University of Mannheim

Scientific Computing, B6 26, C312, D-68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#2

Due on Sunday, 12.03.2023 \Longrightarrow before $13: 00 \Longleftarrow$

1. Exact step size for quadratic functions

[4 points]
Let $f(x)=\frac{1}{2} x^{\top} Q x+b^{\top}+c$ be a quadratic function with Q symmetric and positive definite, $x \in \mathbb{R}^{n}$. Then, the exact step size for descent direction $d \in \mathbb{R}^{n}$ of f in x is

$$
\sigma_{E}=-\frac{\nabla f(x)^{\top} d}{d^{\top} Q d}
$$

2. Convergence behaviour of the method of steepest descent
[4 points]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a pure quadratic function, i.e. $f(x)=\frac{1}{2} x^{\top} Q x$, with Q symmetric and positive definite. Consider the method of steepest descent $x^{k+1}=x^{k}-\sigma_{k} \nabla f\left(x^{k}\right)$ with a step size control $\sigma_{k} \geq \sigma_{\text {min }}>0 \forall k$.
(a) Show for $x^{k} \neq 0$:

$$
\frac{\left\|x^{k+1}\right\|}{\left\|x^{k}\right\|} \leq \max \left\{\left|1-\sigma_{k} \lambda_{\min }\right|,\left|1-\sigma_{k} \lambda_{\max }\right|\right\}
$$

where $\lambda_{\min }$ denotes the smallest and $\lambda_{\max }$ denotes the largest eigenvalue of Q.
[Hint: $\frac{\left\|x^{k+1}\right\|}{\left\|x^{k}\right\|}<1$ is necessary for convergence, and $\sigma>\frac{2}{\lambda_{\max }}$ leads to divergence]
(b) Illustrate the graph of the right hand side of (a), as a function of σ. Can you graphically determine step sizes that lead to convergence?
[Hint: Note that σ_{k} must not vanish "too quickly"]
3. Admissible directions for Newton-like methods
[4 points]
In Newton-like methods, the search directions d^{k} are determined by linear equation systems

$$
M_{k} d^{k}=-\nabla f\left(x^{k}\right)
$$

Show that if all M_{k} are symmetric positive definite with

$$
0<\mu_{1} \leq \lambda_{\min }\left(M_{k}\right) \leq \lambda_{\max }\left(M_{k}\right) \leq \mu_{2}<\infty
$$

(for $\mu_{1}, \mu_{2}>0$ independent of k), then every subsequence $\left(d^{k}\right)_{K}$ consists of admissible search directions. (Hint: Verify the angle condition for the generated search directions.)

