## Effect of scaling on the method of steepest descent

Let $A \in S^{n}$ be positive definite, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuously differentiable. Using the change of variables $x:=A y$, define $h(y):=f(A y)$.
Compute the gradient of $h$.
Answer: $\quad$ It holds: $\nabla h(y)=A^{\top} \nabla f(x)=A \nabla f(x)$

Proof:
First we show the following: Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $g(y)=A y$ for a matrix $A \in \mathbb{R}^{n \times n}$.
Then, its derivative (Jacobian) at any point $y$ is $J_{g}(y)=A$.
Since $x:=g(y)=A y$ has components $x_{i}=\sum_{k=1}^{n} a_{i k} y_{k}$, it follows for the components:

$$
\frac{\partial g_{i}}{\partial y_{j}}(x)=\frac{\partial x_{i}}{\partial y_{j}}=a_{i j}
$$

and thus the derivative (Jacobian) of $g$ at point $y$ is $J_{g}(y)=\left(\frac{\partial g_{i}}{\partial y_{j}}(y)\right)_{\substack{i=1, \ldots, n \\ j=1, \ldots, n}}=\left(a_{i j}\right)_{\substack{i=1, \ldots, n \\ j=1, \ldots, n}}=A$
Recall that the Jacobian of a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at a point $x \in \mathbb{R}^{n}$, is defined as:

$$
J_{f}(x)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1}^{\top}(x) \\
\nabla f_{2}^{\top}(x) \\
\vdots \\
\nabla f_{m}^{\top}(x)
\end{array}\right)
$$

such that for a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, it holds $\nabla f(x)=J_{f}(x)^{\top}$.
From the definition above, we see that $h(y):=f(A y)=f(g(y))=(f \circ g)(y)$. Using the Jacobian matrix $J_{f}(y)$ as representation of the total derivative $h^{\prime}$ at a point $y$ (see the statement at the bottom), we get:

$$
J_{h}(y)=J_{(f \circ g)}(y)=J_{f}(g(y)) J_{g}(y)
$$

Since $J_{h}=\nabla^{\top} h$, we get: $\nabla^{\top} h(y)=\nabla^{\top} f(g(y)) A \Longrightarrow \nabla h(y)=A^{\top} \nabla f(g(y))$.
By the symmetry of $A$ and $x=g(y)$, we get the result.
Using a different (but equivalent) formulation of the multivariate chain rule frequently found in textbooks, and due to $x=g(y)=A y$, and the symmetry of $A$, we also get the result:

$$
\nabla_{y} h(y)=\nabla_{y}(f \circ g)(y)=\left(J_{g}(y)\right)^{\top}\left(\nabla_{x} f\right)(\underbrace{g(y)}_{=x})=A^{\top} \nabla_{x} f(x)_{A^{\top}=A}^{=} A \nabla_{x} f(x)
$$

The multivariate chain rule can be stated as follows:
Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$, and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, and $a \in \mathbb{R}^{n}$ be given.
Then, the composition $h=(f \circ g): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h(a):=f(g(a))$ is well-defined.
If $g$ is differentiable at point $a \in R^{n}$ with total derivative $g^{\prime}(a)$
(represented by the Jacobian matrix $J_{g}(a)$ ),
and if $f$ is differentiable at point $b=g(a)$ with total derivative $f^{\prime}(b)$
(represented by the Jacobian matrix $J_{f}(b)$ ),
then the composition $h$ is differentiable at point $a$ with total derivative $h^{\prime}(a)=f^{\prime}(b) \circ g^{\prime}(a)=f^{\prime}(g(a)) \circ g^{\prime}(a)$,
(represented by the Jacobian matrix product $J_{h}(a)=J_{f}(g(a)) J_{g}(a)$ ).

