University of Mannheim

Scientific Computing, B6 26, C306, 68131 Mannheim Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet #11

Due on 28.05.2023 (before 13:00).

1. Derivation of SQP method

Show the derivation #2 of the SQP method, i.e. prove the following statement:

The pair $(d, \mu_{QP}) = (d_x^k, \mu^k + d_\mu^k)$ is a KKT tuple for (13.4) if and only if $d^k = (d_x^k, d_\mu^k)^\top$ is a solution of (13.3).

2. Directional Differentiability

Consider the functions $f_i : \mathbb{R}^2 \to \mathbb{R}, i \in \{1, 2\}$ defined by

$$f_1(x_1, x_2) = \begin{cases} \frac{x_1^3}{x_1^2 + x_2^2} & \text{for } (x_1, x_2) \neq (0, 0) \\ 0 & \text{for } (x_1, x_2) = (0, 0) \end{cases}$$
$$f_2(x_1, x_2) = \begin{cases} \frac{x_1^2}{x_1^2 + x_2^2} & \text{for } (x_1, x_2) \neq (0, 0) \\ 1 & \text{for } (x_1, x_2) = (0, 0) \end{cases}$$

Visualize (e.g. using Matlab) both functions around the origin.

Show that f_1 is not differentiable but directionally differentiable in all directions $d \in \mathbb{R}^2$ at the origin.

Does this also hold for f_2 ?

3. The Maratos Effect

Consider the minimization problem

min
$$f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$$

s.t. $h(x) = x_1^2 + x_2^2 - 1 = 0$

- (a) Show that $(\tilde{x}, \tilde{\mu}) = ((1, 0)^{\top}, -\frac{3}{2})$ is the optimal solution with $\nabla^2_{xx} \mathcal{L}(\tilde{x}, \tilde{\mu}) = I$.
- (b) Show that an iterate $x^k = (\cos \theta, \sin \theta)^\top$ is feasible for every $\theta \in [0, 2\pi]$.

(c) Consider a minimization algorithm that produces a search direction $d^k = \begin{pmatrix} \sin^2 \theta \\ -\sin \theta \cdot \cos \theta \end{pmatrix}$. Show that the step $x^{k+1} := x^k + d^k$ approaches the solution \tilde{x} at a rate consistent to quadratic convergence. Hint: Determine the ratio $\frac{\|x^{k+1} - \tilde{x}\|_2}{\|x^k - \tilde{x}\|_2^2}$.

(d) Calculate $f(x^k)$, $f(x^{k+1})$, $h(x^k)$, and $h(x^{k+1})$. What do you observe? Can the globalized SQP method from the lecture in Algorithm (17) generate these iterates?

Conversity of Walling D6 26 C206

UNIVERSITY OF MANNHEIM

[4 Points]

[4 Points]

[4 Points]

4. Active Set Strategy for convex QPs

[6 Points]

Use the active set strategy (Algorithm 18) to solve the following problem:

$$\min_{x \in \mathbb{R}^2} \quad \frac{1}{2} (x_1 - 3)^2 + (x_2 - 2)^2 \tag{QP}$$

s.t.
$$-2x_1 + x_2 \le 0$$
 (1)

$$x_1 + x_2 \le 4 \tag{2}$$

$$-x_2 \le 0 \tag{3}$$

Starting from the feasible point $x^0 = (0,0)^{\top}$, for every iteration k, list the iterate x^k , the active set \mathcal{A}_k , the associated $(QP)_k$ with respective Lagrangian \mathcal{L}_k and KKT tuple $(\hat{x}^k, \lambda^k, \mu^k)$, the direction d^k , and denote which path/condition/line in the algorithm is taken.

Hint: It holds for the generated iterates: $x^k \in \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 11/9 \\ 22/9 \end{pmatrix}, \begin{pmatrix} 5/3 \\ 7/3 \end{pmatrix}, \begin{pmatrix} 7/3 \\ 5/3 \end{pmatrix} \right\}.$

5. Active Set Strategy maintains regularity

[4 Points]

Prove that the active set strategy (Algorithm 18) maintains regularity, i.e. if x^k is regular (LICQ hold), then also x^{k+1} is regular.