University of Mannheim

Scientific Computing, B6 26, C312, 68131 Mannheim
Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet \#1

Due on Sunday, 19.02.2023, 18:00.

1. Minima and Maxima

[4 points]
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x)=x_{1}^{2} x_{2}^{2}+\left(x_{2}^{2}-1\right)^{2}$ be given. Find all (global and local) minima, and all (global and local) maxima of f. Which information on minimizers and/or maximizers can be obtained by using first and second order optimality conditions? Use Matlab to plot the function and to check your results.

2. Properties of quadratic functions

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quadratic function, i.e, $f(x)=\frac{1}{2} x^{\top} Q x+c^{\top} x+\gamma$ with a symmetric $\operatorname{matrix} Q \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^{n}, \gamma \in \mathbb{R}$. Show:
(a) f is convex $\Leftrightarrow Q$ is positive semi-definite.
(b) f is strictly convex $\Leftrightarrow f$ is uniformly convex $\Leftrightarrow Q$ is positive definite.

3. Properties of convex functions

[4 points]
Let $X \subseteq \mathbb{R}^{n}$ be open and convex, and let $f: X \rightarrow \mathbb{R}$ be $C^{1}(X)$. Show:
(a) f convex (on $X) \Rightarrow f(x)-f(y) \geq \nabla f(y)^{\top}(x-y) \forall x, y \in X$.
(b) f strictly convex $($ on $X) \Rightarrow f(x)-f(y)>\nabla f(y)^{\top}(x-y) \forall x, y \in X$.
(c) f is uniformly convex (on X) $\Rightarrow \exists \mu>0$ such that

$$
f(x)-f(y) \geq \nabla f(y)^{\top}(x-y)+\mu\|x-y\|^{2} \quad \forall x, y \in X
$$

4. Properties of convex optimization problems (Theorem 3.6)

Let $f: X \rightarrow \mathbb{R}$ be convex and continuously differentiable on the convex set $X \subseteq \mathbb{R}^{n}$. Then, for the optimization problem

$$
\min f(x) \quad \text { s.t. } \quad x \in X
$$

it holds:
(a) Every local minimizer of f on X is a global minimizer of f on X.
(b) If f is strictly convex, then f has at most one local solution (i.e. it is the unique global solution, if existent).
(c) If X is open and $\tilde{x} \in X$ a stationary point of f, then \tilde{x} is a global minimizer of f on X.

