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1. Introduction

The following task is known as a �nite dimensional minimization problem :

Let X ⊆ IRn be an arbitrary set and f : X → IR a continuous function. The problem is to �nd
an x̃ ∈ X such that

f(x̃) ≤ f(x) for all x ∈ X .

Using a more compact notation we write

min
x∈X

f(x) (1.1)

or
min f(x) s.t. x ∈ X , (1.2)

where 's.t.' stands for 'subject to'. If X = IRn, then (1.1) is called unconstrained, otherwise
constrained. In general f is called objective function and X ⊆ Rn feasible set.

De�nition 1.1 The point x ∈ IRn is called feasible for (1.1), if x ∈ X.

If X ̸= IRn, the feasible set can often be described in the form

X = {x ∈ IRn : h(x) = 0, g(x) ≤ 0}

with continuous functions h : IRn → IRp and g : IRn → IRm. We then write

min f(x) s.t. h(x) = 0, g(x) ≤ 0 . (1.3)

Constrained optimization problems will be discussed in the second part of the course.

Example 1.2 Quadratic optimization problems are important examples of nonlinear prob-
lems:

� f(x) = 1
2x

⊤Qx+ b⊤x+ c with Q ∈ IRn×n (symmetric), b ∈ IRn, c ∈ IR,

� g, h are linear, i.e. g(x) = Ax− a with A ∈ IRm×n, a ∈ IRm

and h(x) = Dx− d with D ∈ IRp×n, d ∈ IRp.

△

In this course, we can restrict ourselves to minimization problems, since maximization problems
with objective function f̃ and feasible set X are equivalent to minimization problems (1.1) with
f = −f̃ , i.e.

max
x∈X

f̃(x) = −min
x∈X

−f̃(x) .
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De�nition 1.3 The feasible point x̃ ∈ X is called

� local minimizer of (1.1), if there exists ε > 0 such that

f(x̃) ≤ f(x) ∀x ∈ X ∩Bε(x̃) ,

where
Bε(x̃) = {x ∈ IRn : ∥x− x̃∥ < ε} .

� strict local minimizer of (1.1), if there exists ε > 0 such that

f(x̃) < f(x) ∀x ∈ (X ∩Bε(x̃)) \ {x̃} .

� global minimizer of (1.1), if

f(x̃) ≤ f(x) ∀x ∈ X .

� strict global minimizer of (1.1), if

f(x̃) < f(x) ∀x ∈ X \ {x̃} .

Remark We denote by ∥.∥ the Euclidean norm ∥.∥2. △

The Weierstrass Extreme Value Theorem ensures the existence of solutions:

Theorem 1.4 Let X ⊆ IRn. If the function f : X → IR is continuous and there exists x̃ ∈ X,
such that the level set

Nf (x̃) = {x ∈ X : f(x) ≤ f(x̃)}

is compact, then there exists a global minimizer of (1.1).
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2. Optimality conditions for

unconstrained optimization problems

This chapter deals with necessary and su�cient conditions for characterizing minimizers (under
certain di�erentiability assumptions on f).

If f does not possess any structure nor properties apart from di�erentiability, then we can only
make statements about local minimizers, in general.

Theorem 2.1 (First order necessary optimality condition)
Let X ⊆ IRn be an open set and f : X → IR a continuously di�erentiable function. If x̃ ∈ X is
a local minimizer of f on X, then

∇f(x̃) = 0 ,

i.e. x̃ is a stationary point.

Proof. We prove the statement by means of contradiction. Let us assume that x̃ ∈ X is a local
minimizer for which ∇f(x̃) ̸= 0. Then there exists d ∈ IRn with

∇f(x̃)⊤d < 0

(for example d = −∇f(x̃)). By assumption, f is continuously di�erentiable. Consequently, the
directional derivative of f ′(x̃; d) of f in x̃ in direction d exists

f ′(x̃; d) = lim
t→0+

f(x̃+ td)− f(x̃)

t
= ∇f(x̃)⊤d < 0 .

Due to the continuity of the derivative there exists t̄ > 0 with x̃+ td ∈ X and

f(x̃+ td)− f(x̃)

t
< 0 , ∀t ∈ (0, t̄] .

Therefore, it holds that

f(x̃+ td)− f(x̃) < 0 , ∀t ∈ (0, t̄] .

This is a contradiction to the assumption that x̃ is a local minimizer of f in X.

Note: The condition ∇f(x) = 0 is not su�cient for a local minimum; consider, e.g., f(x) = −x2
with x = 0.

As preparation for the next theorem we need the following lemma about the continuity of the
smallest eigenvalue of a matrix.
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Lemma 2.2 Let Sn be the vector space of symmetric matrices in IRn×n. For A ∈ Sn let
λ(A) ∈ IR be the smallest eigenvalue of A. Then the following statement holds true

|λ(A)− λ(B)| ≤ ∥A−B∥ ∀A,B ∈ Sn .

Remark Note that the vector norm and the matrix norm are denoted by the same symbol, i.e.
∥ · ∥. If f is twice continuously di�erentiable it follows from Lemma 2.2 and from the continuity
of ∇2f ∈ IRn×n (the Hessian of f), that ∇2f is positive de�nite in a neighborhood of x̃ if ∇2f(x̃)
is positive de�nite. An analogous statement holds true, if ∇2f(x̃) is negative de�nite. △

Theorem 2.3 (Second order necessary optimality condition)
Let X ⊆ IRn be open and f : X → IR be twice continuously di�erentiable. If x̃ ∈ X is a local
minimizer of f (on X), then

(i) ∇f(x̃) = 0 and

(ii) the Hessian ∇2f(x̃) is positive semide�nite, i.e.

dT∇2f(x̃)d ≥ 0 ∀d ∈ IRn .

Proof. By Theorem 2.1, the statement that ∇f(x̃) = 0 holds true. Therefore, we only have
to show the positive semide�niteness of the Hessian of f at x. Again we prove the statement
by means of contradiction. Let us assume that x̃ is a local minimizer of f , but ∇2f(x̃) is not
positive semide�nite. Then there exists d ∈ Rn such that

d⊤∇2f(x̃)d < 0 .

Applying Taylor's theorem, we obtain for su�ciently small t > 0

f(x̃+ td) = f(x̃) + t∇f(x̃)⊤d+ t2

2
d⊤∇2f(ζ(t))d = f(x̃) +

t2

2
d⊤∇2f(ζ(t))d

with ζ(t) = x̃+ νttd ∈ X für ein νt ∈ (0, 1). By Lemma 2.2 there exists t̄ > 0, such that

d⊤∇2f(ζ(t))d < 0 ∀t ∈ (0, t̄] .

Hence
f(x̃+ td) < f(x̃) ∀t ∈ (0, t̄]

which contradicts the assumption that x̃ is a local minimizer of f on X.

Theorem 2.4 (Second order su�cient optimality conditions)
Let X ⊆ IRn be open and f : X → IR twice continuously di�erentiable. If

(i) ∇f(x̃) = 0 and

(ii) the Hessian ∇2f(x̃) is positive de�nite, i.e.

dT∇2f(x̃)d > 0 ∀d ∈ IRn \ {0} .

then x̃ is a strict local minimizer of f on X.
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Proof. Since ∇2f is continuous and positive de�nite at x̃, there exists an ε > 0, such that

∇2f(x) > 0 ∀ x ∈ Bε(x̃) = {x ∈ IRn : ∥x− x̃∥ < ε}.

For every d ∈ IRn \ {0} su�ciently close to 0 (i.e. d is �small� in the sense ∥d∥ < ε), we have
x̃+ d ∈ X and

f(x̃+ d) = f(x̃) +∇f(x̃)⊤︸ ︷︷ ︸
=0

d+
1

2
d⊤∇2f(x̃+ td)︸ ︷︷ ︸

∈Bε(x̃)

d

︸ ︷︷ ︸
>0

> f(x̃)

for a t ∈ (0, 1), i.e. f(x̃) < f(x̃+ d) ∀ d ∈ Bε(x̃), so x̃ is a local minimizer of f .

Remark Condition (ii) in Theorem 2.4 is not necessary for the local minimality of x̃. To some
extent there is a 'gap' between necessary and su�cient conditions. Given (i) of Theorem 2.4 in
the case of an inde�nite Hessian ∇2f(x̃), we refer to x̃ as a saddle point. △
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3. Convex functions

Convex functions are of particular importance for optimization. For a convex function f we are
able to show that the �rst order necessary conditions are also su�cient for local optimality. In the
following we will introduce procedures that approximate a complicated nonlinear minimization
problem by a sequence of convex problems. Apart from global properties, these convex problems
o�er a simple way of computing solutions or approximations.

De�nition 3.1 A set X ⊆ IRn is called convex, if for all x, y ∈ X and all λ ∈ (0, 1)

(1− λ)x+ λy ∈ X ,

i.e. the line segment x, y lies completely in X.

De�nition 3.2 Let X ⊆ Rn be convex. A function f : X → IR is called

� convex, if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ∀x, y ∈ X, ∀λ ∈ (0, 1) .

� strictly convex, if

f((1− λ)x+ λy) < (1− λ)f(x) + λf(y) ∀x, y ∈ X mit x ̸= y, ∀λ ∈ (0, 1) .

Geometrically, the (strict) convexity of f means that the line segment between f(x) and
f(y) is located (strictly) above the graph of f .

� uniformly convex, if there exists µ > 0 with

f((1− λ)x+ λy) + µλ(1− λ)∥y − x∥2 ≤ (1− λ)f(x) + λf(y) ∀x, y ∈ X, ∀λ ∈ (0, 1) .

Remark By de�nition, every uniformly convex function is also strictly convex and every strictly
convex function is also convex. The converse is not true in general! △

Theorem 3.3 Let X ⊆ Rn open, convex and f : X → IR continuously di�erentiable.
Then the following assertions hold true:

1. f is convex (on X) if and only if

∇f(x)⊤(y − x) ≤ f(y)− f(x) ∀x, y ∈ X .
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2. f is strictly convex (on X) if and only if

∇f(x)⊤(y − x) < f(y)− f(x) ∀x, y ∈ X mit x ̸= y .

3. f is uniformly convex (on X) if and only if there exists µ > 0 such that

∇f(x)⊤(y − x) + µ∥y − x∥2 ≤ f(y)− f(x) ∀x, y ∈ X .

Proof. � Exercise.

Now we provide a characterization of twice continuously di�erentiable (strictly, uniformly) convex
functions, enabling us to read o� the convexity qualities of f from the de�niteness of the Hessian
of f .

Theorem 3.4 Let X ⊆ IRn be an open, convex set and f : X → IR twice continuously di�eren-
tiable. Then the following statements hold true:

1. f is convex (on X) if and only if ∇2f(x) is positive semide�nite for all x ∈ X, i.e.

d⊤∇2f(x)d ≥ 0 ∀x ∈ X, ∀d ∈ IRn .

2. If ∇2f(x) is positive de�nite for all x ∈ X, i.e.

d⊤∇2f(x)d > 0 ∀x ∈ X, ∀d ∈ IRn \ {0} ,

then f is strictly convex (on X).

3. f is uniformly convex (on X) if and only if ∇2f(x) is uniformly positive de�nite on X, i.e.,
if there exists µ > 0 such that

d⊤∇2f(x)d ≥ µ∥d∥2 ∀x ∈ X, ∀d ∈ IRn .

Proof.

1) �⇒�: Since f if convex and twice continuously di�erentiable, we can apply Taylor's theorem:

f(y) = f(x) +∇f(x)⊤(y − x) +
1

2
(y − x)⊤∇2f(x)(y − x) + r(y − x)

for all y ∈ X su�ciently close to x, and for the remainder holds: r(y − x)/∥y − x∥2 → 0
for y → x. Choose y = x+ td for an arbitrary d ∈ IRn and t > 0 su�ciently small. Then,
by continuity of eigenvalues (Lemma 2.2), we get

0 ≤ t2

2
d⊤∇2f(x)d+ r(td) .

Divide by t2/2 and take the limit t→ 0 to obtain 0 ≤ d⊤∇2f(x)d ∀ x ∈ X, d ∈ IRn.
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�⇐�: Since f is continuously di�erentiable and ∇2f(x) positive semi-de�nite for all x ∈ X,
applying Taylor's theorem and the mean value theorem, we get

f(y) = f(x) +∇⊤(y − x) +
1

2

∫ 1

0
(y − x)⊤∇2f(x+ t(y − x))(y − x)dt . (∗)

Using the positive semi-de�niteness of f , we get f(y) ≥ f(x) +∇f(x)⊤(y − x) ∀ x, y ∈ X.
The convexity of f then follows by Theorem 3.3.

2) �⇐�: Analogously to the second part of 1).

3) �⇒�: Let f be uniformly convex. Similar to the �rst part of 1), using the continuity of eigenvalues,
we get for y = x+ td with d ∈ IRn and t > 0 su�ciently small:

µt2∥d∥2 ≤ t2

2
d⊤∇2f(x)d+ r(td) .

Divide by t2 and take the limit t→ 0 to get: µ∥d∥2 ≤ 1
2d

⊤∇2f(x)d for arbitrary d ∈ IRn.

�⇐�: If ∇2f is uniformly positive de�nite with modulus µ > 0, we use∫ 1

0
(y − x)⊤∇2f(x+ t(y − x))(y − x)dt ≥ µ∥y − x∥2

in (∗) and Theorem 3.3 delivers the uniform convexity of f .

Note that the second statement of Theorem 3.4 cannot be reversed in general; consider, e.g.,
f(x) = x4 ∈ R.

Example 3.5 Let f : R → R.
� The function f(x) = x is convex, but not strictly convex.

� The function f(x) = exp(x) is strictly convex, but not uniformly.

� The function f(x) = x2 is uniformly convex.

△

Remark Let f : IRn → IR be a quadratic function, i.e.,

f(x) =
1

2
x⊤Qx+ b⊤x+ c

with Q ∈ Sn, b ∈ IRn, c ∈ IR. Then the following statements hold true:

(i) f is convex if and only if Q is positive semide�nite.

(ii) f is strictly convex ⇔ f uniformly convex ⇔ Q positive de�nite.

△

Theorem 3.6 (Convex optimization problems) Let f : X → IR be continuous and convex.
Further, let X ⊆ IRn be convex. Consider the optimization problem

min f(x) s.t. x ∈ X , (3.1)

then the following statements hold true:
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1. Every local minimizer of f on X is a global minimizer of f on X.

2. If f is strictly convex, then (3.1) has at most one solution.

3. If X is open, f continuously di�erentiable and x̃ ∈ X a stationary point of f , then x̃ is a
global minimizer of f on X.

Proof. � Exercise.
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4. Gradient based methods

In general, only exceptional cases allow the explicit calculation of (local) solutions of the mini-
mization problem

min f(x) , x ∈ IRn . (4.1)

In practice, iterative methods are applied for computing approximate (local) minimizers. After
a convergence analysis, these methods are normally represented in algorithmic form and imple-
mented on a computer. For this reason, we now consider descent methods for �nding solutions of
problem (4.1), in which f : IRn → IR is a continuously di�erentiable function. The fundamental
idea of the methods in this chapter is as follows:

1. At a point x ∈ IRn, one chooses a direction d ∈ IRn in which the function value decreases
(descent method).

2. Starting at x, one proceeds along this direction d as long as the function value of f reduces
su�ciently (step size strategy).

De�nition 4.1 Let f : IRn → IR and x ∈ IRn. The vector d ∈ Rn is called a descent direction
of f at x, if there exists t̄ > 0 such that

f(x+ td) < f(x)

for all t ∈ (0, t̄]. If ∥d∥ = 1, then d is called a unit direction.

Lemma 4.2 Let f : IRn → IR be continuously di�erentiable, x ∈ IRn and d ∈ IRn with
∇f(x)⊤d < 0. Then, d is a descent direction of f in x.

Proof. W.l.o.g. ∥d∥ = 1. The continuous di�erentiability of f implies that for the directional
derivative of f in x in direction d, it holds true that

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
= ∇f(x)⊤d < 0 .

Thus,
f(x+ td)− f(x)

t
< 0

for all su�ciently small t > 0. Thus, d is a descent direction of f in x.

Remark The criterion in the previous lemma is not necessary for d to be a descent direction of
f at x. Consider, for instance, the case where x is a strict local maximizer. Then all directions
d ∈ IRn would be descent directions of f in x, but the criterion does not hold. △
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Algorithm (1) General descent method

Input: starting point x0 ∈ IRn

1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0
3: compute a descent direction dk ∈ IRn with ∇f(xk)⊤dk < 0
4: compute a step size σk > 0 with f(xk + σkd

k) < f(xk)
5: set xk+1 = xk + σkd

k

6: end for

Remark The following stopping rules are common in practice (with ε > 0):

� ∥∇f
(
xk

)
∥ ≤ ϵ,

� |f
(
xk

)
− f

(
xk−1

)
| ≤ ϵ (for k ≥ 1), (not suitable, consider the sequence f(x0) = 1,

f(xk) = −
∑k

j=1 j
−1)

� ∥xk − xk−1∥ ≤ ϵ (für k ≥ 1) (in combination with other stopping criteria).

△

4.1 The method of steepest descent

The aim is to determine a direction d along which f in x decreases the most.

De�nition 4.3 Let f : IRn → IR be continuously di�erentiable, x ∈ IRn with ∇f(x) ̸= 0 and
d̃ ∈ IRn the solution of

min
∥d∥=1

∇f(x)⊤d . (4.2)

Every vector of the form d̂ = λd̃ with λ > 0 is called direction of steepest descent of f in x.

Theorem 4.4 Let f : IRn → IR be continuously di�erentiable, x ∈ IRn with ∇f(x) ̸= 0. Then,
the unique solution of problem (4.2) is given by

d̃ = − ∇f(x)
∥∇f(x)∥

.

Proof. By Cauchy-Schwarz, it holds for every d ∈ IRn with ∥d∥ = 1

∇f(x)⊤d ≥ −|∇f(x)⊤d|≥ − ∥∇f(x)∥ ∥d∥︸︷︷︸
=1

= −∥∇f(x)∥ .

The choice d = − ∇f(x)
∥∇f(x)∥

yields ∇f(x)⊤d = −∥∇f(x)∥ and thus solves (4.2) (uniquely).

Remark The steepest descent method uses the negative gradient in the current iterate as
descent direction, i.e.

dk = −∇f(xk) .
Note that dk is not a unit direction, but the full negative gradient. △
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4.2 Armijo step size strategy

The Armijo step size strategy will be used to determine σk in the general descent algorithm.

Algorithm (2) Armijo step size strategy

Input: Iterate xk ∈ IRn, descent direction dk ∈ IRn, parameter β, γ ∈ (0, 1)
Output: step size σk > 0
1: set σk = 1
2: while f(xk + σkd

k)− f(xk) > σkγ∇f(xk)⊤dk do
3: set σk = βσk
4: end while

Theorem 4.5 Let X ⊆ IRn be open, f : X → IR continuously di�erentiable and γ ∈ (0, 1).
If d ∈ IRn is a descent direction in x ∈ X, then there exists σ̄ > 0 such that

f(x+ σd)− f(x) ≤ σγ∇f(x)⊤d ∀σ ∈ [0, σ̄] . (4.3)

Proof. For σ = 0, the relation (4.3) is satis�ed, since d is a descent direction. So let σ > 0 be
su�ciently small such that x+ σd ∈ X.

If ∇f(x)⊤d = 0, relation (4.3) is satis�ed, with the same argument. So, it remains to show (4.3)
only for the case ∇f(x)⊤d < 0. In that case, it holds:

f(x+ σd)− f(x)

σ︸ ︷︷ ︸
→∇f(x)⊤d

−γ∇f(x)⊤d σ→0−→ ∇f(x)⊤d− γ∇f(x)⊤d = (1− γ)︸ ︷︷ ︸
>0

∇f(x)⊤d︸ ︷︷ ︸
<0

< 0 .

For σ̄ > 0 su�ciently small, we obtain

f(x+ σd)− f(x)

σ
− γ∇f(x)⊤d ≤ 0 ∀σ ∈ (0, σ̄] .

Multiplying with σ > 0 gives (4.3).

The termination of Algorithm (2) after �nite number of steps follows then directly from Theo-
rem 4.5, since βl ∈ (0, σ̄] with β ∈ (0, 1) for su�ciently large l ∈ IN.

4.3 Convergence of the method of steepest descent

Theorem 4.6 Let f : IRn → IR be continuously di�erentiable. Then either Algorithm (3)
terminates after a �nite number of iterations returning a stationary point xk, or the algorithm
generates a sequence of iterates (xk) such that

1. for all k it holds true that f(xk+1) < f(xk).

2. every accumulation point of (xk) is a stationary point of f .
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Algorithm (3) Method of the steepest descent

Input: starting point x0 ∈ IRn.
1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0.
3: compute dk = −∇f(xk).
4: compute σk > 0 with the Armijo step size strategy (Algorithm (2)).
5: set xk+1 = xk + σkd

k.
6: end for

Proof. If the algorithm terminates after a �nite number of steps, there is nothing to prove. We
consider the case that Algorithm (3) computes a sequence (xk) ⊆ IRn and (σk) ⊆ (0, 1] where
∇f(xk) ̸= 0. The application of the Armijo step size strategy (and Theorem 4.5) implies

f(xk+1)− f(xk) = f(xk + σkd
k)− f(xk) ≤ σkγ∇f(xk)⊤dk = −σkγ∥∇f(xk)∥

2
< 0 ,

thus the �rst statement holds true.

Let x̃ be an accumulation point of (xk) and (xk)K the subsequence with limit x̃.

The monotonicity of the function values (f(xk)) implies convergence to a limit f∗ ∈ IR∪ {−∞}.
In particular, we have

(f(xk))K → f∗ .

The continuity of f implies (since (xk)K → x̃)

(f(xk))K → f(x̃)

and thus
f(xk) → f∗ = f(x̃) .

The application of the Armijo step size strategy gives

f(x0)− f(x̃) =
∞∑
k=0

(
f(xk)− f(xk+1)

)
≥ γ

∞∑
k=0

σk∥∇f(xk)∥
2
.

Hence,

σk∥∇f(xk)∥
2 → 0 . (4.4)

We will now show by contradiciton that ∇f(x̃) = 0. Let us therefore assume that ∇f(x̃) ̸= 0.
By continuity of ∇f and (xk)K → x̃, there exists l ∈ K such that

∥∇f(xk)∥ ≥ ∥∇f(x̃)∥
2

> 0 ∀k ∈ K, k ≥ l .

Due to (4.4) it follows that
(σk)K → 0 .

Thus, there exists l′ ∈ K such that

σk ≤ β ∀k ∈ K, k ≥ l′ .

For all these indices, the stopping criterion of the Armijo step size rule has been violated at least
once, in particluar for tk = β−1σk. Therefore, we obtain

f(xk + tkd
k)− f(xk) > γtk∇f(xk)⊤dk = −γtk∥∇f(xk)∥

2 ∀k ∈ K, k ≥ l′ .
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Division by tk and applying the mean value theorem leads to

−γ ∥∇f(xk)∥2︸ ︷︷ ︸
→∥∇f(x̃)∥2

<
f(xk + tkd

k)− f(xk)

tk
= ∇f(xk + τkd

k)⊤︸ ︷︷ ︸
→∇f(x̃)⊤

dk︸︷︷︸
→−∇f(x̃)

∀k ∈ K, k ≥ l′

with τk ∈ [0, tk]. Since (σk)K is a null sequence, (tk)K is a null sequence and we obtain in the
limit k → ∞

−γ∥∇f(x̃)∥2 ≤ −∥∇f(x̃)∥2 .
Since γ ∈ (0, 1), this is a contradiction to ∇f(x̃) ̸= 0 and the second statement follows.

Remark Under the assumption that the level set Nf (x
0) is compact, existence of an accumula-

tion point of (xk) follows. △

For the realization of a numerical method to solve the minimization problem not only the con-
vergence of iterates to a solution (or probably only a stationary point) is of importance, but also
'how fast' this convergence takes place. We will focus on quadratic functions to investigate the
rate of convergence of the method of steepest descent:

� The function f is quadratic and strictly convex, i.e. f(x) =
1

2
x⊤Qx+ b⊤x+ c

with symmetric and positive de�nite matrix Q.

� The exact step size strategy (i.e. exact line search) will be used.

De�nition 4.7 Let f : IRn → IR be continuously di�erentiable, x ∈ IRn, d ∈ IRn descent
direction of f in x, and the level set Nf (x) be compact. The step size σE = σE(x, d) with

σE = argmin
σ≥0

f(x+ σd)

is called exact step size.

Example 4.8 Let f(x) = 1
2x

⊤Qx + b⊤x be a quadratic function with Q symmetric, positive
de�nite. The exact step size for a descent direction d is given by

σE = −∇f(x)⊤d
d⊤Qd

. � exercise
△

Theorem 4.9 Let f : IRn → IR be strictly convex and quadratic, i.e. f(x) = 1
2x

⊤Qx+ b⊤x+ c
with positive de�nite and symmetric Q ∈ IRn×n. Let (xk) and (σk) be the iterates and step sizes,
respectively, of the steepest descent algorithm (3) with exact line search.

Then, the following statements hold true:

f(xk+1)− f(x̃) ≤
(
λmax(Q)− λmin(Q)

λmax(Q) + λmin(Q)

)2 (
f(xk)− f(x̃)

)
,

∥xk − x̃∥ ≤

√
λmax(Q)

λmin(Q)

(
λmax(Q)− λmin(Q)

λmax(Q) + λmin(Q)

)k

∥x0 − x̃∥ ,

where x̃ = −Q−1b is the global minimizer of f and λmax(Q), λmin(Q) denote the largest and
smallest eigenvalue of Q.
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Remark

� κ := λmax(Q)
λmin(Q) is called the spectral condition number of Q.

� If κ is large, the contraction rate κ−1
κ+1 becomes very close to 1, i.e. slow convergence.

� As a remedy, one may choose instead of the steepest descent direction a scaled version, i.e.
choose

dk := −M−1∇f(xk)

for a positive de�nite matrix M . This matrix should be chosen to ensure that

0 <
λmax(M

−1Q)

λmin(M−1Q)
<
λmax(Q)

λmin(Q)

and such that M · dk = −∇f(xk) is easy to solve.

△

Theorem 4.10 (Zig-zagging theorem)

Let (xk)k be the sequence generated by the steepest descend method with exact line search.
Then, for all k = 0, 1, 2, . . ., it holds(

xk+1 − xk
)
⊥

(
xk+2 − xk+1

)

Proof. The iterates are xk+1 = xk − σk∇f(xk) and xk+2 = xk+1 − σk+1∇f(xk+1),
and we have

⟨xk+1 − xk, xk+2 − xk+1⟩ = σk · σk+1 · ⟨∇f(xk),∇f(xk+1)⟩

Using the exact line search, we get

σk = argmin
σ≥0

f(xk − σ · ∇f(xk)︸ ︷︷ ︸
=:ϕk(σ)

and thus (by application of the chain rule):

0 =
d

dσ
ϕk(σk)

= ⟨−∇(f(xk)),∇f(xk − σk∇f(xk))⟩
= ⟨−∇(f(xk),∇(f(xk+1))⟩ .
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5. General Descent Methods

Due to the generally slow convergence of steepest descent method, we return to the choice of
search direction and step size strategies in the general gradient method. Without specifying the
exact choice of the descent direction nor the conditions on the step size along this direction, we
introduce abstract conditions which ensure convergence.

5.1 Admissible Descent Direction

De�nition 5.1 A subsequence (dk)K of the sequence of descent directions (dk) generated by
algorithm (1) is called admissible, if

∇f(xk)Tdk < 0 ∀k ≥ 0 , (5.1)(
∇f(xk)Tdk

∥dk∥

)
K

→ 0 =⇒ (∇f(xk))K → 0 . (5.2)

The �rst condition (5.1) ensures that all vectors dk are descent directions. The second condition

(5.2) becomes more intuitive when realizing that the expression
(
∇f(xk)T dk

∥dk∥

)
K

is the slope of f

at xk in direction dk, i.e. if the slopes along the search direction dk become smaller and smaller
then the steepest possible slopes ∥∇f(xk)∥ have to become smaller and smaller. This can be
guaranteed by bounding the angle between the search direction dk and the negative gradient
−∇f(xk), since

|∇f(xk)Tdk|
∥dk∥

=
−∇f(xk)Tdk

∥dk∥∥∇f(xk)∥︸ ︷︷ ︸
cos∠(−∇f(xk),dk)

∥∇f(xk)∥ .

The angle condition

cos∠(−∇f(xk), dk) = −∇f(xk)Tdk

∥dk∥∥∇f(xk)∥
≥ η (5.3)

for all k ∈ K with �xed η ∈ (0, 1) (independent of k) implies (5.2).

Another su�cient condition for (5.2) is the generalized angle condition

∥∇f(xk)∥ ≤ Φ

(
−∇f(xk)Tdk

∥dk∥

)
(5.4)

with a suitable function Φ : IR≥0 → IR≥0 with Φ(0) = 0, where Φ is assumed to be continuous
at 0.
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Theorem 5.2 Let f : IRn → IR be continuously di�erentiable and (dk)K be the subsequence of
the descent directions (dk) generated by (1). Then, the following statement holds true:

dk satis�es for all k ∈ K the angle condition (5.3)

⇒ dk satis�es for all k ∈ K the generalized angle condition (5.4)

⇒ (dk)K satisifes the condition (5.2) ,

where η and Φ are independent of k ∈ K.

Proof. �(5.3) ⇒ (5.4)�: We set Φ : IR≥0 → IR≥0 with Φ(t) = t
η . Thus, with (5.3), it holds true

that

∥∇f(xk)∥ ≤ 1

η

−∇f(xk)⊤dk

∥dk∥
= Φ(

−∇f(xk)⊤dk

∥dk∥
) .

�(5.4) ⇒ (5.2)�: Since Φ is assumed to be continuous at 0 with Φ(0) = 0, we obtain(
∇f(xk)Tdk

∥dk∥

)
K

→ 0 =⇒ ∥∇f(xk)∥ ≤ Φ(
−∇f(xk)⊤dk

∥dk∥
) → Φ(0) = 0 (K ∋ k → ∞) .

Hence (∇f(xk))K → 0 and the assertion follows.

Example 5.3 Newton-like methods use descent directions dk given by the solution of the fol-
lowing linear system

Mkd
k = −∇f(xk) .

If Mk is symmetric and positive de�nite with

0 < µ1 ≤ λmin(Mk) ≤ λmax(Mk) ≤ µ2 <∞

for all k ∈ N, then every subsequence (dk)K of search directions is admissible. � Exercise. △

5.2 Admissible Step Sizes

De�nition 5.4 The subsequence (σk)K of the step sizes (σk) generated by Algorithm (1) is
called admissible, if

f(xk + σkd
k) ≤ f(xk) ∀k ≥ 0 , (5.5)

and

f(xk + σkd
k)− f(xk) → 0 =⇒

(
∇f(xk)Tdk

∥dk∥

)
K

→ 0 (5.6)

hold true.

Admissible step sizes are given e.g. by e�cient step sizes.
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De�nition 5.5 Let dk be a descent direction of f at xk. The step size σk > 0 is called e�cient,
if

f(xk + σkd
k) ≤ f(xk)− θ

(
∇f(xk)Tdk

∥dk∥

)2

with θ > 0.

Theorem 5.6 Let f : IRn → IR be continuously di�erentiable. The sequences (xk), (dk) and
(σk) are generated by Algorithm (1) and (5.5) is assumed to hold true. If (σk)K is a subsequence
such that the step sizes σk with k ∈ K are e�cient, then the subsequence of step sizes (σk)K
will be admissible.

Proof. � Exercise

5.3 Globally convergent descent methods

The global convergence of general descent methods with admissible descent directions and ad-
missible step sizes is the topic of the following theorem. Here global convergence refers to the fact
that the algorithm converges for an arbitrarily chosen initial value x0 ∈ Rn. In this sense, global
convergence must not be confused with the convergence of the sequence (xk)k (or a subsequence)
to a global minimizer of f !

Theorem 5.7 Let f : IRn → IR be continuously di�erentiable. Assume that Algorithm (1)
generates an in�nite sequence of iterates (xk), (dk) and (σk). Let x̃ be an accumulation point
of (xk) and (xk)K be a subsequence with limit x̃, such that (dk)K and the step sizes (σk)K are
admissible. Then, x̃ is a stationary point of f .

Proof. As in the proof of Theorem 4.6, the monotonicity of the sequence (f(xk)) implies

lim
k→∞

f(xk) = lim
K∋k→∞

f(xk) = f(x̃) .

Thus, it holds: f(x̃)− f(x0) = lim
k→∞

f(xk)− f(x0) =
∞∑
k=0

(f(xk+1)− f(xk))

and therefore (due to the convergence of the series on the right hand side), it holds true that

f(xk + σkd
k)− f(xk) = f(xk+1)− f(xk) → 0 .

The admissibility of the step sizes (σk)K gives(
∇f(xk)Tdk

∥dk∥

)
K

→ 0 ,

and the admissibility of the descent directions (dk)K leads to (∇f(xk))K → 0 .

Due to the continuity of the gradient ∇f , it holds true that

∇f(x̃) = lim
K∋k→∞

∇f(xk) = 0 .
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6. Step Size Strategies and Algorithms

The general descent method o�ers quite some freedom in the choice of the descent direction dk
and the step size σk > 0. The exact minimization rule, i.e. σk = σEk with

f(xk + σEk d
k) = min

σ>0
f(xk + σdk),

is well-de�ned, provided that the level set Nf (x
0) is compact and ∇f Lipschitz continuous on

Nf (x
0). Certainly, this rule is in general impracticable due to the tremendous e�ort necessary

(at every iteration k there is one exact (!) univariate minimization required). Fortunately,
we can abandon the exact univariate minimization without endangering the convergence of the
descent method. In the following, we consider two important representatives of practible step
size strategies, the Armijo rule and the Powell-Wolfe strategy.

6.1 Armijo rule

In Algorithm (3) we already introduced the Armijo rule (Algorithm (2)). This strategy does
not �t directly into the framework of the previous chapter, since this rule does not generate
admissible step sizes in general.

Example 6.1 Let f(x) = x2

8 , x
0 = 1 und dk = −2−k∇f(xk). The general descent algorithm (1)

with Armijo rule generates a sequence of iterates (xk)k which does not converge to the global
minimum at 0.

� Exercise

△

However, under additional assumptions on the search directions, admissibility of the step sizes
generated by the Armijo rule can be shown:

Theorem 6.2 Let f : IRn → IR be continuously di�erentiable and the subsequence (xk)K be
bounded. Further, denote by ϕ : IR≥0 → IR≥0 a strictly increasing function, such that the search
directions generated by the general descent algorithm satisfy the following condition:

∥dk∥ ≥ ϕ

(
−∇f(xk)Tdk

∥dk∥

)
∀k ∈ K . (6.1)

Then, the step sizes (σk)K generated by the Armijo rule are admissible.
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6.2 Powell-Wolfe step size strategy

The Powell-Wolfe rule requires in addition to the Armijo condition

f(xk + σkd
k)− f(xk) ≤ σkγ∇f(xk)Tdk (6.2)

that the following condition

∇f(xk + σkd
k)Tdk ≥ η∇f(xk)Tdk (6.3)

holds true with 0 < γ < 1/2 and γ < η < 1.

The second condition ideally implies that the graph of f(x + σd) at σ > 0 does not descend as
'steeply' as at σ = 0.

The following theorem gives a su�cient condition to ensure the existence of step sizes σ satisfy-
ing (6.2) and (6.3):

Theorem 6.3 Let f : IRn → IR be continuously di�erentiable, d ∈ IRn descent direction of f at
x ∈ IRn and f be bounded from below in direction d, i.e.

inf
t≥0

f(x+ td) > −∞ .

Then, there exists σ > 0 for given γ ∈ (0, 12) and η ∈ (γ, 1) such that

f(x+ σd)− f(x) ≤ σγ∇f(x)Td (6.4)

and
∇f(x+ σd)Td ≥ η∇f(x)Td . (6.5)

Under the assumptions of Theorem 6.3, Algorithm (4) terminates after a �nite number of itera-
tions and returns a step size σ > 0 satisfying (6.4) and (6.5):

Theorem 6.4 Let f : IRn → IR be continuously di�erentiable, d ∈ IRn descent direction of f at
x ∈ IRn and f be bounded from below in direction d, i.e.

inf
t≥0

f(x+ td) > −∞ .

For given γ ∈ (0, 12) and η ∈ (γ, 1), Algorithm (4) terminates after a �nite number of iterations.
The generated step size σ > 0 satis�es (6.4) and (6.5).

The admissibility of the step sizes follows:

Theorem 6.5 Let f : IRn → IR be continuously di�erentiable and x0 ∈ IRn a starting point,
such that the level set Nf (x

0) is compact. Algorithm (1) employs the Powell-Wolfe rule (Algo-
rithm (4)). Then, the algorithm is well-de�ned and every subsequence of step sizes is admissible.
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Algorithm (4) Powell-Wolfe Step Size Strategy

Input: Iterate x ∈ IRn, descent direction d ∈ IRn, parameters γ ∈ (0, 12), η ∈ (γ, 1), σ− := 1.
Output: Step size σ > 0 ful�lling the Wolfe conditions.
1: if σ− satis�es the Armijo condition (6.4) then
2: if σ− satis�es the curvature condition (6.5) then
3: STOP with σ−
4: end if

5: Determine the smallest σ+ ∈ {21, 22, 23, . . . }, such that σ = σ+ does not satisfy
the su�cient descent condition (Armijo rule (6.4))

6: Set σ− = σ+

2
7: else

8: Determine the largest σ− ∈ {2−1, 2−2, 2−3, . . . }, such that σ = σ− satis�es
the su�cient descent condition (Armijo rule (6.4))

9: Set σ+ = 2σ−
10: end if

11: while σ− does not satisfy the curvature condition (6.5) do
12: Set σ = σ−+σ+

2
13: if σ satis�es the Armijo rule (6.4) then
14: Set σ− = σ
15: else

16: Set σ+ = σ
17: end if

18: end while

19: STOP with step size σ−
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7. Newton's Method

Newton's method, with all its variations, is the most important method in unconstrained opti-
mization. Compared to gradient methods, we will achieve a faster convergence by using second
order information, the Hessian ∇2f , in addition to the �rst order derivatives. The basic idea is
to use Newton's method as an algorithm for the solution of the system of �rst order necessary
conditions ∇f(x) = 0.

Newton's method is a method for the solution of nonlinear systems of the form

F (x) = 0

with F : IRn → IRn. If the Jacobian matrix of F exists and is continuous, then Taylor's theorem
leads to:

F (xk + d) = F (xk) + F ′(xk)d+ o(∥d∥) .
Hence, given a point xk, we can determine xk+1 setting dk such that

xk+1 = xk + dk with F ′(xk)dk = −F (xk) .

With F (x) := ∇f(x) and thus F ′(x) = ∇2f(x), we obtain a Newton method for minimizing f
by solving the �rst order necessary optimality condition ∇f(x) = 0, as in Algorithm (5).

Algorithm (5) Local Newton's Method (for optimization problems)

Input: starting point x0 ∈ IRn.
1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0.
3: Compute the Newton step dk ∈ IRn by solving the linear system

∇2f(xk)dk = −∇f(xk) .
4: Set xk+1 = xk + dk.
5: end for

Remark An equivalent way to introduce Newton's method for unconstrained optimization is to
compute the next iterate xk+1 by minimizing a quadratic approximation of f , i.e. we consider
the following quadratic model of f near xk:

m(x) = f(xk) +∇f(xk)⊤(x− xk) +
1

2
(x− xk)⊤∇2f(xk)(x− xk) .

If ∇2f(xk) is positive de�nite, there exists a unique minimizer of the quadratic model yielding

the next iterate xk+1. � Exercise.

Note that the Hessian ∇2f(x) is positive de�nite in a neighborhood Bε(x̃) of the local minimizer
provided that second order su�cient conditions are satis�ed.

△
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De�nition 7.1 (Convergence rate) The sequence (xk) ⊂ IRn

� converges linearly with rate 0 < γ < 1 to x̃ ∈ IRn, i� there exists l ≥ 0 such that:

∥xk+1 − x̃∥ ≤ γ ∥xk − x̃∥ ∀k ≥ l .

� converges superlinearly to x̃ ∈ IRn, if xk → x̃ and

∥xk+1 − x̃∥ = o(∥xk − x̃∥) for k → ∞ ,

i.e. there exists a null sequence (ϵk) ⊂ R+ with

∥xk+1 − x̃∥ ≤ ϵk∥xk − x̃∥ for all k → ∞

� converges quadratically to x̃ ∈ IRn, if xk → x̃ and

∥xk+1 − x̃∥ = O(∥xk − x̃∥2) for k → ∞ .

The above condition is equivalent to the existence of a constant C > 0 such that

∥xk+1 − x̃∥ ≤ C∥xk − x̃∥2 ∀k ≥ 0 .

Remark Note that the superlinear and quadratic convergence are independent of the chosen
norm, i.e. if (xk) ⊂ IRn converges superlinearly to x̃ according to De�nition 7.1, then it holds
true that

∥xk+1 − x̃∥a = ηk∥xk − x̃∥a for all k → ∞

for an arbitrary norm ∥ · ∥a and null sequence (ηk) ⊂ R+. Analogously,

∥xk+1 − x̃∥a ≤ Ca∥xk − x̃∥2a ∀k ≥ 0 .

converges quadratically to x̃, where Ca depends on the norm.

However, the linear convergence depends on the applied norm. For every linearly convergent
sequence (xk) ⊂ IRn, it holds true that

∥xk+1 − x̃∥a ≤ γa ∥xk − x̃∥a ∀k ≥ l

with a constant γa depending on the applied norm, but the constant is in general not necessarily
smaller than 1. △

The convergence proof of Newton's method is based on some auxiliary results, which we establish
in the following lemmas 7.2 and 7.3.

Lemmas 7.4 and 7.5 give characterizations of superlinear and quadratic convergence and will be
also be used in the convergence proof of the local Newton method.
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Lemma 7.2 Let f : IRn → IR and (xk) ⊂ Rn be a sequence converging to x̃ ∈ Rn. Then, the
following statements hold true:

1. If f is twice continuously di�erentiable, then

∥∇f(xk)−∇f(x̃)−∇2f(xk)(xk − x̃)∥ = o(∥xk − x̃∥) .

2. If f is twice continuously di�erentiable and ∇2f is locally Lipschitz continuous, then

∥∇f(xk)−∇f(x̃)−∇2f(xk)(xk − x̃)∥ = O(∥xk − x̃∥2) .

Lemma 7.3 Let f : IRn → IR be twice continuously di�erentiable, x̃ ∈ Rn and∇2f(x̃) invertible.
Then, there exists δ > 0 such that ∇2f(x) is invertible for all x ∈ Bδ(x̃). Further, there exists
c > 0, such that

∥∇2f(x)−1∥ ≤ c ∀x ∈ Bδ(x̃) .

Lemma 7.4 Let f : IRn → IR be twice continuously di�erentiable, (xk) ⊂ Rn be a convergent
sequence with limit x̃ ∈ Rn, xk ̸= x̃ for all k ∈ N and ∇2f(x̃) invertible. Then, the following
statements are equivalent:

1. xk → x̃ superlinear und ∇f(x̃) = 0.

2. ∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ = o(∥xk+1 − xk∥).
3. ∥∇f(xk) +∇2f(x̃)(xk+1 − xk)∥ = o(∥xk+1 − xk∥).

Lemma 7.5 Let f : IRn → IR be twice continuously di�erentiable and ∇2f be locally Lipschitz
continuous, (xk) ⊂ Rn be a convergent sequence with limit x̃ ∈ Rn, xk ̸= x̃ for all k ∈ N and
∇2f(x̃) invertible. Then, the following statements are equivalent:

1. xk → x̃ quadratically and ∇f(x̃) = 0.

2. ∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ = O(∥xk+1 − xk∥2).
3. ∥∇f(xk) +∇2f(x̃)(xk+1 − xk)∥ = O(∥xk+1 − xk∥2).

With these auxiliary results, we may now show the convergence of the (local/full-step) Newton
method.
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Theorem 7.6 Let f : IRn → IR be twice continuously di�erentiable and x̃ ∈ IRn be a stationary
point of f and ∇2f(x̃) invertible. Then, there exists δ > 0 such that for all x ∈ Bδ(x̃) it holds
true that

1. the (local) Newton's method (5) is well de�ned and generates a convergent sequence (xk)
with limit x̃.

2. the convergence rate is superlinear.

3. If ∇2f is locally Lipschitz continuous, the convergence rate will be quadratic.

Proof. By Lemma 7.3, there exists δ1 > 0 such that ∇2f(x) is invertible for all x ∈ Bδ1(x̃) with

∥∇2f(x)−1∥ ≤ c ∀x ∈ Bδ1(x̃) .

for a constant c > 0. Furthermore, by Lemma 7.2, there exists δ2 > 0 with

∥∇f(xk)−∇f(x̃)−∇2f(xk)(xk − x̃)∥ ≤ 1

2c
∥xk − x̃∥ .

for all x ∈ Bδ2(x̃). We set δ = min{δ1, δ2} and choose x0 ∈ Bδ(x̃). Then, x
1 is well de�ned and

we have

∥x1 − x̃∥ = ∥x0 − x̃−∇2f(x0)−1∇f(x0)∥
≤ ∥∇2f(x0)−1∥∥∇f(x0)−∇f(x̃)−∇2f(x0)(x0 − x̃)∥

≤ c
1

2c
∥x0 − x̃∥ =

1

2
∥x0 − x̃∥ .

Thus, x1 ∈ Bδ(x̃) and by induction, it follows that

∥xk − x̃∥ ≤
(
1

2

)k

∥x0 − x̃∥

for all k ∈ N. Hence, the sequence of iterates (xk) is well de�ned and converges to x̃. Lemma
7.4, Lemma 7.5 and

∇f(xk) +∇2f(xk)(xk+1 − xk) = 0

imply the statements on the convergence rates.

Theorem 7.6 states a local convergence results. The following example illustrates that Algo-
rithm (5) does not converge for arbitrary starting points x0 in general:

Example 7.7 We consider the function f(x) =
√
x2 + 1. The second order su�cient conditions

are satis�ed at x̃ = 0. However, Algorithm (5) does not converge for starting points x0 with

|x0| ≥ 1. � Exercise. △

To design a globally convergent method based on the convergence results for general descent
methods (Theorem 5.7), we introduce a step size strategy and ensure that step sizes and descent
directions are both admissible.
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Algorithm (6) Globalization of Newton's method

Input: Starting point x0 ∈ IRn, parameters β ∈ (0, 1), γ ∈ (0, 1), α1, α2 > 0 and p > 0.
1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0
3: Compute Newton direction dkN ∈ IRn by solving the linear system

∇2f(xk)dkN = −∇f(xk) (∗)
4: if dkN ̸= 0 is a solution of (∗) that satis�es the generalized angle condition

−∇f(xk)TdkN ≥ min{α1, α2∥dkN∥p}∥dkN∥2 (7.1)

then

5: dk := dkN
6: else

7: dk := −∇f(xk) (fallback if (∗) not solvable or Newton-step is unsatisfying)

8: end if

9: Determine the step size σk > 0 using the Armijo rule (Algorithm (2))
10: xk+1 := xk + σkd

k

11: end for

Theorem 7.8 Let f : IRn → IR be twice continuously di�erentiable. Then, either Algorithm (6)
terminates after a �nite number of iterations with ∇f(xk) = 0 or every accumulation point of
the sequence of iterates (xk) generated by the algorithm is a stationary point of f .

Proof. Let KG = {k ≥ 0 : dk = −∇f(xk)} and KN = {k ≥ 0 : dk ̸= −∇f(xk)} .

To apply the convergence results for general descent methods (Theorem 5.7) and to ensure the
well posedness of the Armijo rule, we �rst show that the directions generated by Algorithm (6)
are descent directions. By de�nition of KG, it follows directly that

−∇f(xk)Tdk

∥dk∥
= ∥∇f(xk)∥ > 0 , (7.2)

for all k ∈ KG. By (7.1), we obtain

−∇f(xk)Tdk

∥dk∥
≥ min{α1, α2∥dk∥

p}∥dk∥ > 0 . (7.3)

for all k ∈ KN . Hence, the generated directions dk are descent directions for all k ∈ N0. In
particular, the Armijo rule is well de�ned.

If the algorithm terminates after a �nite number of steps, there is nothing to prove. Therefore,
we focus on the case that the algorithm generates a sequence of iterates (xk) with accumulation
x̃. We denote by (xk)K a subsequence converging to x̃, i.e. (xk)K → x̃.

We �rst prove the admissibility of the subsequence of descent directions (dk)K : Since (xk)K is
bounded and ∇2f is continuous by assumption, there exists C > 0, such that ∥∇2f(xk)∥ ≤ C
for all k ∈ K. Thus, we obtain

∥∇f(xk)∥ = ∥∇2f(xk)dk∥ ≤ C∥dk∥ ∀k ∈ K ∩KN . (7.4)

To show the admissibility, let (
∇f(xk)Tdk

∥dk∥

)
K

→ 0 .



31

By (7.3), it follows that

∥dk∥ K∩KN∋k→∞−→ 0

and (7.4) implies

∥∇f(xk)∥ K∩KN∋k→∞−→ 0 .

For the indices k ∈ K ∩KG, it follows by (7.2) that

∥∇f(xk)∥ =
−∇f(xk)Tdk

∥dk∥
K∩KG∋k→∞−→ 0 .

Thus, (
∇f(xk)

)
K

→ 0

implies the admissibility of (dk)K .

It remains to show that the step sizes (σk)K are also admissible: For all k ∈ K ∩KG, it holds
true that

∥dk∥ = ∥∇f(xk)∥ =
−∇f(xk)Tdk

∥dk∥
.

and for k ∈ K ∩KN , it follows that

∥dk∥
(7.4)

≥ 1

C
∥∇f(xk)∥ ≥ 1

C

−∇f(xk)Tdk

∥dk∥
.

The function ϕ : IR≥0 → IR≥0 with

ϕ(t) = min{t, 1
C
t}

is continuous, strictly monotonically increasing from ϕ(0) = 0, and we obtain for all k ∈ K

∥dk∥ ≥ ϕ

(
−∇f(xk)Tdk

∥dk∥

)
.

Thus, Theorem 6.2 gives the admissibility of the subsequence of step sizes (σk)K and the assertion
follows.

Theorem 7.9 Let f : IRn → IR be twice continuously di�erentiable. Further, let (xk) be a
sequence of iterates generated by Algorithm (6) with accumulation point x̃ such that the Hessian
is positive de�nite at x̃. Then, the following statements hold true:

1. The point x̃ is a strict local minimizer of f .

2. The sequence (xk) converges to x̃.

3. If γ ∈ (0, 12), then there exists l ≥ 0, such that the algorithm performs Newton's method
with step size 1 for all k ≥ l. In particular, Algorithm (6) converges superlinearly. If ∇2f
is Lipschitz continuous in a neighborhood of x̃, then the convergence rate will be quadratic.
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8. Newton-like methods

In this chapter we discuss some variants of Newton's method. The evaluation and factorization
of the Hessian of f can be very expensive. On the other hand, far from a local minimum, the
Hessian may be singular or the Newton direction may not be a direction of descent because the
Hessian ∇2f is not positive de�nite. The basic idea of Newton-like methods is to replace the
Hessian ∇2f(xk) by an approximation Mk and then to solve the linear system

Mkd
k = −∇f(xk)

in order to compute the descent direction.

Algorithm (7) Newton-like method

Input: Starting point x0 ∈ IRn.
1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0
3: choose an invertible matrix Mk ∈ IRn×n

4: compute the direction dk ∈ IRn by solving the linear system

Mkd
k = −∇f(xk)

5: xk+1 := xk + dk

6: end for

The convergence analysis of Algorithm (7) is based on Lemma 7.4:

Theorem 8.1 (Dennis-Moré condition) Let f : IRn → IR be twice continuously di�eren-
tiable, and let (xk) be the sequence generated by Algorithm (7). Assume that (xk) converges
to x̃ and ∇2f(x̃) is invertible. Then, the following statements are equivalent:

1. (xk) converges superlinearly to x̃ and it holds true that ∇f(x̃) = 0.

2. ∥(Mk −∇2f(x̃))(xk+1 − xk)∥ = o(∥xk+1 − xk∥).
3. ∥(Mk −∇2f(xk))(xk+1 − xk)∥ = o(∥xk+1 − xk∥).

Proof. In Algorithm (7), the directions are computed by

Mkd
k = −∇f(xk) and dk = xk+1 − xk ,

thus
Mk(x

k+1 − xk) = −∇f(xk) .
Substituting in (2) gives

∥(Mk −∇2f(x̃))(xk+1 − xk)∥ = ∥∇f(xk) +∇2f(x̃)(xk+1 − xk)∥
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and in (3) leads to

∥(Mk −∇2f(xk))(xk+1 − xk)∥ = ∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ .

The statements (2) und (3) are therefore equivalent to the corresponding statements in Lemma 7.4.
Hence, the assertions follow by Lemma 7.4.

We will apply Theorem 8.1 in the following two chapters to prove superlinear convergence of
Quasi-Newton methods and inexact Newton methods. The following example illustrates the
application of the Dennis-Moré condition to prove superlinear convergence:

Example 8.2 Let (xk) and (Mk) be sequences generated by Algorithm (7) such that

xk → x̃ and Mk → ∇2f(x̃) .

Then, it holds true that

∥(Mk −∇2f(x̃))(xk+1 − xk)∥ ≤ ∥Mk −∇2f(x̃)∥︸ ︷︷ ︸
→0

∥xk+1 − xk∥ = o(∥xk+1 − xk∥) .

Thus, condition (2) of Theorem 8.1 is satis�ed. If∇2f(x̃) is invertible, then (xk) will superlinearly
converge to x̃. △

Analogously to Algorithm (6), Newton-like methods can be globalized as follows.

Algorithm (8) Globalization of Newton-like methods (for optimization problems)

Input: Starting point x0 ∈ IRn, parameters β ∈ (0, 1), γ ∈ (0, 1), α1, α2 > 0 and p > 0.
1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0
3: Choose an invertible, symmetric matrix Mk ∈ IRn×n

4: Compute Newton direction dkN ∈ IRn by solving the linear system

Mkd
k
N = −∇f(xk) (∗)

5: if dkN ̸= 0 is a solution of (∗) that satis�es the generalized angle condition

−∇f(xk)TdkN ≥ min{α1, α2∥dkN∥p}∥dkN∥2

then

6: dk := dkN
7: else

8: dk := −∇f(xk) (fallback if (∗) not solvable or Newton-like-step is unsatisfying)

9: end if

10: Compute the step size σk > 0 by the Armijo rule (Algorithm (2)).
11: xk+1 := xk + σkd

k.
12: end for

The convergence result (Theorem 7.8) can be straightforwardly generalized to Algorithm (8)
provided that the sequence (∥Mk∥) is bounded.
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9. Inexact Newton methods

Newton's method requires the solution of a linear system in each iteration

∇2f(xk)dk = −∇f(xk) . (9.1)

For very large scale problems, the arising linear systems can only be solved by iterative methods
(e.g. CG). Then Newton's iteration appears as outer iteration. The question of interest will be to
control the accuracy of the inner iteration such that the convergence speed of Newton's method
is preserved. The resulting algorithm (local variant) is summarized in Algorithm (9). Globaliza-
tion of Algorithm (9) for optimization problems is completely analogous to the globalization of
Newton's method (Algorithm (6)).

Algorithm (9) Inexact Newton method

Input: Starting point x0 ∈ IRn.
1: for k = 0, 1, 2, . . . do
2: STOP if ∇f(xk) = 0.
3: compute the direction dk ∈ IRn by approximately solving the linear system

∇2f(xk)dk = −∇f(xk)

4: set xk+1 = xk + dk

5: end for

We assume that the error in the solution of the linear system (9.1) is bounded by

∥∇f(xk) +∇2f(xk)dk∥ ≤ ηk∥∇f(xk)∥ (9.2)

for su�ciently small ηk > 0. In this setting, the following convergence result can be shown:

Theorem 9.1 Let f : IRn → IR be twice continuously di�erentiable, x̃ ∈ IRn be a stationary
point of f and ∇2f(x̃) be invertible. Then, there exists ε > 0, such that the following statements
hold true:

1. If x0 ∈ Bε(x̃) and the directions dk generated by Algorithm (9) satisfy the condition (9.2)
with ηk ≤ η for su�ciently small η ∈ (0, 1), then either the Algorithm (9) terminates after
a �nite number of steps with xk = x̃ or the algorithm generates a sequence (xk), which
linearly converges to x̃.

2. If additionally ηk → 0, then the convergence rate will be superlinear.

3. If ηk = O(∥∇f(xk)∥) and ∇2f is locally Lipschitz continuous, then the convergence rate
will be quadratic.
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Proof.

1. The �rst part of the statement can be derived analogously to the proof of Theorem 7.6.

2. Since f is assumed to be twice continuously di�erentiable, the gradient ∇f is locally Lip-
schitz continuous, i.e. there exists L > 0 such that

∥∇f(xk)∥ = ∥∇f(xk)−∇f(x̃)∥ ≤ L∥xk − x̃∥ .

Thus,
∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ ≤ ηkL∥xk − x̃∥ = o(∥xk − x̃∥) .

The linear convergence implies the existence of l ≥ 0 and γ ∈ (0, 1), such that for all k ≥ l,
it holds true that

∥xk − x̃∥ ≤ ∥xk+1 − xk∥+ ∥xk+1 − x̃∥ ≤ ∥xk+1 − xk∥+ γ∥xk − x̃∥ .

It follows that

∥xk − x̃∥ ≤ 1

1− γ
∥xk+1 − xk∥ = O(∥xk+1 − xk∥)

and thus,

∥∇f(xk) +∇2f(xk)(xk+1 − xk)∥ ≤ ηkL∥xk − x̃∥ = o(∥xk − x̃∥) = o(∥xk+1 − xk∥) ,

i.e. superlinear convergence (by Lemma 7.4).

3. The quadratic convergence can be shown analogously.

Inexact Newton methods and Newton-like methods are related in the following sense.

� Newton-like methods require the solution of a linear system

Mkd
k = −∇f(xk)

in each iteration, i.e.
∇2f(xk)dk = −∇f(xk) + rk

with residuum rk = (∇2f(xk) − Mk)d
k. Therefore, we can interpret the direction dk

generated by the Newton-like method as an inexact solution of the Newton system (9.1).
In some cases, error bounds of the form (9.2) can be derived.

� On the other hand, the inexact Newton method generates directions dk with

∇2f(xk)dk = −∇f(xk) + rk .

Setting

Mk = ∇2f(xk)− rk(dk)⊤

∥dk∥2

we obtain
Mkd

k = −∇f(xk) .

Thus, the inexact solution of the Newton system can be viewed as an iteration of a Newton-

like method with Mk = ∇2f(xk)− rk(dk)⊤

∥dk∥2
.



36 Chapter 10. Quasi-Newton Methods

10. Quasi-Newton Methods

Unlike Newton's method, quasi-Newton methods do not make use of second order derivatives of f .
They approximate the second order derivatives iteratively with the help of �rst order derivatives,
i.e. Quasi-Newton methods belong to the class of Newton-like methods (Algorithm (7) and (8)).
We will denote the Hessian approximation by Hk (instead ofMk) and require Hk to be invertible
and symmetric. The idea is to update Hk by gradient information in each iteration, such that
the resulting method converges superlinearly.

Quasi-Newton methods use that two successive iterates xk and xk+1 together with the gra-
dients ∇f(xk) and ∇f(xk+1) contain curvature (i.e. Hessian) information. Therefore, at every
iteration, Hk+1 is chosen such that the Quasi-Newton equation or secant equation

Hk+1(x
k+1 − xk) = ∇f(xk+1)−∇f(xk) . (10.1)

is satis�ed.

The local Quasi-Newton method can be described as follows.

Algorithm (10) Local Quasi-Newton Method

Input: starting point x0 ∈ IRn and a symmetric, invertible initial matrix H0 ∈ IRn×n

1: for k = 0, 1, 2, . . . do
2: STOP, if ∇f(xk) = 0
3: Compute the Quasi-Newton step dk ∈ IRn by solving the linear system

Hkd
k = −∇f(xk) (10.2)

4: Set xk+1 = xk + dk

5: Compute by an update formula a symmetric, invertible matrix

Hk+1 = H
(
Hk, x

k+1 − xk,∇f(xk+1)−∇f(xk)
)

such that the Quasi-Newton equation (10.1) is satis�ed
6: end for

The Quasi-Newton equation (10.1) can be motivated as follows: The fundamental theorem of
calculus yields

∇f(xk+1)−∇f(xk) =
1∫

0

∇2f(xk + t(xk+1 − xk))dt

︸ ︷︷ ︸
=:M(xk,xk+1)

(xk+1 − xk) . (10.3)

Thus, the averaged Hessian M(xk, xk+1) satis�es the Quasi-Newton equation.

The following theorem gives a further justi�cation of the Quasi-Newton equation.
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Theorem 10.1 Assume that the point x̃ satis�es second order su�cient conditions. Further,
assume that Algorithm (10) generates a convergent sequence (xk) with limit x̃ and it holds true
that

lim
k→∞

∥Hk+1 −Hk∥ = 0 .

Then, Hk satis�es the Dennis-Moré condition and (xk) converges superlinearly to x̃.

Proof. � Exercise

In the following, we set

sk = xk+1 − xk , yk = ∇f(xk+1)−∇f(xk) .

and discuss several update rules for the Hessian approximation:

Hk+1 = H
(
Hk, x

k+1 − xk,∇f(xk+1)−∇f(xk)
)
= H

(
Hk, s

k, yk
)
.

The initial matrix H0, a symmetric, invertible matrix is chosen. A standard choice is given by
H0 = I, but sometimes better scaling might be necessary, e.g. by using a the exact Hessian's
diagonal, usually modi�ed to ensure positive de�niteness. The matrices Hk are then chosen such
that Hk is again symmetric and invertible and the Quasi-Newton equation is satis�ed for all k.
Some variants require only O(n2) multiplications per iteration (instead of O(n3) like Newton's
method).

Symmetric rank-1 formula

Symmetric rank-1-formula are based on symmetric rank-1 modi�cation:

Hk+1 = Hk + γku
k(uk)⊤

with γk ∈ IR and uk ∈ IRn, ∥uk∥ = 1. Inserting this update into the Quasi-Newton equa-
tion (10.1) yields

Hk+1s
k = Hks

k + γk ((u
k)⊤sk)︸ ︷︷ ︸
∈IR

uk
!
= yk .

If yk −Hks
k = 0 (with sk = dk as in Algorithm (10))

∇f(xk+1) = ∇f(xk) + yk = ∇f(xk) +Hks
k = ∇f(xk) +Hkd

k (10.2)
= 0

and thus the stopping criterion is satis�ed for xk+1. If yk −Hks
k ̸= 0, it follows that

uk = ± yk −Hks
k

∥yk −Hksk∥
,

where we choose w.l.o.g. the solution with �+�. The scalar γk can be determined by

γk =
∥yk −Hks

k∥2

(yk −Hksk)⊤sk

and thus, we obtain

Hk+1 = Hk +
(yk −Hks

k)(yk −Hks
k)⊤

(yk −Hksk)⊤sk
.
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The above formula is the symmetric rank-1 formula (SR1-formula). Unfortunately this
formula has a few drawbacks: The denominator (yk − Hks

k)⊤sk can become 0 or close to
0 causing numerical problems. Further, the positive de�niteness of Hk+1 gets lost in case
(yk − Hks

k)⊤sk < 0 (even if Hk is positive de�nite). Thus, Hk+1 might be singular and
dk+1 = −(Hk+1)

−1∇f(xk+1) cannot be guaranteed to be a descent direction.

Broyden Class

More �exible update formulas can be derived by applying symmetric rank-2-updates, i.e.

Hk+1 = Hk + γ
(1)
k uk(uk)⊤ + γ

(2)
k vk(vk)⊤ .

The most popular update formulas are

� the BFGS update (Broyden, Fletcher, Goldfarb and Shanno)

HBFGS
k+1 = HBFGS

(
Hk, s

k, yk
)
:= Hk +

yk(yk)⊤

(yk)⊤sk
− Hks

k(Hks
k)⊤

(sk)⊤Hksk
,

� the DFP update (Davidon, Fletcher und Powell)

HDFP
k+1 = HDFP

(
Hk, s

k, yk
)

:= Hk +
(yk −Hks

k)(yk)⊤ + yk(yk −Hks
k)⊤

(yk)⊤sk
− (yk −Hks

k)⊤sk

((yk)⊤sk)2
yk(yk)⊤ ,

� the Broyden class

Hλ
k+1 = (1− λ)HBFGS

k+1 + λHDFP
k+1

with λ ∈ IR and for λ ∈ [0, 1] the convex Broyden class.

Remark As Newton's method, the Quasi-Newton methods based on updates in the Broyden
class are invariant under a�ne transformations (in particular the BFGS method). △

Theorem 10.2 Let Hk be symmetric. Further assume that

(yk)⊤sk ̸= 0 und (sk)⊤Hks
k ̸= 0 .

Then, the matrices Hλ
k+1 with λ ∈ IR are well de�ned, symmetric and satisfy the Quasi-Newton

equation (10.1). In addition, if Hk is positive de�nite and it holds true that

(yk)⊤sk > 0 ,

then Hλ
k+1 will be positive de�nite for λ ≥ 0.

Proof. � Exercise

Using the Sherman-Morrison-Woodbury formula, we can derive explicit expressions for the
update of the inverse Hessian approximation, which is a rank-2 modi�cation as well.
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Lemma 10.3 (Sherman-Morrison-Woodbury formula) Let A ∈ IRn×n be an invertible
matrix and u, v ∈ IRn. Then, the matrix A + uv⊤ is invertible if and only if it holds true that
1 + v⊤A−1u ̸= 0. Then, the inverse is given by

(A+ uv⊤)−1 =

(
I − A−1uv⊤

1 + v⊤A−1u

)
A−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Remark The Shermann-Morrison-Woodbury formula can be generalized to rank-r modi�cations.
Let U, V ∈ Rn×r. Then,

(A+ UV ⊤)−1 = A−1 −A−1U(I + V ⊤A−1U)−1V ⊤A−1 .

△

In particular, we obtain update formulas for the inverse of the BFGS and DFP updates:

Theorem 10.4 Let Hk be positive de�nite and Bk = H−1
k . Further assume that (yk)⊤sk > 0.

Then, the matrices BBFGS
k+1 = (HBFGS

k+1 )−1 and BDFP
k+1 = (HDFP

k+1 )−1 can be computed via the
following update formulas:

BBFGS
k+1 = Bk +

(sk −Bky
k)(sk)⊤ + sk(sk −Bky

k)⊤

(sk)⊤yk
− (sk −Bky

k)⊤yk

((sk)⊤yk)2
sk(sk)⊤ ,

BDFP
k+1 = Bk +

sk(sk)⊤

(sk)⊤yk
− Bky

k(Bky
k)⊤

(yk)⊤Bkyk
.

Remark Theorem 10.4 shows that the BFGS update formula for the inverse Hessian approx-
imation corresponds to the DFP update of the Hessian approximation with �ipped roles of sk

and yk. Vice-versa, the DFP update for the inverse Hessian approximation corresponds to the
BFGS update of the Hessian approximation:

HBFGS
k+1 = HBFGS

(
Hk, s

k, yk
)

HDFP
k+1 = HDFP

(
Hk, s

k, yk
)

BBFGS
k+1 = HDFP

(
Bk, y

k, sk
)

BDFP
k+1 = HBFGS

(
Bk, y

k, sk
)

△

BFGS Method

We can derive a version of the BFGS algorithm that works with the inverse Hessian approxima-
tion 10.4, Algorithm (11). Theorem 10.5 gives a convergence result.

Theorem 10.5 Let f : IRn → IR be twice continuously di�erentiable with locally Lipschitz
continuous Hessian ∇2f . Furthermore, assume that su�cient second order optimality conditions
are satis�ed at x̃. Then, there exist δ > 0 and ε > 0, such that, for every starting point x0 ∈ Bδ(x̃)
and every symmetric, positive de�nite matrix B0 ∈ IRn×n with ∥B0 −∇2f(x̃)−1∥ < ε, either
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Algorithm (11) (Local) inverse BFGS method

Input: Starting point x0 ∈ IRn and a symmetric, positive de�nite matrix B0 ∈ IRn×n (inverse
Hessian approximation at x0).

1: STOP, if ∇f(x0) = 0.
2: for k = 0, 1, 2, . . . do
3: Compute the direction dk = −Bk∇f(xk) .
4: Set xk+1 = xk + dk.
5: STOP, if ∇f(xk+1) = 0.
6: Set sk = dk and yk = ∇f(xk+1)−∇f(xk).
7: STOP (with error message), if (yk)⊤sk ≤ 0.
8: Compute

Bk+1 = Bk +
(sk −Bky

k)(sk)⊤ + sk(sk −Bky
k)⊤

(sk)⊤yk
− (sk −Bky

k)⊤yk

((sk)⊤yk)2
sk(sk)⊤ .

9: end for

Algorithm (11) terminates after a �nite number of iterations at xk = x̃ or generates a sequence
(xk) ⊂ Bδ(x̃), which converges superlinearly to x̃.

Proof. See e.g. Geiger, Kanzow, Theorem 11.33.

Using the Powell-Wolfe step size strategy, Algorithm (11) can be globalized as follows, cp. Al-
gorithm (12). The condition (yk)⊤sk > 0 will be ensured by the step size strategy.

Algorithm (12) Globalized inverse BFGS method

Input: Starting point x0 ∈ IRn, parameters γ ∈ (0, 1/2), η ∈ (γ, 1) and a symmetric, positive
de�nite matrix B0 ∈ IRn×n (inverse Hessian approximation at x0).

1: STOP, if ∇f(x0) = 0.
2: for k = 0, 1, 2, . . . do
3: Compute the direction dk = −Bk∇f(xk) .
4: Compute the step size σk > 0 with the Powell-Wolfe rule (Alg. (4)).
5: Set xk+1 = xk + σkd

k.
6: STOP, if ∇f(xk+1) = 0.
7: Set sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
8: Compute

Bk+1 = Bk +
(sk −Bky

k)(sk)⊤ + sk(sk −Bky
k)⊤

(sk)⊤yk
− (sk −Bky

k)⊤yk

((sk)⊤yk)2
sk(sk)⊤ .

9: end for

We �rst show that the condition (yk)⊤sk > 0 is indeed ensured by the Powell-Wolfe step size
strategy:
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Lemma 10.6 Let f : IRn → IR be continuously di�erentiable. If Bk is positive de�nite and
the Powell-Wolfe step size strategy generates a feasible step size σk > 0 in Algorithm (12), then
(yk)⊤sk > 0 and Bk+1 will be positive de�nite.

Proof. The slope condition (6.3) yields

(yk)⊤sk = σk(∇f(xk+1)⊤dk −∇f(xk)⊤dk)
(6.3)

≥ σk(η∇f(xk)⊤dk −∇f(xk)⊤dk)
= −σk(1− η)∇f(xk)⊤dk > 0 .

Since Bk is positive de�nite by assumption, Hk = B−1
k is positive de�nite and due to (yk)⊤sk > 0,

HBFGS
k+1 is also positive de�nite (by Theorem 10.2). Thus, Bk+1 = (HBFGS

k+1 )−1 is positive de�nite,
too.

The following convergence result can be shown for Algorithm (12):

Theorem 10.7 Let f : IRn → IR be continuously di�erentiable and x0 ∈ IRn such that the level
set Nf (x

0) is compact. Then, Algorithm (12) is well de�ned. Further, if the condition number of
the matrices Bk is uniformly bounded, then every accumulation point of (xk) will be a stationary
point.

Proof. � Exercise
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11. Optimality Conditions for

Constrained Optimization Problems

In the second part of the course, we will focus on constrained optimization problems, i.e.

min
x∈X

f(x) (11.1)

with objective function f : X → IR and feasible set X ⊆ IRn, which is assumed to be de�ned
via a system of equality and inequality constraints

X = {x ∈ IRn : g(x) ≤ 0, h(x) = 0} (11.2)

with continuous functions g : IRn → IRm and h : IRn → IRp.

In this chapter, we derive mathematical characterizations of the solutions of (11.1). As in
the unconstrained case, we discuss optimality conditions of two types, necessary and su�cient
conditions. We start by noting one important item of terminology that recurs throughout the
rest of the notes.

De�nition 11.1 The index sets of the inequality and equality constraints will be denoted by

G = {1, . . . ,m} and H = {1, . . . , p} .

The index set of active inequality constraints A(x) at any feasible point x ∈ X is de�ned
by

A(x) = {i ∈ G : gi(x) = 0}

and the index set of inactive inequality constraints

I(x) = {i ∈ G : gi(x) < 0} = G \ A(x) .

The following example illustrates the basic principles behind the characterization of solutions for
constrained optimization problems, in particular the need for more general optimality conditions.

Example 11.2 We consider the minimization of the function f(x) = x3 + x such that x ≥ −1.
By inspection of the �rst order necessary optimality condition f ′(x) = 0, we see that f ′(x) =
3x2 + 1 > 0. The minimizer is obviously x̃ = −1, i.e. lies on the boundary of the feasible
set. Starting at x̃ = −1, we observe that the point x = x̃ + d remains feasible for all positive
directions d ≥ 0. For d > 0, it holds true that

f ′(x̃) · d = 4d > 0 ,

i.e. the function values increase along feasible directions. Thus, x̃ = −1 is a local minimizer. △
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De�nition 11.3 Let M ⊆ Rn and x ∈M . Then,

T (M,x) :=
{
d ∈ Rn : ∃(xk) ⊂M, ∃(ηk) ⊂ R>0 : lim

k→∞
xk = x, lim

k→∞
ηk(x

k − x) = d
}

is called tangent cone to M at x.

Remark It is easy to see that 0 ∈ T (M,x) and the tangent cone is indeed a cone, i.e. d ∈
T (M,x) implies αd ∈ T (M,x) for α ∈ R>0. Furthermore, the tangent cone T (M,x) is a closed
set for x ∈M . △

Example 11.4 � Exercise: Determine the tangent cone T (X,x).

1. X := {x ∈ IR2 : x1 ≤ 1 , x2 ≥ 0 , x2 ≤ x21 + x1 }, and x = (0, 0)⊤

2. X := {x ∈ IR2 : x1 ≥ x22 , x2 ≥ x21}, and x = (0, 0)⊤

△

The necessary conditions de�ned in the following theorem are called �rst order conditions because
they are concerned with properties of the gradients of the objective and constraint functions.

Theorem 11.5 Let f be continuously di�erentiable and x̃ ∈ X be a local minimizer of (11.1).
Then, it holds true that

∇f(x̃)Td ≥ 0 ∀d ∈ T (X, x̃) .

Proof. Let d ∈ T (X, x̃) arbitrary and

X ⊃ (xk) → x̃, (ηk) ∈ IR>0, dk := ηk(x
k − x̃) → d ,

where xk ̸= x̃ w.l.o.g..

Due to the local optimality of x̃, it holds true that

f(xk)− f(x̃) ≥ 0

for su�ciently large k. Thus, Taylor expansion yields (for su�ciently large k)

0 ≤ ηk(f(x
k)− f(x̃))

= ηk∇f(x̃)T (xk − x̃) + ηko(∥xk − x̃∥)

= ∇f(x̃)Tdk + ∥dk∥o(∥x
k − x̃∥)

∥xk − x̃∥
k→∞−→ ∇f(x̃)Td .

Theorem 11.5 includes as a special case the �rst order optimality condition for unconstrained
optimization problems, Theorem 2.1, since for points x̃ in the interior of X ⊆ IRn, it holds true
that T (X, x̃) = IRn. The �rst order optimality condition for constrained optimization problems
cannot be easily veri�ed unless we have a simple representation of the tangent cone. We will
linearize the (active) constraints to form a local approximation of the feasible set.
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De�nition 11.6 The set

Tl(g, h, x) = {d ∈ IRn : ∇gi(x)Td ≤ 0 ∀i ∈ A(x), ∇h(x)Td = 0}

is called linearized tangent cone at x ∈ X.

Since the veri�cation of d ∈ Tl(g, h, x) (in contrast to d ∈ T (X,x)) is straightforward, the
idea is to replace the tangent cone by the linearized tangent cone in the optimality conditions.
Obviously, it holds true that

T (X,x) ⊆ Tl(g, h, x) .
In order to formulate optimality conditions using the linearized tangent cone, we will require
that {

v ∈ IRn : vTd ≥ 0 ∀d ∈ T (X,x)
}
=

{
v ∈ IRn : vTd ≥ 0 ∀d ∈ Tl(g, h, x)

}
, (11.3)

since
∇f(x)Td ≥ 0 ∀d ∈ T (X,x)

is equivalent to
∇f(x) ∈

{
v ∈ IRn : vTd ≥ 0 ∀d ∈ T (X,x)

}
.

Note that (11.3) is in particular satis�ed, if T (X,x) = Tl(g, h, x).

De�nition 11.7 Let x ∈ X. A condition that implies (11.3) is called constraint quali�cation.

Corollary 11.8 Let f be continuously di�erentiable and x̃ ∈ X be a local minimizer such that
a constraint quali�cation is satisi�ed. Then, it holds true that

∇f(x̃)Td ≥ 0 ∀d ∈ Tl(g, h, x̃) .

In the following, we give an overview of the most important constraint quali�cations:

Theorem 11.9 Each of the following conditions is a constraint quali�cation at x ∈ X:

1. The functions gi for i ∈ A(x) are concave and h is a�ne linear, i.e.

gi(y) ≤ gi(x) +∇gi(x)T (y − x) ∀i ∈ A(x) and h(x) = Bx− b .

2. Mangasarian-Fromovitz: ∇h(x) has full column rank (or h is a�ne linear) and there
exists d ∈ IRn such that

∇gi(x)Td < 0 ∀i ∈ A(x) and ∇h(x)Td = 0 .

3. Regularity: The columns of the matrix

(∇gA(x)(x),∇h(x))

are linearly independent.
This CQ is known as Linear Independence Constraint Quali�cation (LICQ).
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The simple structure of the set Tl(g, h, x̃) in Corollary 11.8 allows the application of the following
lemma to reformulate the optimality conditions.

Lemma 11.10 (Lemma of Farkas) Let A ∈ IRn×m, B ∈ IRn×p, c ∈ IRn. Then, the following
two statements are equivalent:

1. For all d ∈ IRn with ATd ≤ 0 and BTd = 0, it holds true that cTd ≤ 0.

2. There exists u ∈ IRm
≥0 and v ∈ IRp with c = Au+Bv.

By Farkas' Lemma and Corollary 11.8, we obtain the following �rst order optimality condition:

Theorem 11.11 (First order optimality conditions) Let x̃ be a local minimizer of (11.1)
and let a constraint quali�cation be satis�ed in x̃. Then, the following conditions are satis�ed
(Karush-Kuhn-Tucker conditions, KKT conditions):
There exist Lagrange multipliers λ̃ ∈ IRm and µ̃ ∈ IRp, such that the following hold:

1. multiplier rule:

∇f(x̃) +
m∑
i=1

λ̃i∇gi(x̃) +
p∑

j=1

µ̃j∇hj(x̃) = ∇f(x̃) +∇g(x̃)λ̃+∇h(x̃)µ̃ = 0

2. feasibility: h(x̃) = 0, g(x̃) ≤ 0,

3. complementary conditions: λ̃ ≥ 0, λ̃T g(x̃) = 0.

Proof. Let x̃ be a local minimizer of (11.1) and let a constraint quali�cation be satis�ed in x̃.
Then, feasibility (2) follows directly by the assumptions. Furthermore, by Corollary 11.8, it holds
true that

−∇f(x̃)Td ≤ 0 ∀d ∈ Tl(g, h, x̃) ,

and for all d ∈ IRn satisfying

∇gi(x̃)Td ≤ 0 for i ∈ A(x̃) and ∇h(x̃)Td = 0 .

Farkas' Lemma with

c = −∇f(x̃), A = ∇gA(x̃)(x̃), B = ∇h(x̃)

implies the existence of vectors u ∈ IR
|A(x̃)|
≥0 and v ∈ IRp with

c = Au+Bv .

Choosing λ̃ ∈ IRm with λ̃A(x̃) = u, λ̃I(x̃) = 0 and µ̃ = v. yields 1) with multipliers satisfying the
complementary conditions 3).

Remark The KKT conditions say that the negative gradient of the objective function lies in
the cone of the gradients of the active constraints. △
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De�nition 11.12 Suppose that (x̃, λ̃, µ̃) ∈ IRn × IRm × IRp satis�es the KKT conditions. Then,
x̃ is called a KKT point of (11.1) and (x̃, λ̃, µ̃) a KKT triple. For a KKT triple, the strict
complementary condition is satis�ed, if it holds true that

λ̃i > 0 ∀i ∈ A(x̃) .

De�nition 11.13 The function L : IRn × IRm × IRp → IR given by

L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x) = f(x) + λT g(x) + µTh(x)

is called Lagrangian function.

Hence, the �rst KKT condition is equivalent to

∇xL(x̃, λ̃, µ̃) = 0 .

Analogously to Theorem 3.6, �rst order necessary conditions are su�cient for convex optimization
problems.

De�nition 11.14 The nonlinear optimization problem (11.1) is called convex, if the functions
f and gi (for all i ∈ G) are convex and the function h is a�ne linear. Note that these conditions
in particular imply that the feasible set X is convex.

Theorem 11.15 Suppose that (11.1) is convex. Then, it holds:

1. Every local minimizer of (11.1) is a global minimizer.

2. If a constraint quali�cation is satis�ed at a local/global minimizer x̃ ∈ X of (11.1), then
the KKT conditions are satis�ed at x̃.

3. If the KKT conditions are satis�ed at a point x̃, then x̃ will be a global minimizer of (11.1).

Proof. The �rst statement directly follows from Theorem 3.6. The second statement has been
proven in Theorem 11.11. It remains to show that the KKT conditions are su�cient for opti-
mality. Let (x̃, λ̃, µ̃) be a KKT triple and x ∈ X arbitrary. For d = x − x̃, we obtain (for all
i ∈ G)

λ̃i∇gi(x̃)Td ≤ λ̃i(gi(x)− gi(x̃)) = λ̃igi(x) ≤ 0 .

Since h is assumed to be a�ne linear, it holds true that ∇h(x̃)Td = h(x)− h(x̃) = 0 and thus,

f(x)− f(x̃) ≥ ∇f(x̃)Td = −λ̃T∇g(x̃)Td− µ̃T∇h(x̃)Td = −λ̃T∇g(x̃)Td ≥ 0 .

To formulate second order optimality conditions, we consider the following cone:
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De�nition 11.16 Given x ∈ X and λ ∈ IRm
≥0, we de�ne

T+(g, h, x, λ) =
{
d ∈ IRn : ∇h(x)Td = 0, ∇gi(x)Td

{
= 0, if i ∈ A(x) and λi > 0
≤ 0, if i ∈ A(x) and λi = 0

}}

Theorem 11.17 (Second order su�cient optimality conditions)

Let f, g, and h be twice continuously di�erentiable. Suppose that the point x̃ satis�es the KKT
conditions with multipliers λ̃ ∈ IRm and µ̃ ∈ IRp. Furthermore, assume that

dT∇2
xxL(x̃, λ̃, µ̃)d > 0 ∀d ∈ T+(g, h, x̃, λ̃) \ {0} . (11.4)

Then, x̃ is a strict local minimizer of (11.1).

Theorem 11.18 (Necessary second order optimality conditions)

Let f , g, h be twice continuously di�erentiable, x̃ be a local solution of (11.1) and the columns
of the matrix

(∇gA(x̃)(x̃),∇h(x̃))

be linearly independent.

Then, there exist Lagrange multipliers λ̃ ∈ IRm and µ̃ ∈ IRp, such that

� ∇f(x̃) +∇g(x̃)λ̃+∇h(x̃)µ̃ = 0 (stationarity of the Lagrangian)

� h(x̃) = 0, g(x̃) ≤ 0 (feasibility)

� λ̃ ≥ 0, λ̃T g(x̃) = 0 (complementary conditions)

� dT∇2
xxL(x̃, λ̃, µ̃)d ≥ 0 ∀d ∈ T+(g, h, x̃, λ̃)
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12. Penalty Method

An important class of methods for constrained optimization seeks the solution by replacing the
original constrained problem by a sequence of unconstrained subproblems.

Most approaches de�ne a sequence of such penalty functions, in which the penalty terms for
the constraint violations are multiplied by some positive coe�cient. By making this coe�cient
larger and larger, we penalize constraint violations more and more severely, thereby forcing the
minimizer of the penalty function closer and closer to the feasible region for the constrained
problem.

Such approaches are sometimes known as exterior penalty methods, because the penalty term
for each constraint is nonzero only when x is infeasible with respect to that constraint. Often,
the minimizers of the penalty functions are infeasible with respect to the original problem, and
approach feasibility only in the limit as the penalty parameter grows increasingly large.

We consider subproblems of the form

min
x∈IRn

Pα(x) = f(x) + απ(x)

with α > 0 and a penalization function π : IRn → IR, where π(x) = 0 for all x ∈ X and π(x) > 0
for all x ∈ IRn \X. The function Pα is called a penalty function.

A general framework for algorithms based on the penalty functions can be speci�ed as in the
following Algorithm (13):

Algorithm (13) Penalty Method

Input: Starting point x0 ∈ IRn, penalty parameter α1 > 0.
1: for k = 1, 2, . . . do
2: Compute the solution xk of the subproblem min

x∈IRn
Pαk

(x) (use xk−1 as starting point)

3: STOP, if xk ∈ X
4: Choose αk+1 > αk

5: end for
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12.1 The Quadratic Penalty Method

The simplest penalty function of this type is the quadratic penalty function, in which the penalty
terms are the squares of the constraint violations

Pα(x) = f(x) +
α

2

m∑
i=1

(
gi(x)

+
)2

+
α

2

p∑
j=1

hj(x)
2 = f(x) +

α

2
∥g(x)+∥2 + α

2
∥h(x)∥2 (12.1)

with gi(x)
+ := max{0, gi(x)} and g(x)+ = (gi(x)

+)i=1..m.

Let f , g, h be continuously di�erentiable, then the quadratic penalty function (12.1) is continu-
ously di�erentiable too,

∇Pα(x) = ∇f(x) + α
m∑
i=1

gi(x)
+ · ∇gi(x) + α

p∑
j=1

hj(x)∇hj(x) .

Under the assumption that global minimizers are computed for each subproblem of Algorithm (13),
then the following convergence result can be proven.

Theorem 12.1 Let f , g, h be continuously di�erentiable and X be nonempty. Further, assume
that the sequence (αk) ⊂ IR>0 is strictly increasing with αk → ∞ for k → ∞ and that Al-
gorithm (13) generates a sequence (xk) of global minimizers of the corresponding subproblems.
With

λki = αk max{0, gi(xk)} and µkj = αkhj(x
k) ,

the following statements hold true:

1. If (xk, λk, µk)K is a convergent subsequence of (xk, λk, µk) with limit (x̃, λ̃, µ̃), then x̃ will
be a global solution of (11.1) and (x̃, λ̃, µ̃) will be a KKT triple of (11.1).

2. Let x̃ be an accumulation point of (xk) and (xk)K be a convergent subsequence with limit
x̃. Further assume that the columns of the matrix

(∇gA(x̃)(x̃),∇h(x̃))

are linearly independent. Then the sequence (xk, λk, µk)K converges to a KKT triple
of (11.1) and x̃ is is a global solution of (11.1).

The di�erentiability of the penalty function Pα is a desirable property. However, it holds true
that for all x ∈ X (and all i ∈ G and j ∈ H)

(gi(x))+ = 0 and hj(x) = 0 .

This yields
∇Pα(x) = ∇f(x) ∀x ∈ X

and thus
∇Pα(x) = 0

x∈X⇐⇒ ∇f(x) = 0

for all x ∈ X. Thus, the minimizers of Pα are infeasible in general, since, in general, ∇f(x̃) ̸= 0
for solutions x̃ of the (constrained) problem (11.1).

Remark For α → ∞, the subproblems become increasingly ill conditioned causing a slow rate
of convergence for Newton(-like) methods. △
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Exact Penalty Method

De�nition 12.2 Let x̃ be the local minimizer of (11.1). The penalty function P : IRn → IR is
called exact at x̃, if x̃ is a local minimizer of P .

The l1-penalty function

P 1
α(x) = f(x) + α

m∑
i=1

gi(x)
+ + α

p∑
j=1

|hj(x)| = f(x) + α∥g(x)+∥1 + α∥h(x)∥1 (12.2)

is exact under suitable assumptions and for su�cient large α > 0. Note that the l1-penalty
function is not di�erentiable.

Theorem 12.3 Let f , gi be convex and continuously di�erentiable, h be a�ne linear and (x̃, λ̃, µ̃)
be a KKT triple of (11.1). Then, x̃ is a global minimizer of (11.1) and x̃ is a global minimizer
of P 1

α for all
α ≥ max{λ̃1, . . . , λ̃m, |µ̃1|, . . . , |µ̃p|} .

Remark

� For exact penalty functions, it su�ces to solve only a single penalized problem, if the
penalty parameter α is chosen properly (di�cult a priori, but after a solution is computed,
one can verify if the condition of theorem 12.3 is ful�lled).

� Similar/related methods:

� Barrier methods: (here: only inequality constraints)

min f(x)− µ

m∑
i=1

log(−g(x)) started with feasible x0 ∈ X,µ > 0

� Augmented Lagrangian methods: (here: only equality constraints)

LA(x, α, β) = f(x)−
p∑

j=1

αjhj(x) +
1

2β

p∑
j=1

h2j (x)

� SQP methods may use an exact penalty function as merit function for globalization.

△
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13. Sequential Quadratic Programming

One of the most e�ective methods for nonlinearly constrained optimization generates steps by
solving quadratic subproblems.

We �rst focus on equality constrained optimization problems, i.e.

min f(x) s.t. h(x) = 0 . (13.1)

The essential idea of SQP is to model (13.1) at the current iterate xk by a quadratic programming
subproblem and to use the minimizer of this subproblem to de�ne a new iterate xk+1. The
challenge is to design the quadratic subproblem so that it yields a good step for the underlying
constrained optimization problem and so that the overall SQP algorithm has good convergence
properties and good practical performance. Perhaps the simplest derivation of SQP methods,
which we now present, views them as an application of Newton's method to the KKT optimality
conditions

F (x, µ) :=

(
∇xL(x, µ)
h(x)

)
= 0 . (13.2)

To determine x̃ with multipliers µ̃, we use Newton's method, i.e. in every iteration, the following
linear systems has to be solved

F ′(xk, µk)dk = −F (xk, µk) (13.3)

with

F ′(x, µ) =

(
∇2

xxL(x, µ) ∇2
xµL(x, µ)

∇h(x)T 0

)
=

(
∇2

xxL(x, µ) ∇h(x)
∇h(x)T 0

)

Split dk =

(
dkx
dkµ

)
∈ IR(n+p) to derive

(
∇2

xxL(x, µ) ∇h(x)
∇h(x)T 0

)(
dkx
dkµ

)
=

(
−∇xL(xk, µk)

−h(xk)

)
This idea is shown in Algorithm (14). It is straightforward to establish a local convergence result.

Algorithm (14) Local SQP Method

Input: Starting point x0 ∈ IRn and µ0 ∈ IRp

1: for k = 0, 1, 2, . . . do
2: STOP, if h(xk) = 0 and ∇xL(xk, µk) = 0 (i.e. (xk, µk) is a KKT pair)
3: Compute dk by solving (13.3)
4: Set xk+1 = xk + dkx and µk+1 = µk + dkµ
5: end for



52 Chapter 13. Sequential Quadratic Programming

Theorem 13.1 Let f and h be twice continuously di�erentiable and (x̃, µ̃) be a KKT pair.
Further assume that the following conditions hold:

� rank ∇h(x̃) = p (regularity)

� sT∇2
xxL(x̃, µ̃)s > 0 ∀s ∈ IRn \ {0} with ∇h(x̃)T s = 0 (second order SOC)

Then, there exists δ > 0, such that, for all (x0, µ0) ∈ Bδ(x̃, µ̃), Algorithm (14) either terminates
after a �nite number of iterations or generates a sequence (xk, µk) which converges superlinearly
to (x̃, µ̃). If ∇2f and ∇2hj are Lipschitz continuous in Bδ(x̃) (for all j ∈ H), the rate of
convergence will be quadratic.

The algorithm can be also derived by making a quadratic approximation of the Lagrangian and
a linear approximation of the constraint, which leads to an alternative motivation of the SQP
method:

min
d∈IRn

qk(d) = f(xk) +∇f(xk)Td+ 1

2
dTHkd (13.4)

s.t. h(xk) +∇h(xk)Td = 0

with Hk = ∇2
xxL(xk, µk). The pair (dk, µkqp) = (dkx, µ

k + dkµ) is a KKT pair of (13.4), if and only

if dk = (dkx, d
k
µ) is a solution of (13.3). (� Exercise).

Remark The Hessians Hk can be modi�ed to make them positive de�nite (possibly replacing it
by a quasi-Newton approximation). △

Algorithm (15) Local SQP Method II

Input: Starting point x0 ∈ IRn and µ0 ∈ IRp

1: for k = 0, 1, 2, . . . do
2: STOP, if (xk, µk) is a KKT pair of (13.1)
3: Compute the solution dk of (13.4) with corresponding multipliers µkqp
4: Set xk+1 = xk + dk and µk+1 = µkqp
5: end for

The SQP framework can be extended to the general nonlinear programming problem by lineariz-
ing both the inequality and equality constraints

min
d∈IRn

qk(d) = f(xk) +∇f(xk)Td+ 1

2
dTHkd

s.t. g(xk) +∇g(xk)Td ≤ 0 (13.5)

h(xk) +∇h(xk)Td = 0

with Hk = ∇2
xxL(xk, λk, µk).

Theorem 13.2 Suppose that the following conditions are satis�ed:

1. The functions f , g, h are twice continuously di�erentiable

2. Let Hk = ∇2
xxL(x

k, λk, µk)

3. (x̃, λ̃, µ̃) is a KKT triple of (11.1)

4. Strict complementary condtions: gi(x̃) = 0 ⇒ λ̃i > 0 ∀i ∈ G
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Algorithm (16) Local SQP Method III

Input: Starting point x0 ∈ IRn, λ0 ∈ IRm and µ0 ∈ IRp.
1: for k = 0, 1, 2, . . . do
2: STOP, if (xk, λk, µk) is a KKT triple of (11.1).
3: Compute the solution dk of (13.5) with corresponding multipliers λkqp, µ

k
qp.

4: Set xk+1 = xk + dk, λk+1 = λkqp and µ
k+1 = µkqp.

5: end for

5. Regularity: (∇gA(x̃)(x̃),∇h(x̃)) has full column rank

6. Su�cient second order optimality conditions:

sT∇2
xxL(x̃, λ̃, µ̃)s > 0 ∀s ∈ IRn \ {0} with ∇gA(x̃)(x̃)

T s = 0 and ∇h(x̃)T s = 0

7. Among all KKT triples (dk, λkqp, µ
k
qp) of (13.5), one chooses the triple with the smallest

distance
∥(xk + dk, λkqp, µ

k
qp)− (xk, λk, µk)∥

in each iteration 3 of Algorithm (16).

Then, there exists δ > 0, such that, for all (x0, λ0, µ0) ∈ Bδ(x̃, λ̃, µ̃), either Algorithm (16)
terminates after a �nite number of iterations or generates a sequence (xk, λk, µk), which con-
verges superlinearly to (x̃, λ̃, µ̃). If ∇2f , ∇2gi (for all i ∈ G), ∇2hj (for all j ∈ H) are Lipschitz
continuous in Bδ(x̃), then the rate of convergence will be quadratic.

Proof: (idea) Apply Newton's method to the system

F (x, λ, µ) :=


∇xL(x, λ, µ)

λI(x̃)
gA(x̃)(x)

h(x)

 = 0 .

and show that the iterates generated by Newton's method applied to F (x, λ, µ) and the iterates
generated by the SQP method are identical.

To be practical, an SQP method must be able to converge from remote starting points and on
nonconvex problems. We now outline how the local SQP strategy can be adapted to meet these
goals. We consider the l1-penalty function

P 1
α(x) = f(x) + α

(
∥g(x)+∥1 + ∥h(x)∥1

)
and the Armijo rule. The l1-penalty function is not di�erentiable. However, directional deriva-
tives exist provided that f , g, h are continuously di�erentiable.

De�nition 13.3 The continuous function ϕ : IRn → IR is called directionally di�erentiable at
x ∈ IRn, if the directional derivative exists for all d ∈ IRn:

D+ϕ(x; d) := lim
t→0+

ϕ(x+ td)− ϕ(x)

t
∈ IR .

Example 13.4 Consider the function
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f(x1, x2) =

{
x3
1

x2
1+x2

2
for (x1, x2) ̸= (0, 0)

0 for (x1, x2) = (0, 0)

which is not di�erentiable but directionally di�erentiable at the origin. � Exercise. △

Theorem 13.5 Let f , g, h be continuously di�erentiable and α > 0. Then, P 1
α is directionally

di�erentiable at each point x ∈ IRn with

D+P
1
α(x; d) = ∇f(x)Td+ α

∑
gi(x)>0

∇gi(x)Td+ α
∑

gi(x)=0

(∇gi(x)Td)+

+ α
∑

hj(x)>0

∇hj(x)Td− α
∑

hj(x)<0

∇hj(x)Td+ α
∑

hj(x)=0

|∇hj(x)Td| .

Proof. (idea) Apply the de�nition of directional derivative to every summand of P 1
α, then use

continuity of g and h (e.g. if gi(x̄) < 0, then gi(x)
+ = 0 in an environment around x̄).

Theorem 13.6 Let f , g, h be continuously di�erentiable and (dk, λkqp, µ
k
qp) be a KKT triple

of (13.5). Further assume that

α ≥ max{(λkqp)1, . . . , (λkqp)m, |(µkqp)1|, . . . , |(µkqp)p|} .

Then, it holds true that

D+P
1
α(x

k; dk) ≤ −dkTHkd
k .

In particular, dk will be a descent direction, if Hk is positive de�nite.

We can use these results to formulate a globalized version of the SQP method:

Algorithm (17) Globalized SQP Method

Input: Starting point x0 ∈ IRn, λ0 ∈ IRm, µ0 ∈ IRp, a symmetric matrix H0 ∈ IRn×n,
α > 0 su�ciently large, 0 < γ < 1/2.

1: for k = 0, 1, 2, . . . do
2: STOP, if (xk, λk, µk) is a KKT triple of (11.1)
3: Compute the solution dk of (13.5) with corresponding multipliers λkqp, µ

k
qp

4: Compute the largest σk ∈ {1, 2−1, 2−2, . . . } such that

P 1
α(x

k + σkd
k)− P 1

α(x
k) ≤ γσkD+P

1
α(x

k, dk)

5: Set xk+1 = xk + σkd
k.

6: Compute the multipliers λk+1 and µk+1 (e.g., λk+1 = λkqp and µ
k+1 = µkqp)

7: Compute the symmetric matrix Hk+1 ∈ IRn×n

8: end for

Remark

� In Algorithm (17), the exact penalty function P 1
α is used as so-called merit function.
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� In practical implementations, also α = αk will be adjusted during the computations.

△

Damped BFGS updates

The Hessian approximation Hk can be updated using (modi�ed) BFGS updates that ensure the
QN condition

Hk+1d
k = yk

with dk := xk+1 − xk and yk := ∇xL(xk+1, λk, µk)−∇xL(xk, λk, µk).

To ensure (dk)⊤yk > 0 and thus positive de�niteness of Hk+1, one uses the damped BFGS update:

Hk+1 := HBFGS(Hk, d
k, ykmod)

with modi�ed yk:
ykmod := θky

k + (1− θk)Hkd
k

and

θk :=

{
1 if (dk)⊤yk ≥ 0.2 · (dk)⊤Hkd

k

0.8·(dk)⊤Hkd
k

(dk)⊤Hkdk−(dk)⊤yk
otherwise

The above damped BFGS update is frequently used in SQP methods and can be shown to result
in superlinear convergence under appropriate conditions.

The Maratos E�ect

The globalization of the SQP method in Algorithm (17) uses an approximate line search on the
exact penalty function P 1

α (in line 4).

Every globalization method that relies on reducing such amerit function su�ers from the Maratos
e�ect: Many good search directions are unacceptable for the constrained problem as they may
increase both objective value and constraint violation.

Consider the minimization problem on the unit circle:

min f(x) = 2 · (x21 + x22 − 1)− x1 (13.6)

s.t. h(x) = x21 + x22 − 1 = 0

with solution (x̃, µ̃) =
(
(1, 0)⊤,−3

2

)
and ∇2

xx(x̃, µ̃) = I.

Every point xk = (cos θ, sin θ)⊤ is feasible for (13.6) for arbitrary θ. Assume that a minimization
algorithm determines a search direction

dk =

(
sin2 θ

− sin θ · cos θ

)
and the trial point

xk+1 = xk + dk =

(
cos θ + sin2 θ

sin θ · (1− cos θ)

)
for the next step. Provided sin θ ̸= 0, one can show by trigonometric transformations:

∥xk + 1− x̃∥2 = ∥xk + dk − x̃∥2 = 4 · sin2(θ/2)
∥xk − x̃∥2 = 2 · | sin(θ/2)|
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and thus ∥xk+1−x̃∥2
∥xk−x̃∥22

= 1
2 , i.e. the above direction is consistent with quadratic convergence.

However, since f(xk+1) = sin2 θ − cos θ > − cos θ = f(xk) and h(xk+1) = sin2 θ > 0 = h(xk)
both the objective value and the constraint violation would increase in this direction, i.e. the
merit function P 1

α would increase and thus this search direction cannot be accepted.

Remark Remedies to avoid the Maratos e�ect:

� Fletcher's Augmented Lagrangian as merit function (computationally costly)

� Watchdog techniques: Allow increase in merit function if that leads to signi�cant progress
in further iterations.

� Additional Second Order Correction (SOC) step

△

Second order correction (SOC)

dkSOC := −∇h(xk) ·
(
∇h(xk)⊤∇h(xk)

)−1
· h(xk + dk)

One can show that the SOC step is small compared to dk, namely ∥dkSOC∥ = O(∥dk∥2), but
drastically improves feasibility:

∥h(xk + dk + dkSOC)∥ = O(∥dk∥3) instead of ∥h(xk + dk)∥ = O(∥dk∥2)

and, under mild conditions, the step dk + dkSOC can be shown to ful�ll the Armijo condition
with step size σk = 1 in the area of fast contraction. Since the correction is small, also the fast
convergence is maintained.
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14. Quadratic Optimization Problems

An optimization problem with a quadratic objective function and linear constraints is called a
quadratic program. Problems of this type are important in their own right, and they also arise
as subproblems in methods for general constrained optimization, such as sequential quadratic
programming. The general quadratic program (QP) can be stated as

min q(x) = d+ c⊤x+ 1
2x

⊤Hx

s.t. g(x) := A⊤x+ α ≤ 0 (QP)

h(x) := B⊤x+ β = 0

with d ∈ IR, c ∈ IRn, H = H⊤ ∈ IRn×n, A ∈ IRn×m, α ∈ IRm, B ∈ IRn×p, β ∈ IRp. We focus
on the case that H is positive de�nite. Then, (QP) is a convex optimization problem and the
KKT conditions are necessary and su�cient.

We begin our discussion of algorithms for quadratic programming by considering the case where
only equality constraints are present. Then, the solution is given by the solution of the following
linear system (

H B
B⊤ 0

)(
x̃
µ̃

)
=

(
−c
−β

)
.

To solve general quadratic optimization problems, we consider an active set strategy, which solves
an equality constrained QP at each iteration

min q(x)

s.t. A⊤
Ak
x+ αAk

= 0 (QPk)

B⊤x+ β = 0

where AAk
contains the columns ai of A = (a1, . . . , am) with the indices i ∈ Ak, where Ak ⊆

A(xk), i.e. we consider a subset of the active constraints for the subproblems (QPk). This idea
gives rise to the algorithm (18) (active set strategy), whose properties are collected in theorem
14.1.

Theorem 14.1 (Properties of the active set strategy)

1. The point xk is feasible for (QPk) and for (QP), for all k.

2. If dk ̸= 0 and x̂k+1 is not feasible for (QP), then there exists the step size σk (line 20) and
the index j (line 22), and it holds:

σk = min

{
−a

⊤
i x

k + αi

a⊤i d
k

: i ∈ Ik, a⊤i dk > 0

}
∈ [0, 1) .

3. If dk ̸= 0 and λk+1 ≥ 0, then (xk+1, λk+1, µk+1) is a KKT triple of (QP).
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Algorithm (18) Active Set Strategy

Input: Feasible starting point x0 ∈ IRn for (QP).
1: A0 = A(x0)
2: for k = 0, 1, 2, . . . do
3: Ik := G \ Ak ; λk+1

Ik := 0

4: Compute KKT triple (x̂k+1, λk+1
Ak

, µk+1) of (QPk)

5: dk := x̂k+1 − xk

6: if dk = 0 then
7: if λk+1 ≥ 0 then
8: xk+1 := xk

9: stop with KKT triple (xk+1, λk+1, µk+1) of (QP)
10: else

11: j := argmini∈Ak
λk+1
i

12: xk+1 := xk ; Ak+1 := Ak \ {j}
13: continue

14: end if

15: else

16: if x̂k+1 is feasible for (QP) then
17: xk+1 := x̂k+1 ; Ak+1 := Ak

18: continue

19: else

20: σk := max{σ ≥ 0 : xk + σdk feasible for (QP)}
21: xk+1 := xk + σkd

k

22: determine index j ∈ Ik with a⊤j x
k+1 + αj = 0

23: Ak+1 := Ak ∪ {j}
24: end if

25: end if

26: end for

4. If dk ̸= 0, then ∇q(xk)⊤dk < 0, i.e. dk is a descent direction for q at xk.
In particular, it holds: q(xk+1) < q(xk) if xk+1 ̸= xk.

5. For every xk generated by Algorithm (18), there exists l ≥ k, such that xl is the unique
global solution of (QPl).

6. If the algorithm does not terminate after a �nite number of iterations, then there exists
l ≥ 0 with xk = xl for all k ≥ l.

7. If the columns of the matrix (AAk
, B) are linearly independent, then the columns of the

matrix (AAk+1
, B) are linearly independent, too.

Remark The case (6) of Theorem 14.1 is called cycling : The algorithm stalls at iterate xl and
then the active set changes in a periodic way. For anti-cycling strategies, see, e.g., the excellent
textbook of Nocedal & Wright, Chapter 16.5. △
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