University of Mannheim

Scientific Computing, B6 26, C312, 68131 Mannheim Dr. Andreas Sommer (ansommer@mail.uni-mannheim.de)

Nonlinear Optimization (FSS 2023)

Exercise Sheet #1

Due on Sunday, 19.02.2023, 18:00.

1. Minima and Maxima

Let $f: \mathbb{R}^2 \to \mathbb{R}$ with $f(x) = x_1^2 x_2^2 + (x_2^2 - 1)^2$ be given. Find all (global and local) minima, and all (global and local) maxima of f. Which information on minimizers and/or maximizers can be obtained by using first and second order optimality conditions? Use Matlab to plot the function and to check your results.

2. Properties of quadratic functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a quadratic function, i.e. $f(x) = \frac{1}{2}x^\top Q x + c^\top x + \gamma$ with a symmetric matrix $Q \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$. Show:

- (a) f is convex $\Leftrightarrow Q$ is positive semi-definite.
- (b) f is strictly convex \Leftrightarrow f is uniformly convex \Leftrightarrow Q is positive definite.

3. Properties of convex functions

Let $X \subseteq \mathbb{R}^n$ be open and convex, and let $f: X \to \mathbb{R}$ be $C^1(X)$. Show:

- (a) f convex (on X) $\Rightarrow f(x) f(y) \ge \nabla f(y)^{\top} (x y) \ \forall x, y \in X.$
- (b) f strictly convex (on X) $\Rightarrow f(x) f(y) > \nabla f(y)^{\top} (x y) \ \forall x, y \in X.$
- (c) f is uniformly convex (on X) $\Rightarrow \exists \mu > 0$ such that

$$f(x) - f(y) \ge \nabla f(y)^{\top} (x - y) + \mu ||x - y||^2 \quad \forall x, y \in X.$$

4. Properties of convex optimization problems (Theorem 3.6) [4 points]

Let $f: X \to \mathbb{R}$ be convex and continuously differentiable on the convex set $X \subseteq \mathbb{R}^n$. Then, for the optimization problem

$$\min f(x) \quad \text{s.t.} \quad x \in X$$

it holds:

- (a) Every local minimizer of f on X is a global minimizer of f on X.
- (b) If f is strictly convex, then f has at most one local solution (i.e. it is the unique global solution, if existent).
- (c) If X is open and $\tilde{x} \in X$ a stationary point of f, then \tilde{x} is a global minimizer of f on X.

UNIVERSITY OF MANNHEIM

[4 points]

[4 points]

[2 points]