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1. Introduction

The following task is known as a finite dimensional minimization problem :

Let X CIR" be an arbitrary set and f : X — IR a continuous function. The problem is to find
an & € X such that

f(@) < f(z) forallze X.

Using a more compact notation we write

min £ () (1)
or
min f(z) st. z€X, (1.2)

where ’s.t.” stands for 'subject to’. If X = IR", then (1.1) is called unconstrained, otherwise
constrained. In general f is called objective function and X C R" feasible set.

Definition 1.1 The point x € IR" is called feasible for (1.1), if z € X.

If X # IR", the feasible set can often be described in the form
X ={xeR":h(zx)=0,g9(x) <0}
with continuous functions A : IR®™ — IRP and ¢ : R™ — IR™. We then write
min f(z) s.t. h(z) =0, g(x) <0. (1.3)

Constrained optimization problems will be discussed in the second part of the course.

Example 1.2 Quadratic optimization problems are important examples of nonlinear prob-
lems:

o f(x)= %xTQw +b'z+c with Q € R™" (symmetric), b € R", ¢ € IR,
e g, h are linear, i.e. g(x) = Az —a with A € R™*", a € R™
and h(xz) = Dx —d with D € RP*" d € IRP.
A

In this course, we can restrict ourselves to minimization problems, since maximization problems
with objective function f and feasible set X are equivalent to minimization problems (1.1) with
f=—Ff, ie.

max f(z) = —min—f(z).
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Definition 1.3 The feasible point Z € X is called

e local minimizer of (1.1), if there exists ¢ > 0 such that
f(@) < f(x)  Vee XNB(7),

where
B(Z)={zeR": |z —z| <e}.

e strict local minimizer of (1.1), if there exists € > 0 such that
(@) < flx)  Vee(XNB(2)\{z}.
e global minimizer of (1.1), if
f@) < f(z)  VeeX.
e strict global minimizer of (1.1), if

f(@) < f(z) Ve e X\ {z}.

Remark We denote by ||.|| the Euclidean norm ||.||2. A

The Weierstrass Extreme Value Theorem ensures the existence of solutions:

Theorem 1.4 Tet X C IR™. If the function f : X — IR is continuous and there exists Z € X,
such that the level set
N§(z) ={z € X : f(z) < f(2)}

is compact, then there exists a global minimizer of (1.1).



2. Optimality conditions for
unconstrained optimization problems

This chapter deals with necessary and sufficient conditions for characterizing minimizers (under
certain differentiability assumptions on f).

If f does not possess any structure nor properties apart from differentiability, then we can only
make statements about local minimizers, in general.

Theorem 2.1 (First order necessary optimality condition)
Let X C IR"™ be an open set and f : X — IR a continuously differentiable function. If Z € X is
a local minimizer of f on X, then

i.e. Z is a stationary point.
Proof. We prove the statement by means of contradiction. Let us assume that T € X is a local
minimizer for which V f(Z) # 0. Then there exists d € IR" with

ViE)d<0

(for example d = =V f(z)). By assumption, f is continuously differentiable. Consequently, the
directional derivative of f/'(Z;d) of f in Z in direction d exists

f(@+td) — f(Z)

t—0+ t

=V 'd<o0.

Due to the continuity of the derivative there exists ¢ > 0 with Z + td € X and

f(@+td) — f(Z)
t

<0, Vte(0,1].

Therefore, it holds that
f(@+td)— f(z) <0, Vte(0,1.

This is a contradiction to the assumption that Z is a local minimizer of f in X. O
Note: The condition V f(x) = 0 is not sufficient for a local minimum; consider, e.g., f(z) = —2?
with z = 0.

As preparation for the next theorem we need the following lemma about the continuity of the
smallest eigenvalue of a matrix.
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Lemma 2.2 Let S, be the vector space of symmetric matrices in IR™*". For A € S, let
A(A) € R be the smallest eigenvalue of A. Then the following statement holds true

A(A) = AB)| < [[A=B|| VA, Be€S,.

Remark Note that the vector norm and the matrix norm are denoted by the same symbol, i.e.
Il - |l. If f is twice continuously differentiable it follows from Lemma 2.2 and from the continuity
of V2f € R™™" (the Hessian of f), that V2 f is positive definite in a neighborhood of 7 if V2 f (%)
is positive definite. An analogous statement holds true, if V2 f(Z) is negative definite. A

Theorem 2.3 (Second order necessary optimality condition)
Let X C IR"™ be open and f : X — IR be twice continuously differentiable. If £ € X is a local
minimizer of f (on X), then

(i) Vf(z) =0 and
(ii) the Hessian V2 f(Z) is positive semidefinite, i.e.

d'V2f(#)d >0  Vd € R".

Proof. By Theorem 2.1, the statement that Vf(Z) = 0 holds true. Therefore, we only have
to show the positive semidefiniteness of the Hessian of f at x. Again we prove the statement
by means of contradiction. Let us assume that Z is a local minimizer of f, but V2f(Z) is not
positive semidefinite. Then there exists d € R™ such that

d"V2f(z)d < 0.
Applying Taylor’s theorem, we obtain for sufficiently small t > 0
t2 t2
£ +1d) = (@) + 19 5(@) T d+ SdTV ) = @)+ a7 ()
with ((t) = Z + nitd € X fiir ein 14 € (0,1). By Lemma 2.2 there exists ¢ > 0, such that
d"V2f(C(t)d <0 Vte (0,7].

Hence
f(@+td) < f(z) Vte (0,4

which contradicts the assumption that & is a local minimizer of f on X. O

Theorem 2.4 (Second order sufficient optimality conditions)
Let X C IR™ be open and f: X — IR twice continuously differentiable. If

(i) Vf(z) =0 and
(ii) the Hessian V2f(Z) is positive definite, i.e.
dTV2f(#)d >0  VdeIR"\{0}.

then Z is a strict local minimizer of f on X.



Proof. Since V2f is continuous and positive definite at #, there exists an € > 0, such that
V2f(x) >0 VezeB(Z) ={zeR": ||z — 7| < e}.

For every d € IR™ \ {0} sufficiently close to 0 (i.e. d is “small” in the sense ||d|| < €), we have
Z+de X and

FE+d) = f@) + VFE) T d+ % ATV G+ td)d > ()
——— ——

=0 €B:(%)
>0
forate (0,1),ie. f(Z)< f(Z+d)Vde B(Z), so & is a local minimizer of f. O

Remark Condition (ii) in Theorem 2.4 is not necessary for the local minimality of Z. To some
extent there is a ‘gap’ between necessary and sufficient conditions. Given (i) of Theorem 2.4 in
the case of an indefinite Hessian V2f(%), we refer to Z as a saddle point. A
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3. Convex functions

Convex functions are of particular importance for optimization. For a convex function f we are
able to show that the first order necessary conditions are also sufficient for local optimality. In the
following we will introduce procedures that approximate a complicated nonlinear minimization
problem by a sequence of convex problems. Apart from global properties, these convex problems
offer a simple way of computing solutions or approximations.

Definition 3.1 A set X C IR" is called convex, if for all z,y € X and all X € (0, 1)
1-Nz+lex,

i.e. the line segment z, 7y lies completely in X.

Definition 3.2 Tet X C R" be convex. A function f: X — IR is called

e convex, if
FA=Nz+X) <A -Nf@)+Afly) Vo,yeX, YAe(0,1).
e strictly convex, if
F(A=Nz+ ) < (1= NFf@) +Afly) Vo,yeX mit z£y, YAe(0,1).

Geometrically, the (strict) convexity of f means that the line segment between f(z) and
f(y) is located (strictly) above the graph of f.

e uniformly convex, if there exists p > 0 with

FA=Na+Xxy) +ud(1 =Ny —2l> < A=A fl@) +Afly)  Vo,yeX, YA€ (0,1).

Remark By definition, every uniformly convex function is also strictly convex and every strictly
convex function is also convex. The converse is not true in general! A

Theorem 3.3 Let X C R” open, convex and f : X — IR continuously differentiable.
Then the following assertions hold true:

1. fis convex (on X) if and only if

Vi) (y—2) < fly)— fz) Va,yeX.
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2. f is strictly convex (on X) if and only if
Vi@ ' (y-2)<f@)-fl@) VoyeX mit z#y.
3. f is uniformly convex (on X) if and only if there exists p > 0 such that

Vi) (y—o)+ully—z|* < fy) - fx) Va,yeX.

Proof. & Exercise. O

Now we provide a characterization of twice continuously differentiable (strictly, uniformly) convex
functions, enabling us to read off the convexity qualities of f from the definiteness of the Hessian

of f.

Theorem 3.4 Let X C IR" be an open, convex set and f : X — IR twice continuously differen-
tiable. Then the following statements hold true:

1. fis convex (on X) if and only if V2f(x) is positive semidefinite for all z € X, i.e.
d"V2f(z)d>0 VeeX, VdelR".
2. If V2f(x) is positive definite for all z € X, i.e.
d"V2f(z)d>0 VzeX, VdelR"\{0},

then f is strictly convex (on X).

3. f is uniformly convex (on X) if and only if V2 f(x) is uniformly positive definite on X, i.e.,
if there exists u > 0 such that

d"V2f(x)d> pl|d|? VzeX, VdeR".

Proof.
1) “=": Since f if convex and twice continuously differentiable, we can apply Taylor’s theorem:
1
F) =T@)+ V@) (y—o)+ 504 —2) V(@) (y—2)+ry -2

for all y € X sufficiently close to z, and for the remainder holds: r(y — z)/|ly — z||* — 0
for y — . Choose y = = + td for an arbitrary d € IR™ and ¢ > 0 sufficiently small. Then,
by continuity of eigenvalues (Lemma 2.2), we get

2
0< %dTvzf(x)d + r(td) .

Divide by #2/2 and take the limit ¢ — 0 to obtain 0 < d' V2f(x)d Vx € X, d € R"™.
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“<” Since f is continuously differentiable and V2f(x) positive semi-definite for all z € X,
applying Taylor’s theorem and the mean value theorem, we get

1
1) = f@)+V =)+ 5 [ =) Vet — o) —ad. ()

Using the positive semi-definiteness of f, we get f(y) > f(z) + Vf(z) (y —z) V z,y € X.
The convexity of f then follows by Theorem 3.3.

: Analogously to the second part of 1).

: Let f be uniformly convex. Similar to the first part of 1), using the continuity of eigenvalues,
we get for y = x + td with d € R" and ¢t > 0 sufficiently small:

2
uf2|d|? < %dW? F(a)d + r(td) .

Divide by t* and take the limit ¢ — 0 to get: u|d||* < 3d" V2 f(2)d for arbitrary d € IR".
“e If V2 £ is uniformly positive definite with modulus g > 0, we use

1
/0 (v — 2) V2 ( + tly — )y — 2)dt > plly — 2]

in (%) and Theorem 3.3 delivers the uniform convexity of f.
O

Note that the second statement of Theorem 3.4 cannot be reversed in general; consider, e.g.,
f(z) =2t eR.

Example 3.5 Let f:R — R.
e The function f(x) = x is convex, but not strictly convex.
e The function f(x) = exp(z) is strictly convex, but not uniformly.

e The function f(x) = 22 is uniformly convex.

Remark TLet f:IR"™ — IR be a quadratic function, i.e.,

1
flx) = ixTQm +b'z+c

with Q € S,,b € IR", ¢ € IR. Then the following statements hold true:
(i) f is convex if and only if @ is positive semidefinite.

(ii) f is strictly convex < f uniformly convex < @ positive definite.

Theorem 3.6 (Convex optimization problems) Let f : X — IR be continuous and convex.
Further, let X C IR™ be convex. Consider the optimization problem

min f(z) st. ze X, (3.1)

then the following statements hold true:
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1. Every local minimizer of f on X is a global minimizer of f on X.
2. If f is strictly convex, then (3.1) has at most one solution.

3. If X is open, f continuously differentiable and & € X a stationary point of f, then Z is a
global minimizer of f on X.

Proof. & Exercise. O



14 Chapter 4. Gradient based methods

4. Gradient based methods

In general, only exceptional cases allow the explicit calculation of (local) solutions of the mini-
mization problem
min f(z), x€R". (4.1)
In practice, iterative methods are applied for computing approximate (local) minimizers. After
a convergence analysis, these methods are normally represented in algorithmic form and imple-
mented on a computer. For this reason, we now consider descent methods for finding solutions of
problem (4.1), in which f:R"™ — IR is a continuously differentiable function. The fundamental
idea of the methods in this chapter is as follows:
1. At a point z € IR", one chooses a direction d € IR"” in which the function value decreases
(descent method).
2. Starting at x, one proceeds along this direction d as long as the function value of f reduces
sufficiently (step size strategy).

Definition 4.1 Let f: R"” — IR and = € IR". The vector d € R" is called a descent direction
of f at x, if there exists ¢ > 0 such that

f(z +td) < f(z)

for all t € (0,¢]. If ||d|| = 1, then d is called a unit direction.

Lemma 4.2 Let f : IR®™ — IR be continuously differentiable, x € IR and d € IR"™ with
Vf(z)"d < 0. Then, d is a descent direction of f in z.

Proof. W.lo.g. ||d|| = 1. The continuous differentiability of f implies that for the directional
derivative of f in z in direction d, it holds true that

f(z +td) — f(=z)

f(z;d) = Jim, p =Vfx)'d<o0.
Thus,
fottd =)
for all sufficiently small £ > 0. Thus, d is a descent direction of f in «. Ul

Remark The criterion in the previous lemma is not necessary for d to be a descent direction of
f at x. Consider, for instance, the case where x is a strict local maximizer. Then all directions
d € IR™ would be descent directions of f in x, but the criterion does not hold. A
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Algorithm (1) General descent method
Input: starting point z° € IR"

1: for k=0,1,2,... do

2. STOP, if Vf(zF) =0

3:  compute a descent direction d* € R™ with Vf(z*)Td* <0
4:  compute a step size o > 0 with f(aF + o1.d*) < f(2F)
5
6

set 2Ftl = zF 4 o dF
: end for

Remark The following stopping rules are common in practice (with € > 0):
o [Vf(a¥)] <e
o |f(zF) = f(2*1)| < e (for k > 1), (not suitable, consider the sequence f(z") = 1,
flaf)y ==35 157

o 2% —2F1|| <e (fiir k> 1) (in combination with other stopping criteria).

4.1 The method of steepest descent

The aim is to determine a direction d along which f in z decreases the most.

Definition 4.3 Let f : R"™ — IR be continuously differentiable, + € IR"™ with V f(z) # 0 and
d € IR" the solution of

. T
thlill Vix) ' d. (4.2)

Every vector of the form d = A\ with A > 0 is called direction of steepest descent of f in x.

Theorem 4.4 Let f: IR" — IR be continuously differentiable, = € IR" with V f(x) # 0. Then,
the unique solution of problem (4.2) is given by

d=_ Vf(z)

IVf()l

Proof. By Cauchy-Schwarz, it holds for every d € R™ with ||d|| =1

Vi) d>—|Vf(z) d> - IIVf(m)II@ = —IVf (@)l
=1

The choice d = _ V@) yields Vf(z)"d = —||Vf(z)| and thus solves (4.2) (uniquely). [

VI (@)

Remark The steepest descent method uses the negative gradient in the current iterate as

descent direction, i.e.
dF =~V f(z").
Note that d”* is not a unit direction, but the full negative gradient. A
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4.2 Armijo step size strategy

The Armijo step size strategy will be used to determine oy in the general descent algorithm.

Algorithm (2) Armijo step size strategy

Input: Iterate z¥ € IR, descent direction d* € IR™, parameter 3,7 € (0, 1)
Output: step size o, > 0

1: set o, =1

2: while f(zF + od*) — f(2*) > opyV f(2¥)Td* do

3: set o, = Bog

4: end while

Theorem 4.5 Let X C IR" be open, f: X — IR continuously differentiable and ~y € (0, 1).
If d € IR" is a descent direction in x € X, then there exists ¢ > 0 such that

f(x+od) - f(z) <oyVf(z)'d Vo el0,5]. (4.3)

Proof. For o = 0, the relation (4.3) is satisfied, since d is a descent direction. So let o > 0 be
sufficiently small such that « + od € X.

If Vf(x)"d = 0, relation (4.3) is satisfied, with the same argument. So, it remains to show (4.3)
only for the case Vf(x)"d < 0. In that case, it holds:

Fet oD =IO 19 @) Ta ™8 V@) Td V() Td = (L) Vi) Td < 0.
o = T

—Vf(z)Td
For ¢ > 0 sufficiently small, we obtain

f(z+od) - f(z)

g

—yVf(x)Td<0 Vo € (0,5].
Multiplying with o > 0 gives (4.3). O

The termination of Algorithm (2) after finite number of steps follows then directly from Theo-
rem 4.5, since B! € (0,5] with 8 € (0,1) for sufficiently large I € IN.

4.3 Convergence of the method of steepest descent

Theorem 4.6 Tet f : IR" — TR be continuously differentiable. Then either Algorithm (3)
terminates after a finite number of iterations returning a stationary point ¥, or the algorithm
generates a sequence of iterates (xk) such that

1. for all k it holds true that f(z*+1) < f(zF).

2. every accumulation point of (z*) is a stationary point of f.
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Algorithm (3) Method of the steepest descent
Input: starting point z° € IR".
1: for k=0,1,2,... do
2. STOP, if Vf(2*) = 0.
3. compute d¥ = —V f(zF).
4:  compute o, > 0 with the Armijo step size strategy (Algorithm (2)).
)
6

set 2Ftl = 2k 4 5. d".
: end for

Proof. If the algorithm terminates after a finite number of steps, there is nothing to prove. We
consider the case that Algorithm (3) computes a sequence (z*) C IR™ and (o) C (0, 1] where
V f(2*) # 0. The application of the Armijo step size strategy (and Theorem 4.5) implies

F) = f(a*) = fa* + opd®) — f(2*) < oy V(@) Td = —o ||V F (P <0,

thus the first statement holds true.
Let Z be an accumulation point of (2¥) and (2*)x the subsequence with limit Z.

The monotonicity of the function values (f(z*)) implies convergence to a limit f* € IR U {—oc}.
In particular, we have

(f(™) ke — f*.

The continuity of f implies (since (z*)x — &)

(F@)xe = (@)
and thus
F(@*) = 1 = f(@).
The application of the Armijo step size strategy gives

[e.9]

F@) = £@) = (F@) = f@) 24 Y oV )

k=0 k=0

Hence,
2
o[V f @) = 0. (4.4)

We will now show by contradiciton that Vf(Z) = 0. Let us therefore assume that Vf(z) # 0.
By continuity of Vf and (2¥)g — Z, there exists [ € K such that

|V f(z®)|| > Wf;“%)” >0 VkeK,k>I.

Due to (4.4) it follows that
(Jk)Kf—+ 0.

Thus, there exists I’ € K such that
on<B VkeK k>1.

For all these indices, the stopping criterion of the Armijo step size rule has been violated at least
once, in particluar for t;, = 8~ 'oy. Therefore, we obtain

fa® + td®) — f(a%) > iV F(*)Td* = At VFER)T Vhe K k> T
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Division by t; and applying the mean value theorem leads to

2 f(a* +td¥) — f(aF)

—y IVFEM)” < = Vi +nd")T d" Vke K, k>1'
— 23 ~
=V f @) Svi@T V@)

with 73, € [0,tg]. Since (o%)k is a null sequence, (tx)x is a null sequence and we obtain in the
limit k& — oo

V@I < =1V @)
Since v € (0, 1), this is a contradiction to V f(Z) # 0 and the second statement follows. O

Remark Under the assumption that the level set Ny (20) is compact, existence of an accumula-
tion point of (z*) follows. A

For the realization of a numerical method to solve the minimization problem not only the con-
vergence of iterates to a solution (or probably only a stationary point) is of importance, but also
'how fast’ this convergence takes place. We will focus on quadratic functions to investigate the
rate of convergence of the method of steepest descent:

1
e The function f is quadratic and strictly convex, i.e. f(x) = §£L'TQ.1‘ +b'z+ec

with symmetric and positive definite matrix .

e The exact step size strategy (i.e. exact line search) will be used.

Definition 4.7 Let f : IR™ — IR be continuously differentiable, x € IR", d € IR" descent
direction of f in z, and the level set N¢(x) be compact. The step size op = op(x,d) with

op = argmggf(m + od)

is called exact step size.

Example 4.8 Let f(z) = %xTQx + bz be a quadratic function with Q symmetric, positive
definite. The exact step size for a descent direction d is given by

Vi ) Q) exercise

TETTT0d A

Theorem 4.9 Let f:IR" — IR be strictly convex and quadratic, i.e. f(z) = %xTQaz +b'z+c
with positive definite and symmetric @ € IR™*™. Let (z*) and (o) be the iterates and step sizes,
respectively, of the steepest descent algorithm (3) with exact line search.

Then, the following statements hold true:

)\max(Q) - )\min(Q)>2 (
)\maX(Q) + )\mln(Q)

)\max(Q) <>\max( - mln Q >k||w —SUH
)\min(Q) Amax( ol >\m1n Q

where # = —Q~'b is the global minimizer of f and Apax(Q), Amin(Q) denote the largest and
smallest eigenvalue of Q).

F*) — f(@) < ( &) - 1@)).

lz¥ — Z| <
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Remark

® K= ;\\m”((g)) is called the spectral condition number of Q.

e If k ig large, the contraction rate :—j& becomes very close to 1, i.e. slow convergence.

e Ags aremedy, one may choose instead of the steepest descent direction a scaled version, i.e.
choose
d" = MV f(2)

for a positive definite matrix M. This matrix should be chosen to ensure that

)\ma:c(MilQ) < )\ma:v(Q)
AmZ'rL(j\I_lQ) )\mzn(Q)

and such that M - d¥ = —V f(z¥) is easy to solve.

0<

Theorem 4.10 (Zig-zagging theorem)
Let (2¥); be the sequence generated by the steepest descend method with exact line search.
Then, for all £ =0,1,2,..., it holds

(xk—l-l _ xk) 1 (xk+2 _ xk—i—l)

Proof. The iterates are z*+t! = 2% — 0, V f(2F) and 2#+2 = 2F 1 — o V f (2P H),
and we have
<l‘k+1 o :L‘k,l’}H_Q o I‘k+1> = O} Oyt - <Vf(f£k),Vf(Ik+1)>

Using the exact line search, we get

o = argm;{)lf(xk — 0 - Vi)
B =61(0)

and thus (by application of the chain rule):

0 = oo

= (=V(f(@"),Vf(a* — oV F(z")))
= (=V(f("),V(f(")))
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5. General Descent Methods

Due to the generally slow convergence of steepest descent method, we return to the choice of
search direction and step size strategies in the general gradient method. Without specifying the
exact choice of the descent direction nor the conditions on the step size along this direction, we
introduce abstract conditions which ensure convergence.

5.1 Admissible Descent Direction

Definition 5.1 A subsequence (d¥)x of the sequence of descent directions (d¥) generated by
algorithm (1) is called admissible, if

Vi@MTd* <0  Vvk>0, (5.1)

(Vf(xk)Tdk

1] )K -0 — (Vfa*)Ng —0. (5.2)

The first condition (5.1) ensures that all vectors d* are descent directions. The second condition

%’;)”Tdk)]{ is the slope of f

at 2% in direction d¥, i.e. if the slopes along the search direction d* become smaller and smaller
then the steepest possible slopes ||V f(z¥)|| have to become smaller and smaller. This can be
guaranteed by bounding the angle between the search direction d* and the negative gradient
—V f(x*), since

(5.2) becomes more intuitive when realizing that the expression <

Vf(M)Td*| -V f@Eh)Td"

_ k
LI AL
—_———
cos Z(—V f(zk),dk)
The angle condition
—Vf(l'k)Tdk
cos Z(=Vf(zF),d") = — =L —_ > 5.3
VI = @ v @ =" 5:3)

for all k € K with fixed n € (0,1) (independent of k) implies (5.2).
Another sufficient condition for (5.2) is the generalized angle condition

—Vf(l‘k)Tdk>

IVF@h)) < @ ( i (5.4)

with a suitable function ® : IR>9 — IR>¢ with ®(0) = 0, where ® is assumed to be continuous
at 0.
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Theorem 5.2 Let f:IR™ — IR be continuously differentiable and (d*)x be the subsequence of
the descent directions (d*) generated by (1). Then, the following statement holds true:

d* satisfies for all k € K the angle condition (5.3)
= d" satisfies for all k € K the generalized angle condition (5.4)
= (d")g satisifes the condition (5.2),

where n and ® are independent of k € K.

Proof. ,,(5.3) = (5.4)“ We set ® : R>9 — R>o with ®(t) = % Thus, with (5.3), it holds true
that
1 -V f(z*)Td"
IV (@) < = = &
no d¥]

_vf(xk)Tdk
1%

»(5.4) = (5.2)“: Since @ is assumed to be continuous at 0 with ®(0) = 0, we obtain

k Tdk: o k Tdk:
<Vf(‘flk)||> S0 = IViEN) < @(V*’i(jﬂ)) L B0)=0 (K3k— o).
K
Hence (Vf(2¥))x — 0 and the assertion follows. O

Example 5.3 Newton-like methods use descent directions d* given by the solution of the fol-
lowing linear system

Myd® = —Vf ().

If M}, is symmetric and positive definite with
0< H1 < )\min(Mk') < )\max(Mk) < U2 < 00

for all k € N, then every subsequence (d¥)x of search directions is admissible. & Exercise. A

5.2 Admissible Step Sizes

Definition 5.4 The subsequence (o%)x of the step sizes (ox) generated by Algorithm (1) is
called admissible, if

f(@® 4+ opd) < f(2*)  VE>0, (5.5)
and
K\T gk
f@F +opd®) - f(a*) -0 = (W)K -0 (5.6)
hold true.

Admissible step sizes are given e.g. by efficient step sizes.
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Definition 5.5 Let d* be a descent direction of f at z¥. The step size oy, > 0 is called efficient,

if
2
o < 680 (ET)

with 6 > 0.

Theorem 5.6 TLet f: IR™ — IR be continuously differentiable. The sequences (z*), (d¥) and
(0y) are generated by Algorithm (1) and (5.5) is assumed to hold true. If (o%)k is a subsequence
such that the step sizes o, with k € K are efficient, then the subsequence of step sizes (oj)x
will be admissible.

Proof. ® Exercise O

5.3 Globally convergent descent methods

The global convergence of general descent methods with admissible descent directions and ad-
missible step sizes is the topic of the following theorem. Here global convergence refers to the fact
that the algorithm converges for an arbitrarily chosen initial value 20 € R™. In this sense, global
convergence must not be confused with the convergence of the sequence (z*);, (or a subsequence)
to a global minimizer of f!

Theorem 5.7 Let f : IR™ — IR be continuously differentiable. Assume that Algorithm (1)
generates an infinite sequence of iterates (z*), (d¥) and (o}). Let Z be an accumulation point
of (z¥) and (2*)x be a subsequence with limit #, such that (d*)x and the step sizes (o3)x are
admissible. Then, Z is a stationary point of f.

Proof. As in the proof of Theorem 4.6, the monotonicity of the sequence (f(z*)) implies

Jim f(@t) = lim f(a*) = f(2).
Thus, it holds: f(&) — f(«%) = lim f(a") = f(2%) = Y _(f(«""!) = f(a))
k=0

and therefore (due to the convergence of the series on the right hand side), it holds true that
fa* + opd®) — f(a*) = f(a"*) = f(*) = 0.
The admissibility of the step sizes (o) x gives
\v4 k Tdk
( f (wk) > L0,
¥l k

and the admissibility of the descent directions (d¥)x leads to (Vf(xF))x — 0.
Due to the continuity of the gradient V f, it holds true that

V@) = Jim Vf(")=0.
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6. Step Size Strategies and Algorithms

The general descent method offers quite some freedom in the choice of the descent direction dj
and the step size o, > 0. The exact minimization rule, i.e. o = O'E with

f@ﬁ-+afdh::n§gf@#-+ad%,

is well-defined, provided that the level set IV f(xo) is compact and V f Lipschitz continuous on
N f(:co). Certainly, this rule is in general impracticable due to the tremendous effort necessary
(at every iteration k there is one exact (!) univariate minimization required). Fortunately,
we can abandon the exact univariate minimization without endangering the convergence of the
descent method. In the following, we consider two important representatives of practible step
size strategies, the Armijo rule and the Powell-Wolfe strategy.

6.1 Armijo rule

In Algorithm (3) we already introduced the Armijo rule (Algorithm (2)). This strategy does
not fit directly into the framework of the previous chapter, since this rule does not generate
admissible step sizes in general.

Example 6.1 Let f(z) = %, 2% =1 und d¥ = —27FV f(2"). The general descent algorithm (1)
with Armijo rule generates a sequence of iterates (z*); which does not converge to the global
minimum at 0.

D Exercise
AN

However, under additional assumptions on the search directions, admissibility of the step sizes
generated by the Armijo rule can be shown:

Theorem 6.2 Let f : IR™ — IR be continuously differentiable and the subsequence (z*)x be
bounded. Further, denote by ¢ : IR>9 — IR>¢ a strictly increasing function, such that the search
directions generated by the general descent algorithm satisfy the following condition:

i v/ k Tdk
H&uz¢(J%%)) Vke K. (6.1)

Then, the step sizes (o) x generated by the Armijo rule are admissible.
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6.2 Powell-Wolfe step size strategy
The Powell-Wolfe rule requires in addition to the Armijo condition
f(zF + opd®) — f(2*) < opyV f (2F)Td¥ (6.2)
that the following condition
Vf* + opd)Tdr > nv )T dr (6.3)

holds true with 0 <y < 1/2 and v <n < 1.

The second condition ideally implies that the graph of f(z + od) at ¢ > 0 does not descend as
‘steeply’ as at 0 = 0.

The following theorem gives a sufficient condition to ensure the existence of step sizes o satisfy-
ing (6.2) and (6.3):

Theorem 6.3 Let f: IR” — IR be continuously differentiable, d € IR™ descent direction of f at
x € R"™ and f be bounded from below in direction d, i.e.

%ggf(:v—i-td) > —00.

Then, there exists o > 0 for given v € (0, %) and 7 € (v, 1) such that
f(z +od) = f(z) < oyVf(x)'d (6.4)

and
Vi +od)Td>nVf(x)d. (6.5)

Under the assumptions of Theorem 6.3, Algorithm (4) terminates after a finite number of itera-
tions and returns a step size ¢ > 0 satisfying (6.4) and (6.5):

Theorem 6.4 TLet f:IR” — IR be continuously differentiable, d € IR™ descent direction of f at
x € IR™ and f be bounded from below in direction d, i.e.

%ggf(:v—i-td) > —00.

For given v € (0,3) and 1 € (v,1), Algorithm (4) terminates after a finite number of iterations.
The generated step size o > 0 satisfies (6.4) and (6.5).

The admissibility of the step sizes follows:

Theorem 6.5 Let f : IR® — IR be continuously differentiable and z° € IR" a starting point,
such that the level set Ny(z°) is compact. Algorithm (1) employs the Powell-Wolfe rule (Algo-
rithm (4)). Then, the algorithm is well-defined and every subsequence of step sizes is admissible.
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Algorithm (4) Powell-Wolfe Step Size Strategy

Input: Iterate x € IR, descent direction d € IR", parameters v € (0, %), ne(y,1),o_:

Output: Step size o > 0 fulfilling the Wolfe conditions.

1:
2
3:
4.
5

I

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

if o_ satisfies the Armijo condition (6.4) then

if o_ satisfies the curvature condition (6.5) then
STOP with o_
end if
Determine the smallest oy € {2122 23 ...} such that o = o, does not satisfy
the sufficient descent condition (Armijo rule (6.4))
Set o_ = %
. else

Determine the largest o € {271,272,273 ...}, such that 0 = o_ satisfies
the sufficient descent condition (Armijo rule (6.4))
Set 04 =20_

end if

while o_ does not satisfy the curvature condition (6.5) do

Set 0 = #
if o satisfies the Armijo rule (6.4) then
Set o_ =0
else
Set o =0
end if
end while

STOP with step size o_




26 Chapter 7. Newton’s Method

7. Newton's Method

Newton’s method, with all its variations, is the most important method in unconstrained opti-
mization. Compared to gradient methods, we will achieve a faster convergence by using second
order information, the Hessian V2, in addition to the first order derivatives. The basic idea is
to use Newton’s method as an algorithm for the solution of the system of first order necessary
conditions V f(z) = 0.

Newton’s method is a method for the solution of nonlinear systems of the form
F(x)=0

with F': IR" — IR™. If the Jacobian matrix of F exists and is continuous, then Taylor’s theorem

leads to:
F(zF 4+ d) = F(a%) + F'(2®)d + o(||d])) .

Hence, given a point 2, we can determine zF! setting d* such that
et =P 4 d*  with  F'(2%)d¥ = —F(zb).

With F(z):= Vf(z) and thus F'(x) = V2f(x), we obtain a Newton method for minimizing f
by solving the first order necessary optimality condition V f(z) = 0, as in Algorithm (5).

Algorithm (5) Local Newton’s Method (for optimization problems)

Input: starting point 2% € IR".
1: for k=0,1,2,... do
2:  STOP, if Vf(2*) = 0.
3:  Compute the Newton step d* € IR" by solving the linear system
V2 f(ah)d" = —V f(z").
4:  Set zFtl =2k 4 gk
5: end for

Remark An equivalent way to introduce Newton’s method for unconstrained optimization is to

k41 by minimizing a quadratic approximation of f, i.e. we consider
k.

compute the next iterate x
the following quadratic model of f near x

m(z) = f(a*) + V(") (z —a") + %(m — 2TV f(2%)(z — ") .

If V2f(x*) is positive definite, there exists a unique minimizer of the quadratic model yielding
the next iterate z¥t1. & Exercise.

Note that the Hessian V2 f(z) is positive definite in a neighborhood B.(%) of the local minimizer
provided that second order sufficient conditions are satisfied.

A
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Definition 7.1 (Convergence rate) The sequence (z*) C IR"
e converges linearly with rate 0 <y < 1 to £ € IR", iff there exists { > 0 such that:

lz*t — 2| <yl — 2| VE=1.

e converges superlinearly to & € R", if ¥ — & and

kaﬂ — || zo(ka—iH) for k — oo,

i.e. there exists a null sequence (e;) C R4 with

25! — &) < ellz® — 2| for all kK — oo

e converges quadratically to € R", if 2¥ — % and
- 112
|2kt — Z|| = O(]|=* — &||*) for k — oo
The above condition is equivalent to the existence of a constant C' > 0 such that

|zF ! — 7| < Ollz*F — z|°  Vk>0.

Remark Note that the superlinear and quadratic convergence are independent of the chosen
norm, i.e. if (z¥) C IR™ converges superlinearly to # according to Definition 7.1, then it holds

true that

|2t — &[], = mllz® — 2|, for all k — oo

for an arbitrary norm || - ||, and null sequence () C Ry. Analogously,
la** — &, < Calla* 2l Wk >0,

converges quadratically to &, where C, depends on the norm.

However, the linear convergence depends on the applied norm. For every linearly convergent
sequence (z¥) C IR", it holds true that

le — &, <ol -2,  Vk>1

with a constant v, depending on the applied norm, but the constant is in general not necessarily
smaller than 1. A

The convergence proof of Newton’s method is based on some auxiliary results, which we establish
in the following lemmas 7.2 and 7.3.

Lemmas 7.4 and 7.5 give characterizations of superlinear and quadratic convergence and will be
also be used in the convergence proof of the local Newton method.
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Lemma 7.2 Let f:R" — IR and (zF) C R” be a sequence converging to & € R™. Then, the
following statements hold true:

1. If f is twice continuously differentiable, then
IVf(z*) = VF(@) = V2f(z*)(z" — 2)|| = o(l|2" — ZI]).
2. If f is twice continuously differentiable and V2 is locally Lipschitz continuous, then

IVf(z*) = VF(@) = V2 f(z*)(z" ~ 2)| = O(ll=* - &)

Lemma 7.3 Let f : IR™ — IR be twice continuously differentiable, Z € R"™ and V2 f(Z) invertible.
Then, there exists § > 0 such that V2f(z) is invertible for all z € Bs(%). Further, there exists
c > 0, such that

IV2f(@) | < ¢ Vo€ Bs(3).

Lemma 7.4 Let f: IR™ — IR be twice continuously differentiable, (z¥) C R” be a convergent
sequence with limit # € R™, 2% # # for all k € N and V?f(Z) invertible. Then, the following
statements are equivalent:

1. 2* — # superlinear und V f(&) = 0.
2. [IV£(@*) + V2 f(@®) (@ — 2] = o(||a*+ — 2*])).
3. IV (*) + V2f(@) (@ — ab)|| = o(fl2**! — 2¥])).

Lemma 7.5 Let f:IR" — IR be twice continuously differentiable and V2 f be locally Lipschitz
continuous, (xk) C R™ be a convergent sequence with limit & € R?, z¥ # & for all k € N and
V2f() invertible. Then, the following statements are equivalent:

1. ¥ — Z quadratically and V f(Z) = 0.
2. |V f(z*) + V2f(@*) (@™ = aF)|| = O([la** — 2*|?).
3. [V f(z*) + V2f(@) (2" = 2P)|| = O(||lz"*+! — 2*|]?).

With these auxiliary results, we may now show the convergence of the (local/full-step) Newton
method.
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Theorem 7.6 Let f: IR" — IR be twice continuously differentiable and Z € IR™ be a stationary
point of f and V2f(%) invertible. Then, there exists § > 0 such that for all # € Bs(Z) it holds
true that

1. the (local) Newton’s method (5) is well defined and generates a convergent sequence (z*)
with limit 2.
2. the convergence rate is superlinear.

3. If V2f is locally Lipschitz continuous, the convergence rate will be quadratic.

Proof. By Lemma 7.3, there exists §; > 0 such that V2f(z) is invertible for all z € B, (%) with
IV2f(2)"H | < e Vo e Bs ().
for a constant ¢ > 0. Furthermore, by Lemma 7.2, there exists do > 0 with
- - 1 -
IV f(*) = Vf(&) = V2 f(a?) (@ - 2)|| < ;c\lxk —z|.

for all x € By, (). We set 6 = min{dy,d2} and choose 2 € Bs(#). Then, z! is well defined and
we have

o = = [~ 2~ V) VIO
< V270 IV ) - V(@) — V()@ — 3|
< ey lla®— ] = 5le® ~ ]l

Thus, 2! € Bs(#) and by induction, it follows that

k
. 1 -
lz* — 2| < <2> 2 — 2|

for all k € N. Hence, the sequence of iterates (z*) is well defined and converges to Z. Lemma
7.4, Lemma 7.5 and

VF@ak) + V2 f(@®) (@ —2F) =0

imply the statements on the convergence rates.
O

Theorem 7.6 states a local convergence results. The following example illustrates that Algo-
rithm (5) does not converge for arbitrary starting points 2° in general:

Example 7.7 We consider the function f(z) = Va2 + 1. The second order sufficient conditions
are satisfied at # = 0. However, Algorithm (5) does not converge for starting points z° with
120] > 1.  Exercise. A

To design a globally convergent method based on the convergence results for general descent
methods (Theorem 5.7), we introduce a step size strategy and ensure that step sizes and descent
directions are both admissible.
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Algorithm (6) Globalization of Newton’s method

Input: Starting point 20 € IR", parameters 8 € (0,1), v € (0,1), a3, a2 > 0 and p > 0.
1: for k=0,1,2,... do
2. STOP, if Vf(zF) =0
3:  Compute Newton direction dﬁv € IR™ by solving the linear system

V2f(a")dy = =V f(a®) (%)

4:  if d% # 0 is a solution of (x) that satisfies the generalized angle condition

~V (@) dyy > minfan, agllaly |} k| (7.1)
then
5: dk .= d?‘,v
6: else
7: d¥ == —V f(zF) (fallback if (%) not solvable or Newton-step is unsatisfying)
8: end if
9:  Determine the step size o;, > 0 using the Armijo rule (Algorithm (2))

10: a2kt =2k 4 o dF
11: end for

Theorem 7.8 Let f: R™ — IR be twice continuously differentiable. Then, either Algorithm (6)
terminates after a finite number of iterations with Vf(2*) = 0 or every accumulation point of
the sequence of iterates (z¥) generated by the algorithm is a stationary point of f.

Proof. Let Kg={k>0: d*=-Vf(2*)} and Ky={k>0: d*# -Vf(z")} .

To apply the convergence results for general descent methods (Theorem 5.7) and to ensure the
well posedness of the Armijo rule, we first show that the directions generated by Algorithm (6)
are descent directions. By definition of K¢, it follows directly that

—Vf(:vk)Tdk
i IV £ (@) >0, (7.2)
for all k € Kg. By (7.1), we obtain
~Vfh)TdE
L > winfa aald |} > 0. 73

for all k € K. Hence, the generated directions d* are descent directions for all k € Ny. In
particular, the Armijo rule is well defined.

If the algorithm terminates after a finite number of steps, there is nothing to prove. Therefore,
we focus on the case that the algorithm generates a sequence of iterates (z*) with accumulation
#. We denote by (2¥)x a subsequence converging to #, i.e. (z¥)x — Z.

We first prove the admissibility of the subsequence of descent directions (d¥)g: Since (z¥)x is
bounded and V2f is continuous by assumption, there exists C' > 0, such that |V2f(z¥)| < C
for all k € K. Thus, we obtain

IVl = IV2f(e®)d"|| < Ol Wk e KN K. (7.4)

To show the admissibility, let

( e Y
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By (7.3), it follows that

HdkH KOKN_B;f—mo 0
and (7.4) implies
95k 0.

For the indices k € K N K¢, it follows by (7.2) that

—Vf(@)Td* kargsk—soo

0.
1]

IV £ (")l =

Thus,
(v f(xk))K S0

implies the admissibility of (d*)-.
It remains to show that the step sizes (oj)x are also admissible: For all k € K N K¢, it holds

true that ( k)T )
—Vf(z®)"d
ld*]| = IV f (")) = i
[ld* |
and for k € K N Ky, it follows that

1 —Vf(m)Tdr

(7.4) 1
A — By > =
e N e

The function ¢ : IR>¢ — IR>o with

1
t) = min{t, =t
o(t) = min{t, 1}
is continuous, strictly monotonically increasing from ¢(0) = 0, and we obtain for all k € K

K\T gk
i o (AL

Thus, Theorem 6.2 gives the admissibility of the subsequence of step sizes (o) x and the assertion
follows.

O

Theorem 7.9 Tet f : R" — IR be twice continuously differentiable. Further, let (z¥) be a
sequence of iterates generated by Algorithm (6) with accumulation point & such that the Hessian
is positive definite at . Then, the following statements hold true:
1. The point 7 is a strict local minimizer of f.
2. The sequence (z*) converges to .
3. If v € (0, %), then there exists [ > 0, such that the algorithm performs Newton’s method
with step size 1 for all k > [. In particular, Algorithm (6) converges superlinearly. If V2 f
is Lipschitz continuous in a neighborhood of Z, then the convergence rate will be quadratic.
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8. Newton-like methods

In this chapter we discuss some variants of Newton’s method. The evaluation and factorization
of the Hessian of f can be very expensive. On the other hand, far from a local minimum, the
Hessian may be singular or the Newton direction may not be a direction of descent because the
Hessian V?2f is not positive definite. The basic idea of Newton-like methods is to replace the
Hessian V2 f(2"*) by an approximation M}, and then to solve the linear system

MdF = =V f(2*)

in order to compute the descent direction.

Algorithm (7) Newton-like method
Input: Starting point 2° € IR"™.
1: for k=0,1,2,... do
2. STOP, if Vf(zF) =0
3:  choose an invertible matrix M} € R™*"
4:  compute the direction d* € IR™ by solving the linear system

Myd® = —V f(z")

5. aftli=ak 4+ dF
6: end for

The convergence analysis of Algorithm (7) is based on Lemma 7.4:

Theorem 8.1 (Dennis-Moré condition) Let f : R” — IR be twice continuously differen-
tiable, and let (z¥) be the sequence generated by Algorithm (7). Assume that (z¥) converges
to  and V2f(Z) is invertible. Then, the following statements are equivalent:

1. (2%) converges superlinearly to # and it holds true that V f(z) = 0.
2. |(My — V2£(@)) (=" — 2| = o(||a* — 2*])).
3. [[(My, = V2 f(2*)) (@ = a¥)|| = o(Ja*+1 — ¥])).

Proof. In Algorithm (7), the directions are computed by
Myd* = -V f(z") and dP = 2Pt — gk

thus
My(a"*! — aF) = =V f(a").

Substituting in (2) gives
I(My = V2£(2)) (@ = a®) | = IV f(2*) + V2F(@) (2" — 2|



33

and in (3) leads to
(M = V2f (")) (2" — 2P| = [V f (") + V2 f (@) @ =)

The statements (2) und (3) are therefore equivalent to the corresponding statements in Lemma 7.4.
Hence, the assertions follow by Lemma 7.4. Ul

We will apply Theorem 8.1 in the following two chapters to prove superlinear convergence of
Quasi-Newton methods and inexact Newton methods. The following example illustrates the
application of the Dennis-Moré condition to prove superlinear convergence:

Example 8.2 Let (2*) and (M}) be sequences generated by Algorithm (7) such that
=% and M — V().
Then, it holds true that

I(My = V2£(2)) (@ = a®)| < ||My = V2F(@)] [l = 2% = o([la™ — *) .

—0

Thus, condition (2) of Theorem 8.1 is satisfied. If V2 f(#) is invertible, then (z*) will superlinearly
converge to . AN

Analogously to Algorithm (6), Newton-like methods can be globalized as follows.

Algorithm (8) Globalization of Newton-like methods (for optimization problems)
Input: Starting point 20 € IR", parameters 8 € (0,1), v € (0,1), a3, 2 > 0 and p > 0.
1: for k=0,1,2,... do
2. STOP, if Vf(2F) =0
3:  Choose an invertible, symmetric matrix M;, € IR™*"
4:  Compute Newton direction d’fv € IR™ by solving the linear system
Mydy = =V (") (%)

5. if d% # 0 is a solution of () that satisfies the generalized angle condition

. 2
—Vf(@*)Tdy > min{ar, az||di|"}|dR |
then
6: dk .= d?\/
7. else
8: d¥ == —V f(zF) (fallback if (%) not solvable or Newton-like-step is unsatisfying)
9: end if

10:  Compute the step size o > 0 by the Armijo rule (Algorithm (2)).
11 zFtl =2k 4 o db.
12: end for

The convergence result (Theorem 7.8) can be straightforwardly generalized to Algorithm (8)
provided that the sequence (||Mg]|) is bounded.
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9. Inexact Newton methods

Newton’s method requires the solution of a linear system in each iteration
V2if(z®)db = -V f(zF). (9.1)

For very large scale problems, the arising linear systems can only be solved by iterative methods
(e.g. CG). Then Newton’s iteration appears as outer iteration. The question of interest will be to
control the accuracy of the inner iteration such that the convergence speed of Newton’s method
is preserved. The resulting algorithm (local variant) is summarized in Algorithm (9). Globaliza-
tion of Algorithm (9) for optimization problems is completely analogous to the globalization of
Newton’s method (Algorithm (6)).

Algorithm (9) Inexact Newton method
Input: Starting point 20 € IR™.
1: for k=0,1,2,... do
2. STOP if Vf(z*) = 0.
3. compute the direction d* € IR™ by approximately solving the linear system

V2 f(aF)dF = -V f(2F)

4:  set Rt =gk 4 gk
5. end for

We assume that the error in the solution of the linear system (9.1) is bounded by
V5@ + V2 f(h)dM | < mel |V £ (8))] (9:2)

for sufficiently small n > 0. In this setting, the following convergence result can be shown:

Theorem 9.1 Let f : R"™ — IR be twice continuously differentiable, & € IR™ be a stationary
point of f and V2f(&) be invertible. Then, there exists ¢ > 0, such that the following statements
hold true:

1. If 2% € B.(Z) and the directions d* generated by Algorithm (9) satisfy the condition (9.2)
with n, < n for sufficiently small n € (0, 1), then either the Algorithm (9) terminates after
a finite number of steps with z¥ = Z or the algorithm generates a sequence (z*), which
linearly converges to 2.

2. If additionally nx — 0, then the convergence rate will be superlinear.

3. If g, = O(||Vf(2*)|) and V2f is locally Lipschitz continuous, then the convergence rate
will be quadratic.
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Proof.
1. The first part of the statement can be derived analogously to the proof of Theorem 7.6.

2. Since f is assumed to be twice continuously differentiable, the gradient V f is locally Lip-
schitz continuous, i.e. there exists L > 0 such that

V)| = IV f(=") = V(@) < L|ja* — 2.

Thus,
IV f (") + V2 (F) (@ = 2P)| < mpLfja® = & = o(||2" — ).

The linear convergence implies the existence of [ > 0 and 7 € (0, 1), such that for all & > [,
it holds true that

2% = Z[| < 2" — 2P| + [P = &) <l = 2R et - E
It follows that )
2" — Z|| < s——[l«**! = 2¥|| = O(|a" ! — 2*|))
L=y
and thus,
k ky( .k k E_ = k= k k
IV f(@*) + V2 [ () (@ = 2P| < meLlla® = &[] = o([|2* = Z]]) = o([|=**! — =),

i.e. superlinear convergence (by Lemma 7.4).
3. The quadratic convergence can be shown analogously.

Inexact Newton methods and Newton-like methods are related in the following sense.

e Newton-like methods require the solution of a linear system
MydF = -V f(z*)

in each iteration, i.e.

V2 f(a*)d* = =V f(a*) + "

with residuum r* = (V2f(2*) — My)d*. Therefore, we can interpret the direction d*
generated by the Newton-like method as an inexact solution of the Newton system (9.1).
In some cases, error bounds of the form (9.2) can be derived.

e On the other hand, the inexact Newton method generates directions d* with
V2f(a")d" = -V f(aF) + ¥
Setting
Tk(dk)T

My =V f(a) -
¥ ||

we obtain

Mkdk = —Vf($k> .
Thus, the inexact solution of the Newton system can be viewed as an iteration of a Newton-

like method with My = V2f(z*) — TE%E.
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10. Quasi-Newton Methods

Unlike Newton’s method, quasi-Newton methods do not make use of second order derivatives of f.
They approximate the second order derivatives iteratively with the help of first order derivatives,
i.e. Quasi-Newton methods belong to the class of Newton-like methods (Algorithm (7) and (8)).
We will denote the Hessian approximation by Hj, (instead of M) and require Hy, to be invertible
and symmetric. The idea is to update Hj by gradient information in each iteration, such that
the resulting method converges superlinearly.

Quasi-Newton methods use that two successive iterates 2% and z¥*! together with the gra-
dients V f(x*) and V f(z¥+1) contain curvature (i.e. Hessian) information. Therefore, at every

iteration, Hy11 is chosen such that the Quasi-Newton equation or secant equation
Hyyr (& = 2%) = V(") = V f(2b). (10.1)

is satisfied.

The local Quasi-Newton method can be described as follows.

Algorithm (10) Local Quasi-Newton Method

Input: starting point 20 € IR”™ and a symmetric, invertible initial matrix Hy € IR™*"
1: for k=0,1,2,... do
2. STOP, if Vf(2F) =0
3. Compute the Quasi-Newton step d* € IR™ by solving the linear system

Hpd® = -V f(2") (10.2)

4:  Set zFtl =2k 4 gk
5:  Compute by an update formula a symmetric, invertible matrix

HkJrl _ H(Hk,.%'k+l o $k,Vf($k+l) _ Vf(l'k))

such that the Quasi-Newton equation (10.1) is satisfied
6: end for

The Quasi-Newton equation (10.1) can be motivated as follows: The fundamental theorem of
calculus yields

1
V() — Vb = /VQf(xk + t(aF T — 2F))dt (2P — 2R (10.3)
0

=M (zk xk+1)

k+1)

Thus, the averaged Hessian M (z*,x satisfies the Quasi-Newton equation.

The following theorem gives a further justification of the Quasi-Newton equation.
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Theorem 10.1 Assume that the point Z satisfies second order sufficient conditions. Further,
assume that Algorithm (10) generates a convergent sequence (z*) with limit Z and it holds true
that

lim ||Hg+1 — Hgl| =0.

k—o0

Then, H, satisfies the Dennis-Moré condition and (z*) converges superlinearly to Z.

Proof. ® Exercise O
In the following, we set
sk = gkl _ gk y* = V(") — V().
and discuss several update rules for the Hessian approximation:
Hyp1 = H(Hk,xkﬂ — 2F V(e ) — Vf(wk)) _ H(Hk, Sk’yk) .

The initial matrix Hp, a symmetric, invertible matrix is chosen. A standard choice is given by
Hy = I, but sometimes better scaling might be necessary, e.g. by using a the exact Hessian’s
diagonal, usually modified to ensure positive definiteness. The matrices Hy are then chosen such
that Hj is again symmetric and invertible and the Quasi-Newton equation is satisfied for all k.
Some variants require only O(n?) multiplications per iteration (instead of O(n?) like Newton’s
method).

Symmetric rank-1 formula

Symmetric rank-1-formula are based on symmetric rank-1 modification:

Hy = Hy, + ypuf (u?) "

with 7, € R and v* € R", |[u*|| = 1. Inserting this update into the Quasi-Newton equa-
tion (10.1) yields
!
Hy18" = Hys® + 9 (uF)TsF) ub = o

—
€R

If y* — Hys* = 0 (with s* = d* as in Algorithm (10))

Vi) = Vih) + of = V(b)) + Hys® = V@b + Hyd (10.2)

0
and thus the stopping criterion is satisfied for z*+1. If y* — HysF £ 0, it follows that

yk: _ Hksk

k
b =g L R
ly* — Hys*||

where we choose w.l.o.g. the solution with ,+“. The scalar v can be determined by

2
ey
P Yk = Hysk)T sk
and thus, we obtain
Hiy = Hy + (y* — Hys*)(y* — Hys") "

(yk _ Hksk)TSk
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The above formula is the symmetric rank-1 formula (SR1-formula). Unfortunately this
formula has a few drawbacks: The denominator (y*¥ — Hys*)Ts* can become 0 or close to
0 causing numerical problems. Further, the positive definiteness of Hyiq gets lost in case
(y* — Hyps*)Tsk < 0 (even if Hy is positive definite). Thus, Hypy; might be singular and
d"* = —(Hpy1) 'V f(2F+1) cannot be guaranteed to be a descent direction.

Broyden Class

More flexible update formulas can be derived by applying symmetric rank-2-updates, i.e.

Hir = Hy b @) 2ok (o)

The most popular update formulas are
e the BFGS update (Broyden, Fletcher, Goldfarb and Shanno)

ki, k\T 5% (H..sk\T
BFGS BFGS kE kY . v~ (y") kS" (Hgs")
Hipyw =H (He,s",y") := Hy, + (fF) sk~ (sk)T Hyst

e the DFP update (Davidon, Fletcher und Powell)

HkDfiP _ HDFP (];I]€7 sk,yk)
(yk _ Hksk)(yk)'l' +yk(yk _ Hksk)T B (yk _ Hksk)TSkyk
(y*)Ts* ((y*)Tsh)?

= Hj + WM,

e the Broyden class
Hpyy = (1 - NHPESS 4 \HPEP

with A € IR and for A € [0,1] the convex Broyden class.

Remark As Newton’s method, the Quasi-Newton methods based on updates in the Broyden
class are invariant under affine transformations (in particular the BFGS method). A

Theorem 10.2 Let Hj be symmetric. Further assume that
(y*)Ts* £ 0 und (s"YTHs* #0.

Then, the matrices H ir1 With A € IR are well defined, symmetric and satisfy the Quasi-Newton
equation (10.1). In addition, if Hy is positive definite and it holds true that

(") 's* >0,

then H,i‘H will be positive definite for A > 0.

Proof. ® Exercise O

Using the Sherman-Morrison-Woodbury formula, we can derive explicit expressions for the
update of the inverse Hessian approximation, which is a rank-2 modification as well.
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Lemma 10.3 (Sherman-Morrison-Woodbury formula) Let A € IR™*" be an invertible
matrix and u,v € IR”. Then, the matrix A 4+ v is invertible if and only if it holds true that
1+v"A7u # 0. Then, the inverse is given by

A lypT A1
14+0vTA- 1y

Ay T

Ty-1_ (7_ 4 W
(A+uv) _<I 1+vT A~y

)Al —

Remark The Shermann-Morrison-Woodbury formula can be generalized to rank-r modifications.
Let U,V € R™". Then,

A+UvHl=Aat—Alyg+vTAaAtu)tvTiat,

In particular, we obtain update formulas for the inverse of the BFGS and DFP updates:

Theorem 10.4 Let Hj, be positive definite and By = H, '. Further assume that (y*)"s* > 0.
Then, the matrices BEI?S = (HPEES)™! and BPIT = (HPEP)™! can be computed via the
following update formulas:
BBFGS _ B, (8" = Bry")(s") " + s*(s" = Bey®)T (" = Bry®) To” (M) T
" (s%) Ty* ((s%)Ty)? ’
o _ o ST B BT
FET TR T ) TBE

Remark Theorem 10.4 shows that the BFGS update formula for the inverse Hessian approx-
imation corresponds to the DFP update of the Hessian approximation with flipped roles of s*
and y*. Vice-versa, the DFP update for the inverse Hessian approximation corresponds to the
BFGS update of the Hessian approximation:

BF BF! k k DFP DFP k ,k
Hk—i—lGS =H GS(HkHS Y ) Hk+1 =H (Hkas Y )

BkalGS — HDFP (Bk’,yka Sk) BkDﬂP _ HBFGS (Bka yk’7 Sk‘)

BFGS Method

We can derive a version of the BFGS algorithm that works with the inverse Hessian approxima-
tion 10.4, Algorithm (11). Theorem 10.5 gives a convergence result.

Theorem 10.5 Let f : R™ — IR be twice continuously differentiable with locally Lipschitz
continuous Hessian V2 f. Furthermore, assume that sufficient second order optimality conditions
are satisfied at #. Then, there exist § > 0 and £ > 0, such that, for every starting point 2° € Bs(%)
and every symmetric, positive definite matrix By € IR"*" with ||By — V2f(%)7!|| < ¢, either
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Algorithm (11) (Local) inverse BFGS method

Input: Starting point 2° € IR" and a symmetric, positive definite matrix By € IR"*" (inverse
Hessian approximation at xo).
1: STOP, if V£(2°) = 0.
2: for k=0,1,2,... do
3:  Compute the direction d* = —B,V f(2%).

4 Set zFtl =gk 4 d*,
5. STOP, if Vf(z*+1) = 0.
6: Set s¥ = dF and y* = Vf(zF1) — Vf(2").
7. STOP (with error message), if (y*)"s* <0.
8:  Compute
E_ Bk (9T & sk(sk — Buyk)T k_ Bk Tk
Byir = By + (s ky") (s )k ‘Ti‘i (s kYY) (s k ‘kryk)zy E(sk)T
(s*) "y (CON'Y
9: end for

Algorithm (11) terminates after a finite number of iterations at z¥ = # or generates a sequence
(z*) € Bs(&), which converges superlinearly to 7.

Proof. See e.g. Geiger, Kanzow, Theorem 11.33. OJ

Using the Powell-Wolfe step size strategy, Algorithm (11) can be globalized as follows, cp. Al-
gorithm (12). The condition (y*)"s* > 0 will be ensured by the step size strategy.

Algorithm (12) Globalized inverse BFGS method

Input: Starting point 2° € IR", parameters v € (0,1/2), n € (v,1) and a symmetric, positive
definite matrix By € IR"*" (inverse Hessian approximation at x°).
1: STOP, if Vf(z°) = 0.
2: for k=0,1,2,... do
3. Compute the direction d* = —B,V f(2*).

4:  Compute the step size o, > 0 with the Powell-Wolfe rule (Alg. (4)).
5. Set zFt! = zF + o dP.
6: STOP, if Vf(zF+1) = 0.
7. Set s* = 21 — ¥ and y* = Vf(2FT) — Vf(aF).
8  Compute
B - 5y BT £ R = BT (= BT
S ()7 ((5)Twb)? |
9: end for

We first show that the condition (y*)"s* > 0 is indeed ensured by the Powell-Wolfe step size
strategy:
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Lemma 10.6 Let f : R™ — IR be continuously differentiable. If By is positive definite and
the Powell-Wolfe step size strategy generates a feasible step size o, > 0 in Algorithm (12), then
(y*)Ts* > 0 and By, will be positive definite.

Proof. The slope condition (6.3) yields

)T = (VI T — VT S oV ()T - V)T
o (1= V)T > 0.

Since By, is positive definite by assumption, Hy = kal is positive definite and due to (yk)Tsk > 0,
H,fflcs is also positive definite (by Theorem 10.2). Thus, By = (H,fflGS)_l is positive definite,
too. O

The following convergence result can be shown for Algorithm (12):

Theorem 10.7 Let f: IR™ — IR be continuously differentiable and 20 € IR™ such that the level
set Nf(2°) is compact. Then, Algorithm (12) is well defined. Further, if the condition number of
the matrices By, is uniformly bounded, then every accumulation point of (z*) will be a stationary
point.

Proof. & Exercise O
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11. Optimality Conditions for
Constrained Optimization Problems

In the second part of the course, we will focus on constrained optimization problems, i.e.

min f(2) (1L.1)

with objective function f : X — IR and feasible set X C IR", which is assumed to be defined
via a system of equality and inequality constraints

X={zelR":g(x) <0,h(x) =0} (11.2)

with continuous functions g : R — IR and h : R — IR?.

In this chapter, we derive mathematical characterizations of the solutions of (11.1). As in
the unconstrained case, we discuss optimality conditions of two types, necessary and sufficient
conditions. We start by noting one important item of terminology that recurs throughout the
rest of the notes.

Definition 11.1 The index sets of the inequality and equality constraints will be denoted by
G=A{1,...,m} and H=A{1,...,p}.

The index set of active inequality constraints A(z) at any feasible point x € X is defined
by
Alx)={i € G: gi(z) =0}

and the index set of inactive inequality constraints

I(x)={ieG: gi(z) <0} =G\ A(x).

The following example illustrates the basic principles behind the characterization of solutions for
constrained optimization problems, in particular the need for more general optimality conditions.

Example 11.2 We consider the minimization of the function f(r) = 2® + x such that z > —1.
By inspection of the first order necessary optimality condition f’(xz) = 0, we see that f/(z) =
322 + 1 > 0. The minimizer is obviously & = —1, i.e. lies on the boundary of the feasible
set. Starting at £ = —1, we observe that the point © = & + d remains feasible for all positive
directions d > 0. For d > 0, it holds true that

f(#)-d=4d >0,

i.e. the function values increase along feasible directions. Thus, £ = —1 is a local minimizer. A
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Definition 11.3 Let M C R™ and = € M. Then,

T(M,z):={deR": 3F)c M, I(m) CRso: lim 2F =2, klim me(z* — z) = d}
— 00

k—o0

is called tangent cone to M at x.

Remark Tt is easy to see that 0 € 7(M,x) and the tangent cone is indeed a cone, i.e. d €
T (M, z) implies ad € T (M, z) for a € R5. Furthermore, the tangent cone 7 (M, z) is a closed
set for x € M. A

Example 11.4 % Exercise: Determine the tangent cone 7 (X, z).
L X:={zcR?: 2;<1,25>0,20<a?+x1},and 2 = (0,0)7
2. X :={x €R? : z; > 2%, 29 >2?}, and x = (0,0) "
A

The necessary conditions defined in the following theorem are called first order conditions because
they are concerned with properties of the gradients of the objective and constraint functions.

Theorem 11.5 Let f be continuously differentiable and Z € X be a local minimizer of (11.1).
Then, it holds true that
ViE)Td>0 VdeT(X,i).

Proof. Let d € T(X,z) arbitrary and
X D (%) — &, (nk) € R, d* =y (x

where 2* # & w.l.o.g..
Due to the local optimality of Z, it holds true that

fa*) = f(@) >0
for sufficiently large k. Thus, Taylor expansion yields (for sufficiently large k)

0 < mi(f(a") — f(2))
= V@) (a" — 2) + mpo(||2* — 2|

o([l2* — Z]|) koo

= Vf@)Td" + |d¥ TR Vi) Td.

O

Theorem 11.5 includes as a special case the first order optimality condition for unconstrained
optimization problems, Theorem 2.1, since for points # in the interior of X C IR", it holds true
that 7(X,Z) = IR"™. The first order optimality condition for constrained optimization problems
cannot be easily verified unless we have a simple representation of the tangent cone. We will
linearize the (active) constraints to form a local approximation of the feasible set.
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Definition 11.6 The set
Ti(g, h,x) = {d € R" : Vg;(2)Td <0 Vi € A(z), Vh(z)'d =0}

is called linearized tangent cone at x € X.

Since the verification of d € Ti(g,h,z) (in contrast to d € T(X,z)) is straightforward, the
idea is to replace the tangent cone by the linearized tangent cone in the optimality conditions.
Obviously, it holds true that

T(pr) - 7;(97 h, x) :

In order to formulate optimality conditions using the linearized tangent cone, we will require
that

{fveR": v'd>0 Vde T(X,2)} ={veR": vId>0 Vde Ti(g h,z)} , (11.3)

since

Viz)d>0 VdeT(X, z)

is equivalent to

Viz)e{veR": v'd>0 Vde T(X,z)} .
Note that (11.3) is in particular satisfied, if 7(X,z) = T;(g, h, x).

Definition 11.7 TLet x € X. A condition that implies (11.3) is called constraint qualification.

Corollary 11.8 Let f be continuously differentiable and Z € X be a local minimizer such that
a constraint qualification is satisified. Then, it holds true that

Vf@)'d>0  vdeTlghi).

In the following, we give an overview of the most important constraint qualifications:

Theorem 11.9 Each of the following conditions is a constraint qualification at = € X:

1. The functions g; for i € A(z) are concave and h is affine linear, i.e.
9i(y) < gi(@) + Vgi(x)"(y —x) Vie A(x) and  h(z) = Bz —b.

2. Mangasarian-Fromovitz: Vh(z) has full column rank (or % is affine linear) and there
exists d € IR" such that

Vg (x)Td<0 Vie A(x) and  Vh(z)Td=0.
3. Regularity: The columns of the matrix

(Vgu) (x), Vh(z))

are linearly independent.
This CQ is known as Linear Independence Constraint Qualification (LICQ).
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The simple structure of the set 7;(g, h, Z) in Corollary 11.8 allows the application of the following
lemma to reformulate the optimality conditions.

Lemma 11.10 (Lemma of Farkas) Let A € R"*™, B € R"*P, ¢ € IR". Then, the following
two statements are equivalent:

1. For all d € R™ with ATd < 0 and BTd = 0, it holds true that dd<o.
2. There exists u € RY and v € IR? with ¢ = Au + Bv.

By Farkas’ Lemma and Corollary 11.8, we obtain the following first order optimality condition:

Theorem 11.11 (First order optimality conditions) Let & be a local minimizer of (11.1)
and let a constraint qualification be satisfied in . Then, the following conditions are satisfied
(Karush-Kuhn-Tucker conditions, KKT conditions):

There exist Lagrange multipliers A € R™ and it € IRP, such that the following hold:

1. multiplier rule:

V@) + > AVei(®) + Y 1 Vhi(E) = V(&) + V(@)X + VA(E)s = 0
i=1 j=1

2. feasibility: h(z) =0, g(2)

<
3. complementary conditions: \

0,
>0, Mg(z)=0.

Proof. Let T be a local minimizer of (11.1) and let a constraint qualification be satisfied in .
Then, feasibility (2) follows directly by the assumptions. Furthermore, by Corollary 11.8, it holds
true that

~Vf@)T'd<0  vdeTilgh i),
and for all d € IR" satisfying
Vg (#)Td<0 for ic A(#) and  Vh(z)Td=0.

Farkas’ Lemma with
c= —Vf(j), A= Vg.A(i)(j)? B = Vh(‘%)

implies the existence of vectors u € IR‘;%@)‘ and v € IRP with

c= Au -+ Bv.

Choosing A € R™ with 5\A(~) = u, :\I(j) =0 and g = v. yields 1) with multipliers satisfying the
complementary conditions 3). O

Remark The KKT conditions say that the negative gradient of the objective function lies in
the cone of the gradients of the active constraints. A
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Definition 11.12 Suppose that (Z, 5\,,11) € R™ x R™ x IR? satisfies the KK'T conditions. Then,
z is called a KKT point of (11.1) and (2, A, 1) a KKT triple. For a KKT triple, the strict
complementary condition is satisfied, if it holds true that

>0 Vie A@d).

Definition 11.13 The function £ : R" x R™ x IR? — IR given by
Lz, A, p) = +Z)\zgz +Zug f(@) + XTg(z) + p"h(z)

is called Lagrangian function.

Hence, the first KKT condition is equivalent to
Vo L(E, N 1) =

Analogously to Theorem 3.6, first order necessary conditions are sufficient for convex optimization
problems.

Definition 11.14 The nonlinear optimization problem (11.1) is called convex, if the functions
f and g; (for all i € G) are convex and the function h is affine linear. Note that these conditions
in particular imply that the feasible set X is convex.

Theorem 11.15 Suppose that (11.1) is convex. Then, it holds:
1. Every local minimizer of (11.1) is a global minimizer.

2. If a constraint qualification is satisfied at a local/global minimizer € X of (11.1), then
the KKT conditions are satisfied at Z.

3. If the KKT conditions are satisfied at a point Z, then Z will be a global minimizer of (11.1).

Proof. The first statement directly follows from Theorem 3.6. The second statement has been
proven in Theorem 11.11. It remains to show that the KKT conditions are sufficient for opti-
mality. Let (Z, :\,[L) be a KKT triple and € X arbitrary. For d = z — &, we obtain (for all
i€g) )

ANV (D) Td < Ni(gi(x) — gi(®)) = Nigi(z) < 0.

Since h is assumed to be affine linear, it holds true that Vh(#)"d = h(x) — k(%) = 0 and thus,

fl@) = f(@) > V@) d=-N'Vg(@)"d— i"Vh(z)"d=-N"Vg(#)"d > 0.

To formulate second order optimality conditions, we consider the following cone:
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Definition 11.16 Given x € X and ) € IR, we define

Ti(g, by, A) = {d eR": Vh(z)Td =0, Vgi(:n)Td{ =0, 80 € Alw) amdl 2y > 0 }}

<0,ifi e A(x) and \; =0

Theorem 11.17 (Second order sufficient optimality conditions)
Let f, g, and h be twice continuously differentiable. Suppose that the point Z satisfies the KKT
conditions with multipliers A € IR™ and j € IRP. Furthermore, assume that

dTV2 . L(z, N\ j)d>0  VdeTi(g, h& N\ {0}. (11.4)

Then, ¥ is a strict local minimizer of (11.1).

Theorem 11.18 (Necessary second order optimality conditions)
Let f, g, h be twice continuously differentiable, Z be a local solution of (11.1) and the columns
of the matrix

(Vga@@) (), VA(T))
be linearly independent.
Then, there exist Lagrange multipliers A € IR™ and /i € IRP, such that
o Vf(&)+ Vg(&)A+ Vh(Z)i=0 (stationarity of the Lagrangian)
e h(2)=0,9(2) <0 (feasibility)
e X>0, Ag(z)=0 (complementary conditions)
o d'V2,L(Z,\)d >0  VdeT.(g h, &N
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12. Penalty Method

An important class of methods for constrained optimization seeks the solution by replacing the
original constrained problem by a sequence of unconstrained subproblems.

Most approaches define a sequence of such penalty functions, in which the penalty terms for
the constraint violations are multiplied by some positive coefficient. By making this coefficient
larger and larger, we penalize constraint violations more and more severely, thereby forcing the
minimizer of the penalty function closer and closer to the feasible region for the constrained
problem.

Such approaches are sometimes known as exterior penalty methods, because the penalty term
for each constraint is nonzero only when z is infeasible with respect to that constraint. Often,
the minimizers of the penalty functions are infeasible with respect to the original problem, and
approach feasibility only in the limit as the penalty parameter grows increasingly large.

We consider subproblems of the form

min P, (z) = f(z) + an(z)

x€IlR™
with o > 0 and a penalization function 7 : IR™ — IR, where w(z) = 0 for all z € X and 7(x) > 0
for all x € IR™ \ X. The function P, is called a penalty function.

A general framework for algorithms based on the penalty functions can be specified as in the
following Algorithm (13):

Algorithm (13) Penalty Method
Input: Starting point 20 € IR", penalty parameter oy > 0.
1: for k=1,2,... do
2:  Compute the solution z¥ of the subproblem min P, (z) (use z
3. STOP, if 2¥ € X velR”
4:  Choose agy1 > oy
5: end for

k=1 as starting point)
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12.1 The Quadratic Penalty Method

The simplest penalty function of this type is the quadratic penalty function, in which the penalty
terms are the squares of the constraint violations

m

P

« 2 « « 2 «

o) = f(2) + 5 Y (0i(0)")" 4+ 5 D hi(@)* = (@) + Sllg@@) P+ Sla@)* - (12.1)
i=1 j=1

with gi(z)" := max{0, g;(x)} and g(2)* = (4i(2)")i=1.m-

Let f, g, h be continuously differentiable, then the quadratic penalty function (12.1) is continu-

ously differentiable too,

m p
VPu() = V() + a3 gie)" - Voile) +a D hi(a)Vhy(a)
i=1 Jj=1

Under the assumption that global minimizers are computed for each subproblem of Algorithm (13),
then the following convergence result can be proven.

Theorem 12.1 Let f, g, h be continuously differentiable and X be nonempty. Further, assume
that the sequence (ax) C IRsg is strictly increasing with ap — oo for k — oo and that Al-
gorithm (13) generates a sequence (2*) of global minimizers of the corresponding subproblems.
With

N = o max{0,gi(«")}  and b = aghy(a"),

the following statements hold true:
L. If (zF, \F, uF) i is a convergent subsequence of (z%, \¥, 1uF) with limit (&, A, i), then & will
be a global solution of (11.1) and (Z, A, &) will be a KKT triple of (11.1).

2. Let & be an accumulation point of () and (z¥)x be a convergent subsequence with limit
Z. Further assume that the columns of the matrix

(Vgam) (Z), VI(T))

are linearly independent. Then the sequence (:L'k,)\k, ,uk) x converges to a KKT triple
of (11.1) and 7 is is a global solution of (11.1).

The differentiability of the penalty function P, is a desirable property. However, it holds true
that for all z € X (and all i € G and j € H)

(gi(2))+ = and  hj(xz) =0.

This yields
VP,(z)=Vf(x) Ve e X

and thus

VP(z)=0 £X  Vi@)=0

for all x € X. Thus, the minimizers of P, are infeasible in general, since, in general, V f(Z) # 0
for solutions Z of the (constrained) problem (11.1).

Remark For a — oo, the subproblems become increasingly ill conditioned causing a slow rate
of convergence for Newton(-like) methods. A
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Exact Penalty Method

Definition 12.2 Let & be the local minimizer of (11.1). The penalty function P : R" — IR is
called ezact at Z, if T is a local minimizer of P.

The I;-penalty function
m p
Py(@) = f(x) + @) gi(@)" +a ) |hi(@)] = fx) + allg(@) |, + allal@)]), (12.2)
i=1 j=1

is exact under suitable assumptions and for sufficient large o > 0. Note that the [j-penalty
function is not differentiable.

Theorem 12.3 Let f, g; be convex and continuously differentiable, h be affine linear and (z, A, i)
be a KKT triple of (11.1). Then, Z is a global minimizer of (11.1) and Z is a global minimizer
of P! for all

o >max{A, ..., A, 1], - |pl} -

Remark

e For exact penalty functions, it suffices to solve only a single penalized problem, if the
penalty parameter « is chosen properly (difficult a priori, but after a solution is computed,
one can verify if the condition of theorem 12.3 is fulfilled).

e Similar/related methods:

— Barrier methods: (here: only inequality constraints)

min f(z) — ,LLZ log(—g(z)) started with feasible 20 € X, > 0
i=1

— Augmented Lagrangian methods: (here: only equality constraints)
P p
Z 1 Z 2
EA(xv 0575) = f(.l') - gt Oé]hj('x) + % = hj(x)

e SQP methods may use an exact penalty function as merit function for globalization.
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13. Sequential Quadratic Programming

One of the most effective methods for nonlinearly constrained optimization generates steps by
solving quadratic subproblems.

We first focus on equality constrained optimization problems, i.e.
min f(z) s.t. h(z) =0. (13.1)

The essential idea of SQP is to model (13.1) at the current iterate 2* by a quadratic programming
subproblem and to use the minimizer of this subproblem to define a new iterate z*t!. The
challenge is to design the quadratic subproblem so that it yields a good step for the underlying
constrained optimization problem and so that the overall SQP algorithm has good convergence
properties and good practical performance. Perhaps the simplest derivation of SQP methods,
which we now present, views them as an application of Newton’s method to the KKT optimality

conditions
F(z,p) = (Vﬂ”}f((;)’ ”)> =0. (13.2)

To determine z with multipliers i, we use Newton’s method, i.e. in every iteration, the following
linear systems has to be solved

F' (2", pF)d" = —F(a*, ") (13.3)
with

) (V3. L(x,p) V3L, p)\ _ (VEL(x,u) Vh(z)
P = (T 0) = et V07

k
Split d* = <§£) e RM™*P) to derive
o

(e ) ()

This idea is shown in Algorithm (14). It is straightforward to establish a local convergence result.

Algorithm (14) Local SQP Method
Input: Starting point 2° € R™ and p° € IRP
1: for k=0,1,2,... do
2:  STOP, if h(z¥) =0 and V,L(z*, %) =0 (ie. (2%, 4¥) is a KKT pair)
3:  Compute d* by solving (13.3)
4: Set zFtl = 2% 4 d* and pFt! = pF + dk
5: end for
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Theorem 13.1 Let f and h be twice continuously differentiable and (Z, 1) be a KKT pair.
Further assume that the following conditions hold:

e rank Vh(Z) =p (regularity)

o sTV2 L(% i)s >0VscR"\ {0} with VA(Z)Ts =0 (second order SOC)
Then, there exists § > 0, such that, for all (2%, u°) € Bs(%, i), Algorithm (14) either terminates
after a finite number of iterations or generates a sequence (z*, u¥) which converges superlinearly
to (#,f1). If V2f and V2h; are Lipschitz continuous in Bs(Z) (for all j € H), the rate of
convergence will be quadratic.

The algorithm can be also derived by making a quadratic approximation of the Lagrangian and
a linear approximation of the constraint, which leads to an alternative motivation of the SQP

method: . T 1,
drg}i}g qr(d) = f(2®) + Vf(z") d+ §d Hyd (13.4)

sit. h(z®) + Vh(®)Td =0

with Hy, = V2, L(z*, u¥). The pair (d*, uf)) = (db, p* + dﬁ) is a KKT pair of (13.4), if and only
if d* = (d*, d/’j) is a solution of (13.3). (¥ Exercise).

Remark The Hessians Hy can be modified to make them positive definite (possibly replacing it
by a quasi-Newton approximation). A

Algorithm (15) Local SQP Method 11
Input: Starting point 2° € R™ and u° € IRP
1: for k=0,1,2,... do
2:  STOP, if (z¥, i¥) is a KKT pair of (13.1)
3:  Compute the solution d* of (13.4) with corresponding multipliers /ﬂgp
4: Set #Ft! = 2F +d¥ and pF = pk
5: end for

The SQP framework can be extended to the general nonlinear programming problem by lineariz-
ing both the inequality and equality constraints

, 1
min gx(d) = f(2*) + Vf(@*)'d + ~d" Hpd
deR™ 2

sit. g(z®) + Vg(a*)Td <0 (13.5)

h(z*) + Vh(z¥)Td =0

with Hy, = V2, L(z%, \F, uP).

Theorem 13.2 Suppose that the following conditions are satisfied:
1. The functions f, g, h are twice continuously differentiable
2. Let Hy = V2, L(a® \F, %)
3. (&, f1) is a KKT triple of (11.1)
4. Strict complementary condtions: ¢;(Z) =0 = N>0Vieg
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Algorithm (16) Local SQP Method III

Input: Starting point 2° € IR™, A° € IR™ and u° € IRP.
1: for k=0,1,2,... do
2:  STOP, if (z¥, ¥, u¥) is a KKT triple of (11.1).
3:  Compute the solution d* of (13.5) with corresponding multipliers
40 Set #Ft =gk 4 aF ML = Ak and pFt =k
5: end for

ko k
ap» Map-

5. Regularity: (Vg (%), VR(Z)) has full column rank

6. Sufficient second order optimality conditions:
sTV2,L(Z, A fi)s >0 Vs € R™\ {0} with Vg (%)"s = 0 and Vi(2)Ts =0

7. Among all KKT triples (dk,A’;p,p';p) of (13.5), one chooses the triple with the smallest
distance
(2" +d*, Xy, gp) — (2, 3%, 7))
in each iteration 3 of Algorithm (16).
Then, there exists & > 0, such that, for all (%, A%, %) € Bs(Z, A, fi), either Algorithm (16)
terminates after a finite number of iterations or generates a sequence (xF, NF, 4F), which con-
verges superlinearly to (&, A, fi). If V2f, V2g; (for all i € G), V2h; (for all j € H) are Lipschitz
continuous in Bs(Z), then the rate of convergence will be quadratic.

Proof: (idea) Apply Newton’s method to the system
Vo L(z, A\ )

AL (7
F(z, A\ p) = @) =0.
(A1) 9@ (@)
h(z)
and show that the iterates generated by Newton’s method applied to F'(x, A\, i) and the iterates
generated by the SQP method are identical.

To be practical, an SQP method must be able to converge from remote starting points and on
nonconvex problems. We now outline how the local SQP strategy can be adapted to meet these
goals. We consider the [;-penalty function

Py(z) = f(z) + a(llg(@)*ll, + [h()];)

and the Armijo rule. The [j-penalty function is not differentiable. However, directional deriva-
tives exist provided that f, g, h are continuously differentiable.

Definition 13.3 The continuous function ¢ : IR®™ — IR is called directionally differentiable at
x € IR", if the directional derivative exists for all d € IR™:

Do) = tim 2O+ =)

t—0+ t

eR.

Example 13.4 Consider the function
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3
Ty

g ay) = 4 7y for (@1,22) #(0,0)
| 0  for (z1,22) = (0,0)

which is not differentiable but directionally differentiable at the origin. & Exercise. A

Theorem 13.5 Let f, g, h be continuously differentiable and a > 0. Then, P! is directionally
differentiable at each point x € IR™ with

Dy Py(x;d) = Vf(z)"d+ Z Vgi(z)"d+ a Z (Vgi(z)"d)*

gi(x)>0 gi(x)=0
ta Y Vh@Td-a Y Vh@Tdta S [Vhie)Td.
hj(:v)>0 hj($)<0 h]-(;r):O

Proof. (idea) Apply the definition of directional derivative to every summand of Pl then use
continuity of g and h (e.g. if g;(Z) < 0, then g;(z)* = 0 in an environment around z). O

Theorem 13.6 Let f, g, h be continuously differentiable and (dk,)\lgp,u’;p) be a KKT triple
of (13.5). Further assume that

o > max{(Ag,)1 - -, (Agp)m, | (gp)1ls- - (k)| } -

Then, it holds true that
D4 PL(z*; dF) < —d*" Hyd

In particular, d* will be a descent direction, if H}, is positive definite.

We can use these results to formulate a globalized version of the SQP method:

Algorithm (17) Globalized SQP Method
Input: Starting point 20 € R"”, A\’ € R™, u® € IRP, a symmetric matrix Hy € IR™™",
a > 0 sufficiently large, 0 < v < 1/2.
1: for k=0,1,2,... do
2:  STOP, if (z¥, A\*, u¥) is a KKT triple of (11.1)
3:  Compute the solution d* of (13.5) with corresponding multipliers
4:  Compute the largest o1, € {1,271,272 ...} such that

k k
qp> Hap

Pl(zF + o4.d") — PL(aF) < yop Dy P (2%, d¥)

5 Set 2t = 2k 4+ o dF.

6:  Compute the multipliers ¥ and p* (e.g., A¥F1 = A5 and pF T = k)
7. Compute the symmetric matrix Hyyq € R™"

8: end for

Remark
e In Algorithm (17), the exact penalty function P! is used as so-called merit function.
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e In practical implementations, also a = ay, will be adjusted during the computations.
A

Damped BFGS updates

The Hessian approximation Hj can be updated using (modified) BFGS updates that ensure the
QN condition
Hyp1d" =y

with d% := 2F*1 — 2F and y¥ := V,L(2F T NF uF) — V. L(2F, AP ).
To ensure (d*) "y* > 0 and thus positive definiteness of Hy 1, one uses the damped BFGS update:
Hypy i= HPFOS (Hy, dF, gl 00)

with modified y*:
Yk 0= 0uy* + (1 — 0,)Hydk

and
O == 0.8-(d) T H,d* herai
(dFYT HpdF—(dF) T yF otherwise

The above damped BFGS update is frequently used in SQP methods and can be shown to result
in superlinear convergence under appropriate conditions.

The Maratos Effect

The globalization of the SQP method in Algorithm (17) uses an approximate line search on the
exact penalty function P! (in line 4).

Every globalization method that relies on reducing such a merit function suffers from the Maratos
effect: Many good search directions are unacceptable for the constrained problem as they may
increase both objective value and constraint violation.

Consider the minimization problem on the unit circle:
min f(z) =2 (¥ + 22 -1) -2y (13.6)
st. h(z) =2t +22-1=0

with solution (Z,2) = ((1,0)", —3) and VZ,(Z, i) = I.
Every point 2* = (cosf,sin )" is feasible for (13.6) for arbitrary . Assume that a minimization
algorithm determines a search direction

g = sin? 0
~ \—sin# - cosf

ki1 k. [ cosf+sin?6
v s d = <sin9~(1—cos€)

for the next step. Provided sin @ # 0, one can show by trigonometric transformations:

and the trial point

2% +1—&|o = ||a* +d¥ — &|)s = 4 - sin?(0/2)
|z* — &[]y =2 |sin(0/2)]
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k+1l_z . . . . . . .
and thus w = %, i.e. the above direction is consistent with quadratic convergence.
- 2

However, since f(z*™!) = sin?6 — cosf > —cosf = f(2*) and h(zF*!) = sin?0 > 0 = h(z")
both the objective value and the constraint violation would increase in this direction, i.e. the
merit function P} would increase and thus this search direction cannot be accepted.

Remark Remedies to avoid the Maratos effect:
e Fletcher’'s Augmented Lagrangian as merit function (computationally costly)

e Watchdog techniques: Allow increase in merit function if that leads to significant progress
in further iterations.

e Additional Second Order Correction (SOC) step

Second order correction (SOC)

& = —Vh(zb) - (Vh(xk)TVh(xk))_l. h(a® + d¥)

One can show that the SOC step is small compared to d*, namely |d%,q| = O(||d*|?), but
drastically improves feasibility:

Ih(* +d* + d5oc)ll = O(Id°*)  instead of  [[h(z" + d")|| = O(||d"|*)

and, under mild conditions, the step d¥ + dlg‘oc can be shown to fulfill the Armijo condition
with step size o = 1 in the area of fast contraction. Since the correction is small, also the fast
convergence is maintained.
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14. Quadratic Optimization Problems

An optimization problem with a quadratic objective function and linear constraints is called a
quadratic program. Problems of this type are important in their own right, and they also arise
as subproblems in methods for general constrained optimization, such as sequential quadratic
programming. The general quadratic program (QP) can be stated as
min ¢(z) =d+c'z+ %ZL‘THZE
st. gx):=ATz+a<0 (QP)
h(z):=B'z+8=0

withd € R, c € R", H=H'" ¢ R™", A c R™™ «ocR"™ Bc R, 3 cIRP. We focus
on the case that H is positive definite. Then, (QP) is a convex optimization problem and the
KKT conditions are necessary and sufficient.

We begin our discussion of algorithms for quadratic programming by considering the case where
only equality constraints are present. Then, the solution is given by the solution of the following

linear system
H B\ (z\ [—c
(o o) ()= (55)-

To solve general quadratic optimization problems, we consider an active set strategy, which solves
an equality constrained QP at each iteration

min ¢(x)
s.t. Al—lkx +ay, =0 (QPy)
B'z+8=0
where A4, contains the columns a; of A = (ay,...,an) with the indices i € Ay, where A; C

A(z*), i.e. we consider a subset of the active constraints for the subproblems (QP). This idea
gives rise to the algorithm (18) (active set strategy), whose properties are collected in theorem
14.1.

Theorem 14.1 (Properties of the active set strategy)
1. The point z* is feasible for (QP}) and for (QP), for all k.

2. If d* # 0 and #%*! is not feasible for (QP), then there exists the step size oy, (line 20) and
the index j (line 22), and it holds:

T,k
g a; X +04i' . T ik
O'k—mln{—a;rdk o lEIkv a’id >0} € [031)

3. If d* # 0 and A\**1 >0, then (2%t \FF1 4F+1) is a KKT triple of (QP).
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Algorithm (18) Active Set Strategy

Input: Feasible starting point 2° € IR" for (QP).
1: Ay = A(a2?)
2: for k=0,1,2,... do

3: Ik ::g\Ak ; )\]16;:1 =0

4:  Compute KKT triple (ickﬂ,)\ﬁltl,ukﬂ) of (QPy)
50 dF =gkt — ok

6: if d* =0 then

7: if A**1 >0 then

8: ahtl = gh

9: stop with KKT triple (z*+1, AF+1 /F+1) of (QP)
10: else

11: J = argmin;e 4, Af“

12: oh = ok Ap g = AR\ {5}

13: continue

14: end if

15:  else

16: if 2%+ is feasible for (QP) then

17: ghtl .= ghtl ) Ak+1 = Ay

18: continue

19: else
20: op :=max{c >0 : 2¥ + odF feasible for (QP)}
21: k.= ok 4+ opdk
22: determine index j € Z; with ajTatk*l +a; =0
23: .A]ngl = Ay U {]}
24: end if
25 end if
26: end for

. If d* # 0, then Vq(2*)TdF < 0, i.e. d* is a descent direction for q at z*.

In particular, it holds: g(z*t1) < q(zF) if 2+ £ .

. For every z* generated by Algorithm (18), there exists [ > k, such that z! is the unique

global solution of (QF;).

. If the algorithm does not terminate after a finite number of iterations, then there exists

[ >0 with 2% = 2! for all k > 1.

. If the columns of the matrix (A4, ,B) are linearly independent, then the columns of the

matrix (A4, ,, B) are linearly independent, too.

Remark The case (6) of Theorem 14.1 is called cycling: The algorithm stalls at iterate z! and
then the active set changes in a periodic way. For anti-cycling strategies, see, e.g., the excellent
textbook of Nocedal & Wright, Chapter 16.5. A
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