following statement: If (σk)K is a subsequence of efficient step sizes, then the
subsequence is also admissible.

2. Exact line search is efficient [4 points]

Let f : IRn → IR be continuously differentiable, and let x0 ∈ IRn be given. Consider the
minimization rule for the step size σk of the general descent method (algorithm (1)), with
exact line search σk = σk,E , i.e. with

f(xk + σk,Ed
k) = min

σ≥0
f(xk + σdk)

for k = 0, 1, 2, . . .

Show that the following statement holds true: If the level set Nf (x
0) is compact and ∇f is

Lipschitz continuous on Nf (x
0), then the exact line search rule is well-defined and efficient,

i.e. there exists a constant θ > 0, independent of xk, dk, and k, and such that

f(xk + σkd
k) ≤ f(xk)− θ

(
∇f(xk)⊤dk

∥dk∥

)2

.

3. Armijo (sufficent descent) does not guarantee admissible step sizes [2 points]

Consider f(x) = x2

8 , with starting point x0 = 1, and search directions dk = −2−k∇f(xk).
Determine the (unique) global minimum x̃ of f and show that the descent algorithm with
Armijo step size rule generates a sequence of iterates (xk)k that does not converge to x̃.



4. Programming assignment: Steepest descent with Powell-Wolfe rule [8+2 points]

Put all files into a single zip-archive, named by the lexicographically ordered family na-
mes of all group members separated by a hyphen, and send the zip-file to ansommer@uni-
mannheim.de. Please add printouts from code and output to your submissions.

Implement the steepest descent method with Powell-Wolfe step size strategy: Write a func-
tion that implements algorithm 4 with header

function sigma = powellwolfe(f, gradf, x, d, gamma, eta)

Here, f and gradf are functions which return for given x the functional value f(x) and
the gradient ∇f(x), respectively. Furthermore, x denotes the current iterate, d the descent
direction and eta and gamma are the constants introduced in the lecture. The return value
sigma is the step length.

You may modify the implementation of the steepest descent algorithm (from exercise sheet 2).
Use the function header

function X = steepestdesc pw(f, gradf, x0, e, maxit)

and call the powellwolfe function to determine the step size in each iteration.

The functions f and gradf are defined as described above, x0 denotes the starting point.
The iteration should be terminated if ∥∇f(xk)∥ ≤ ϵ for a given tolerance e = ϵ > 0 or a
maximum number of iterations maxit has been reached. The return value X shall contain all
iterates xk as a matrix (up to 2 bonus points for collecting the iterates in a more efficient
method than using growing arrays).

Test your implementation with the Rosenbrock function

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2 .

Use as a starting point x0 = (1,−0, 5)⊤ and x0 = (−1.2, 1)⊤ and as parameters ϵ = 10−3,
maxit = 10000, γ = 10−4 and η = 0.9.

Plot the trajectories of the iterates with the Rosenbrock function for each starting value (use,
e.g. the surfc command for the Rosenbrock banana and plot3 for displaying the linearly
interpolated iterates). Use a different color for each trajectory.

Compare your results to the results of the steepest descent algorithm with Armijo rule.

2


