University of Mannheim

Scientific Computing, B6 26, C312, D-68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#2

Due on Wednesday, 01.03.2023 (before 18:00).

1. Effect of scaling on the method of steepest descent

Let $A \in S^{n}$ be positive definite, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuously differentiable. Using the change of variables $x:=A y$, define $h(y):=f(A y)$.
(a) Compute the gradient of h.
(b) Suppose you perform the method of steepest descent on both $f(x)$ and $h(y)$. How are the respective iterates related? What can be said about the numerical minimization of h versus f ?
2. Steepest descent for induced norms
[4 points]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable, $H \in S^{n}$ be positive definite and $\|\cdot\|_{H}$ be the norm defined by

$$
\|x\|_{H}:=\sqrt{x^{\top} H x} .
$$

Show that the direction of steepest descent of f in $x \in \mathbb{R}^{n}$ w.r.t. the norm $\|\cdot\|_{H}$, i.e. the solution of the following minimization problem

$$
\min _{d \in \mathbb{R}^{n}} \nabla f(x)^{\top} d \quad \text { s.t. }\|d\|_{H}=1
$$

is given by

$$
d=-\frac{H^{-1} \nabla f(x)}{\left\|H^{-1} \nabla f(x)\right\|_{H}}
$$

3. Programming Exercise: Steepest Descent

Implement the steepest descent method with a backtracking line search. Proceed as follows:
(a) Write a function which computes a step length by the Armijo rule:

```
function sigma = armijo(f,gradf,x,d,gamma,beta)
```

Here, \mathbf{f} and gradf are functions which return for given x the functional value $f(x)$ and the gradient $\nabla f(x)$. Furthermore, x denotes the current iterate, d the descent direction and gamma and beta are the constants introduced in the lecture.
The return value sigma is a step length which satisfies the Armijo condition. (Hint: familiarize yourself with function handles (operator @), which can be used to pass a function to another one.)
(b) Implement the steepest descent method

```
function X = steepestdesc(f,gradf,x0,e,maxit),
```

which calls the function armijo to determine the step size in each iteration. The functions f and gradf are defined as described above, x0 denotes the starting point.
The iteration should be terminated if $\left\|\nabla f\left(x^{k}\right)\right\| \leq \epsilon$ for a given tolerance $\mathrm{e}=\epsilon>0$ or a maximum number of iterations maxit has been reached. The return value contains all iterates x^{k} as a matrix.
(c) Test your implementation on the Rosenbrock function

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

Use (1) $x^{(0)}=(1,-0,5)^{\top}$ and (2) $x^{(0)}=(-1.2,1)^{\top}$ as initial guesses and $\epsilon=10^{-3}$, maxit $=10000, \gamma=10^{-3}$ and $\beta=1 / 2$.
Plot the trajectories of the iterates for each starting value.
(d) Consider the function $f(x)=\frac{2}{3} x^{3}+\frac{1}{2} x^{2}$. Calculate all (local) minima and maxima. Test your implementation on that function with three different initial guesses (1) $x^{(0)}=1$, (2) $x^{(0)}=0.5$, and (3) $x^{(0)}=0.1$, using the same parameters as in part (c). For each initial guess, list the first five $(k=1 \ldots 5)$ iterates $x^{(k)}$, search directions $d^{(k)}=-\nabla f\left(x^{(k)}\right)$, step lengths σ_{k} and function values $f\left(x^{(k)}\right)$. Describe your observations.

