University of Mannheim

Scientific Computing, B6 26, C306, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#10

Due on 14.05.2023 (before 13:00).

1. LICQ and linear constraints

[4 Points]
Consider a constrained minimization problem with a feasible set X and a point $x \in X$.
(a) Construct an example of a feasible set and a feasible point $x \in X$ at which the LICQ are satisfied, but the constraints are nonlinear.
(b) Construct an example where the active constraints in a feasible point $x \in X$ are linear, but the LICQ is not satisfied in that point x.
2. Penalty methods
[4 Points]
Consider the equality constrained problem

$$
\min x_{1}^{2}+x_{2}^{2} \quad \text { s.t. } x_{2}=1
$$

Determine the minimizer of the quadratic penalty function (formula 12.1) $P_{\alpha}(x)$ and calculate the condition number of its Hessian $\nabla^{2} P_{\alpha}(x)$ for $\alpha \rightarrow \infty$.

Describe the numerical problems that arise when using Newton's method to minimize the penalty function.

3. Programming: Local SQP method I

[10 Points]
Implement algorithm (14), the local SQP method I for equality constrained problems of the form

$$
\min f(x) \quad \text { s.t. } h(x)=0
$$

Use a function header

```
function [X, MU, info] = localSQP(gradL, hessL, h, Jh, x0, mu0, tol, maxit)
```

where gradL and hessL are functions that return for given x and μ the gradient $\nabla_{x} \mathcal{L}(x, \mu)$ and the Hessian $\nabla_{x x}^{2} \mathcal{L}(x, \mu)$ of the Lagrangian function. Further, h and Jh are functions which return for given x the constraint function value $h(x)$ and its Jacobian $J_{h}(x)=\nabla h(x)^{\top}$. The input variables $x 0$ and mu0 denote the initial guesses for the variables and Lagrangian multipliers.
The iteration should be terminated if the pair $\left(x^{k}, \mu^{k}\right)$ is identified as KKT-tuple (up to a given tolerance tol), or if a maximum number of iterations maxit has been reached.
The output variable X is a matrix containing all iterates x^{k} as columns; MU is a matrix containing all Lagrangian multipliers μ^{k} as columns. The flag info shall return 0 if a KKT point is found and -1 otherwise.

Test your implementation on the following equality constrained minimization problem:

$$
\begin{aligned}
\min & e^{x_{1} x_{2} x_{3} x_{4} x_{5}}-\frac{1}{2}\left(x_{1}^{3}+x_{2}^{3}+1\right)^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-10
\end{aligned}=0
$$

Use as initial guess $x^{0}=(-1.8,1.4,1.9,-0.8,-0.8)^{\top}$ and $\mu^{0}=0 \in \mathbb{R}^{3}$. The solution is approximately $\tilde{x}=(-1.7171,1.5957,1.8272,-0.76364,-0.76364)^{\top}$.

Use the Matlab function fmincon to solve the above problem and compare the solution and the multipliers.
Hint: A suitable call to fmincon might look as follows:
[x,fval,exitflag, output,lambda, grad,hessian] $=$ fmincon(f, x0, [], [], [], [], [], [], c)
where c is a suitably built constraint function (see the documentation of fmincon).

Put all files into a single zip-archive, named by the lexicographically ordered family names of all group members separated by a hyphen, and send the zip-file to ansommer@mail.uni-mannheim.de. Please add printouts (PDF) from code to your submissions.
Avoid obvious inefficiencies like repeated evaluation of identical/unchanged expressions.
Comment your code intensely. Use a complete header that describes input and output arguments and also comment the implementation where appropriate (see the examples at the course web site).

