University of Mannheim

Scientific Computing, B6 26, C306, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#11

Due on 28.05.2023 (before 13:00).

1. Derivation of SQP method

[4 Points]
Show the derivation $\# 2$ of the SQP method, i.e. prove the following statement:
The pair $\left(d, \mu_{Q P}\right)=\left(d_{x}^{k}, \mu^{k}+d_{\mu}^{k}\right)$ is a KKT tuple for (13.4) if and only if $d^{k}=\left(d_{x}^{k}, d_{\mu}^{k}\right)^{\top}$ is a solution of (13.3).

2. Directional Differentiability

[4 Points]
Consider the functions $f_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}, i \in\{1,2\}$ defined by

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{x_{1}^{3}}{x_{1}^{2}+x_{2}^{2}} & \text { for }\left(x_{1}, x_{2}\right) \neq(0,0) \\
0 & \text { for }\left(x_{1}, x_{2}\right)=(0,0)
\end{array}\right. \\
& f_{2}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cc}
\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}} & \text { for }\left(x_{1}, x_{2}\right) \neq(0,0) \\
1 & \text { for }\left(x_{1}, x_{2}\right)=(0,0)
\end{array}\right.
\end{aligned}
$$

Visualize (e.g. using Matlab) both functions around the origin.
Show that f_{1} is not differentiable but directionally differentiable in all directions $d \in \mathbb{R}^{2}$ at the origin.
Does this also hold for f_{2} ?

3. The Maratos Effect

[4 Points]
Consider the minimization problem

$$
\begin{aligned}
\min & f(x)=2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1} \\
\text { s.t. } & h(x)=x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

(a) Show that $(\tilde{x}, \tilde{\mu})=\left((1,0)^{\top},-\frac{3}{2}\right)$ is the optimal solution with $\nabla_{x x}^{2} \mathcal{L}(\tilde{x}, \tilde{\mu})=I$.
(b) Show that an iterate $x^{k}=(\cos \theta, \sin \theta)^{\top}$ is feasible for every $\theta \in[0,2 \pi]$.
(c) Consider a minimization algorithm that produces a search direction $d^{k}=\binom{\sin ^{2} \theta}{-\sin \theta \cdot \cos \theta}$. Show that the step $x^{k+1}:=x^{k}+d^{k}$ approaches the solution \tilde{x} at a rate consistent to
quadratic convergence.
Hint: Determine the ratio $\frac{\left\|x^{k+1}-\tilde{x}\right\|_{2}}{\left\|x^{k}-\tilde{x}\right\|_{2}^{2}}$.
(d) Calculate $f\left(x^{k}\right), f\left(x^{k+1}\right), h\left(x^{k}\right)$, and $h\left(x^{k+1}\right)$. What do you observe? Can the globalized SQP method from the lecture in Algorithm (17) generate these iterates?

4. Active Set Strategy for convex QPs

Use the active set strategy (Algorithm 18) to solve the following problem:

$$
\begin{align*}
\min _{x \in \mathbb{R}^{2}} & \frac{1}{2}\left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2} \tag{QP}\\
\text { s.t. } & -2 x_{1}+x_{2} \leq 0 \tag{1}\\
& x_{1}+x_{2} \leq 4 \tag{2}\\
& -x_{2} \leq 0 \tag{3}
\end{align*}
$$

Starting from the feasible point $x^{0}=(0,0)^{\top}$, for every iteration k, list the iterate x^{k}, the active set \mathcal{A}_{k}, the associated $(Q P)_{k}$ with respective Lagrangian \mathcal{L}_{k} and KKT tuple $\left(\hat{x}^{k}, \lambda^{k}, \mu^{k}\right)$, the direction d^{k}, and denote which path/condition/line in the algorithm is taken. Hint: It holds for the generated iterates: $x^{k} \in\left\{\binom{0}{0},\binom{11 / 9}{22 / 9},\binom{5 / 3}{7 / 3},\binom{7 / 3}{5 / 3}\right\}$.

5. Active Set Strategy maintains regularity

Prove that the active set strategy (Algorithm 18) maintains regularity, i.e. if x^{k} is regular (LICQ hold), then also x^{k+1} is regular.

