HOCHSCHULE

FURTWANGEN H FU
UNIVERSITY .

) —4

Matlab Tutorial WS2016/17

Andreas.Sommer@hs-furtwangen.de

Schedule

e Saturday, September 24, 10.15—15.00, Computer Pool A3.14
e Saturday, October 8, 10.15—15.00, Computer Pool A3.14

e Saturday, October 22, 9.00 —14.00, Computer Pool B2.02

e EXTRA: Saturday, November 12, 10.00 — 15.00, A3.14

e 1h extratime for practice after each lesson

e Please register to the FELIX group “"Matlab Tutorium WS2016"
(and book the tutorial!)

e In case of questions: ALWAYS ASK! Use the FELIX group’s forum
e Download the slides as PDF from FELIX

e Maybe work in groups of 2 on one computer

Start Matlab!

First Contact
Desktop, Variables, Matrices

tlab Desktop (Matlab 8, 2013a)

BB oc o0 3 =

T MewVariable Analyze Code il | @ Preferences 4; 3% Community
E' EII}' (' L Find Files J:I" Iﬂ o l—‘? 15 E O o
Eﬂpen Wariable &) Run and Time ﬁSet Fath ERequest Support men U a r

New MNew Open || Compare Import Save Simulink Layout Help

EDITOR PUELIEH

Script - - Data Workspace @Clear'ﬂorlﬁpace - @ClearCommands - Library - =LJ Parallel = - dl:lﬁ«dd—[lnsv
FILE VARIAELE CODE SIM ULINK ENgIGANMENT RES OURCES
<@ = 8 & =/ » home » asommer » Documents » Diss » Material » sdeplats CU rre nt alrectory - P
Current Folder X " Editor - /home/asommer/Documents/Diss/Material/ sdeplots/runall.m* (@ %7 | Workspace L]
|Name e | 4amples.m ><| CalciumMaoloise. m x| plotCalciumWisnarFull. m ><| sdesim_OU_Full_Ca) |Mame £ Value Bytes Min |M3X
£ runall.m* 1 function [] = runall() 0l e ans ‘sdesim_CU_Full_... 34
] runall.m~ 2 % Searches all sdesim*.m-files in current directory and sta| | HHt <B01x1 doubles 4808 0 60
] sdesim_OU_complete_CompoundFois... | 3 - sdesinfiles = dir('sdesin*.n'); 1€l x <3x1 struct> 2439
] sdesim_0QU_complete_CompoundPois... 4 - for 1 = 1:length(sdesinfiles)
£ sdesim_0OU_Full_CompoundPoisson_... 5 % get the file name
) sdesim_OU_Full_CompoundFoisson_... #|= name = sdesimfiles(i).nane;
) sdesim_OU_Full_CompoundPoisson_... 7 % remove ".m"
] sdesim_OU_Full_CompoundPoisson_... | & - name = name(l:(length(name)-23); S Wo rks ace
N sdesim_OQU_Full_CompoundPoisson_... 2] %F':he':.k —E'><'|st-:'r_1-1::-'?'_|-:-1_:)ﬁ:IF-:- to ;r(wsur-" Tat'lal';—h'lné'l\ng_'ls co -
EEsdesim_OU_FuII_CompoundPoisson_... 10 = '|' ex1§t name, 't11e’), fprint W, atarting: &ssn', nam I
£ sdesim_0OU_Full_CompoundPoisson_... 11 T; M TE 5t . Varla es
) sdesim_OU_Full_CompoundFoisson_... 1; B Func(?str‘ unc(name);
) sdesim_OU_Full_CompoundFoisson_... L E
. . 14 - end
) sdesim_OU_Full_CompoundFoisson_... 15 - 66
j sdesim_OU_Full_CompoundPoisson_...

H sdesim_OU_Full_CompoundPoisson_... Ed itor Wi nd OW

fﬂ scesim_OU_Full_MoDiffusion_Molois...
) sdesim_OU_Full_MoDiffusion_Mollais...
_'] sdesim_OU_Full _MoDiffusion _Molois...
Ejj sdesim_OU_Full _MNoDiffusion_Mollois...

1]

sdesim_OU_Full _MNoDiffusion_Mollois... Command History ®
—edit sdesim_0OU_conplete_ConpoundPoisson_NoNoise
--adit sdesim_0U_Full_CompoundPoisson_Noiselevels)

files in Z:ﬂ:t runall.m
current <

» == ez
f Id Command Window = -3 = dir('sdesin*.n')
< —egdir ¥ om
o er 131 - o command
runall.m® {(MATLAE Function) hd ¥ ..name

~x{1} h 1
Searches all sdesim®.m-filas in current Starting: sdesim_OU_Full1_NoDiffusion_MoNoise =l |Sto ry
directory and starts them E>I<p-?r‘t'ing to file "sdesim_0U_Full_NoDiffusion_NoNoise.pdf" as PDF w1 -x(1).name
@) runall() Finito. | runall()
- - ane = . -----r'ur.wa'l'l . . .
d e S C rl pt I o n Of co m m a n d WI n d OW ; —edit sdesim_OU_Full_CompoundPoisson_NoNoise_gnHe
4 —edit sdesim_0U_Full_CompoundPoisson_NoNoise_gnHe

selected file . ~ | 3|

[4] I EY

files in
current
folder

*description
of selected

file

The Matlab Desktop

=10 |

menu bar

workspace
variables

‘... command
@ history

wwwwww

Note:

layout differs by matlab version
layout may be customized to
fit your needs

menu bar:
open and close files, print, etc.

current directory:
commands will be invoked in this folder

files in current folder:
list of all files present in current directory

description of selected file
displays information about files (e.g. help)

editor window
this is where you write/edit your programs

command window
prompt for commands, displaying output

workspace variables

— lists all variables in the current workspace
— shows information about memory usage
— edit variables by double-click

command history
list of previously entered commands

File Edit View Debug Parallel Desktop Window Help

current

l |, <« MATLAB
Name ~
|9} xau.dat
] XAUUSD60.dat
| | n
files in
folder

NG| MM | 2| 0 cmenrouen Dsmamoamesvate <@ [TNENU DAr + current directory

. Shortcuts [2] How to Add (2] What's New

iR Eole M =] Corrmznd Window

M [0 & X | Workspace 0 a X

ML =R

(@) New to MATLAB? Watch this Video, see Demos, or read Getting Started.

x & o = W B ||EO selectda... v

Details

destriptiorti of

selected file

H Ready

fx >>

(editor window will pop up here)

command window

Name ~ Value

workspace
variables

< | 1 | 3

Command History ~»0a X

== I2/3072013 7T 101 B -=%

command
history

Matlab Basics

e assignment of variables: > x = 344 oo = 344
varname = expression X =
varname = expression; ’

(the semicolon suppresses the output of the result)

Variable names:

are case sensitive (i.e. a and A are different variables)
consist of letters, numbers, and the underscore _
may be up to 63 characters long

must start with a letter

Exercises:
» Store the area of a circle with radius 2 in
 Predefined variables: the variable area
— pi 3.141592653589793 * Calculate 1/0 and 0/0.What do you see?

* Calculate the series1 + 1/k
where k =100, 1000, 10000, etc....
Up to which value of k is the result correct?
For the largest working k, calculate 1 /k
and compare it to eps.

i, J imaginary unit, V-1

inf infinity, oo

NaN Not-a-Number (error value)
eps machine precision

Matlab Basics

e basic datatype: matrix of double-floats
(vector: 1xn-matrix or nxi-matrix)

== A =[123; 456, 78 9]

e enter matrix in square brackets [], row by row, ..

elements are separated by a space or comma, Loz
and rows are separated by semicolon ; o8 9
==y o= [2; 45 7]
e enter arow vector (nxi-vector, entry of IR") Y =
in same way %
Exercises: Enter the following matrices and vectors in Matlab
1 2 3
1 -2 5 3 9 —22
A - =
456] Bl9922248 —14
7 8 9 . i
2 —13
y=|4 d=(-1 -4 -7 =3 17) 2
7

Calculate the matrix-vector products z1=A*y and z2=B*c and z3=B*d

Matlab Basics

e Solve linear equations Ax =y using the backslash operator \

and assign the result to variable x: 1 2 3 5
l4 5 6]x = (4)
x = A\y 7 8 9 7
A X=Yy
== A= [1 2 3; 456; 78 9]
A =
1 2 3
4 5 o
7 2 9
==y = [25 45 7]
Y=
2
4
7
=xow o= Aly
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.541976e-18.
W=
. . I
¢ eric * Matlab issued a warning here!
-4.50356
9.0072

-4.,503

Matlab Basics FL

e Problem here: matrix A is singular, i.e. not invertible.
Thus, the equation system Ax=y is not solvable.

=eoxo= ANy

% = But Matlab
1.0e+15 * caleulated
_4.5036 the solution?!

92,0072
-4, 5036

e Matlab calculated something — but for sure not the
solution of our problem.

e Let'scheckit by calculating A*x, which should equal y:

v AWy FE W

Obviously, the result is wrong!

ans = ¥ o=

2
]
3

NEVER IGNORE WARNINGS!

et N LN]

10

Matlab Basics

re-enter the matrix A, substitute entry3bya2: »s-nz2 456 750,

you can walk through last commands using arrow keys Tand {
and delete the current line by pressing ESC

recalculate x=A\y and make the check by comparing
A*x to y: = = ANy = A% By

o= ans = Wo=
0 2 2
2 4 4
-1 7 7

variables get overwritten without notification!

multiple commands can be written in a single line using comma ,

as separator. To suppress the output of intermediate results, use
the 5emico|on ; as Separator_ »» D=5, E=sqrt(D), F=2"E »» D=5; E=sqrt(D); F=2*E

D = F =
5 4.4721

11

Matlab Basics: Asking for help

e Two possibilities to get help for a certrain command:

e A (rather)shorthelp = new

% Backslash or left matrix diwvide.
I I ASE G5 the matrix diwision of A into B, which is roughly the
can be dlsplayed In gane as INW{AIYE , except 1t is computed in a different way.
. If A 9s an MN-by-N matrix and B 95 a column wector with N
the Command WlndOW COMpOnents, or a matrix with several such columns, then
. # = A%B 95 the solution to the eguation A*X = B. A warning
by Ca|||ng message 1s printed 1t A is badly scaled or nearly singular.

ANEYECSIZECAY) produces the inwerse of A.
help command

If A 9s an M-by-N matrix with M < ar = N and B 15 a column
wector with M components, or a matrix with several such columns,
then ¥ = AE 15 the solution in the least sguares sense to the
under- or overdetermined system of eguations A*X = BE. The
effective rank, K, of A 1s determined from the QR decomposition
with pivoting. A solution ¥ is computed which has at most K

nonzero components per column. IT K < N this will usually not
Examp|e: help \ be the samne solution as PINV(AJ*B. ANEYE(SIZE(A)) produces a
generalized inwerse of A.

C = mldivide{&4,B) s called for the syntax 'A % B' when A or B is an
ohject.

See also ldiwide, rdivide, nrdivide.

The full documentation can be invoked in a new window
by calling: doc command

12

Saving your Workspace

e Your current variables can be saved to file by typing

save myworkspacefile

e (Clearing the workspace (deleting all variables) can
be done by invoking the command

clear

e On the next day, you can reload your workspace from file via

load myworkspacefile

Exercise: Try that!

13

The Colon Operator :

e The colon operator produces a row vector with identically spaced
entries:
a:s:b
row vector starting from a, every successive element is
increased by s up to a maximum value of b.

== 01207 == =3:4:11

ans = ans =

8] 2 4 & -3 1 = El

e Anincrementof1maybeomitted: 2:1:7 or 2:7

== 27

ans =

2 3 4 = & 7

14

Matrix Assembly

Referencing matrix elements

e Using ordinary parenthesis (), we can directly access and
manipulate matrix entries:

A(2,3) referencing element at row 2 in column 3
A([1 3 5],:) referencingall elementsinrowsi, 3, ands
A(l:2:5,:) referencing all elements in rows 1, 3, and 5
A(:,[1 4]) referencing all elements in columns 1and 4
=» A = magic(S) e A(3,2) == AC[L 3 5],:) == AL, [1 4]0
A= ans = ans = ans =

17 24 1 a8 15 o 17 24 1 & 15 17 8

23 5 7 14 1 4 & 1= 20 22 23 14

4 & 12 20 22 11 15 25 2 9 4 20

10 12 19 21 = 10 21

11 18 25 P 9 11 &

|\\

e note: magic (n) computesa,magical® square matrix with
integer entries from 1 to n? and identical row and column sums

16

Referencing matrix elements

e Using ordinary parenthesis (), we can directly access and
manipulate matrix entries:

A(2,3)=999 setting the value at row 2 in column 3 to 999

== ACZ,3)=299
A =

17 24 1] 1%
23 5 999 14 1&
4 & 13 20 22
10 12 19 21 3
11 13 25 2 9

e A matrix can also be referenced elementwise by a single index.

This is called linear indexing. Matlab follows column-major-order:

»» A(14)=-111

A(l4)=-111 -

17 24 1 3 1%

setting the value at element 14 to -111 2 5 oo 14 18
here, this is the element at row 3, column 4 10 12 11 A3

11 15 25 2 El

17

Referencing matrix elements

From previous slide:
A(14)=-111
Linear indexing in column-major-order:

_1 17 624 11 1 16 8 21 15
* 23 "5 999 14 “16
A — 3 4 8 6 13 13 18 20 23 22
10 12 =111 7 21 “ 3
_5 11 10 18 15 25 20 2 25 9

col 1 col 2 col 3 col 4 col 5

In the computer’s memory, the matrix is stored columnwise,

entries of one column after the other:
17,23,4,10,11,24,5,6,12,18,1,999,13,-111,25,8,14, ..
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

row 1

row 2

row 3

row 4

row 5

18

Referencing matrix elements

e Indexing always starts at 1 and runs until end:

A(3:end, :) retrieves all rows beginning with the 3rd row:

== A

A =

17
23

10
11

e The ssingle colon :
dimension

24

12
13

999
13
-111
25

== A(Z:end,:)

ans =

8 15 4 & 13 20 22
14 16 10 12 -111 21 3
20 22 11 13 25 2 9
21 3

2 9

is a shortcut for all entries in the respective

e Reading an element outside the matrix, e.q. A(6,2),
Matlab throws an error:

== AR, 2]
Index exceeds matrix dimensions.

19

Referencing matrix elements

e Writing to an index outside the matrix enlarges the matrix up to
this index and fills the new entries with o:

A(7,7)=-1000
s> A(7,731=-1000

b =

17 24 1] 1% 8] 8]
23 = 2999 14 1& o 8]
4 & 13 20 22 o 8]
10 12 -111 21 3 o 8]
11 15 25 2 e o 8]
o]] o o o 8]
o o o 8] 8] 8] -1000

This technique is called ,,growing arrays" and must be handled
with care, because internally the matrix is not enlarged but a
new bigger array is made and the matrix is copied into it.

This is a costly operation (consumes much time and memory)!

Exercise: Store in S the submatrix marked in light green.

Referencing matrix elements

e One can also use indicing with end+1, or similar:

x (end+4)=-2 enlarges x by 4 entries and sets the last to -2

R == x(end+d)=-2

o= W=

1
= oa

1 I
| SN O e SN

e Using variables for indexing:

indices=[1:5 7] setsindicestothevector[123457]
x (indices)=10 setsall specified elements of x to 10

== indices=[1:5% 7] == xi(indices)=10
indices = o=

1 2 3 4 = 7 10
10
10
10
10

10

Referencing matrix elements

e Logical indicing:

indices=A>10 generates logical matrix
A(indices)=10 setsthe selected entriesto 10

== ndices = A=x10

indices =
1 1 0 0 1]]
1 0 1 1 1]]
0 0 1 1 1]]
0 1 0 1]]]
1 1 1 0]]]
0 0 0 0]]]
0 0 0 0]]]
== Alindices)=10
B o=
10 10 1 8 10 0 0
10) 10 10 10 0 0
4 & 10 10 10 0 0
10 10 -111 10 3 0 0
10 10 10 2 9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 -1000

e equivalentcall: A(A>10)=10
(may be read as ,set A where A>10to 10")

Referencing matrix elements

e We may find the nonzero entries of the logical matrix indices
and use linear indexing to change the values of matrix A:

linidx=find (indices) generates linearindices
A(linidx)=-11 sets the selected entries to -11

»» linidk=Find{indices) > A({linidx)=-11

Tinidx = A =
i -11 -11 1 A -11 0]
2 -11 L -11 -11 -11 0]
g 4 & -11 -11 -11 0]
g 10 -11 -111 -11 3 0]
11 -11 -11 -11 2 9 0
17 0 0 0 0 0 0
16 0 0 0 0 0 0 -100
17
19
23
24
25
29 -
=0 Exercise: Retrieve the indices of all positive elements of A

31

e The command £ind retrieves the linear indices of nonzero entries

o R B o B o T

23

Assembling matrices

e Using [], we can assemble matrices from smaller ones:

A=magic (3) generates 3x3 magic matrix
N=zeros (3) generates 3x3 null matrix
Z=[N AN ; A A A ; N A N] assembles matrixZ

== A=[N AN ; AAA; NAN]

7 =

Lo e I N Y R B
[R R e I Ve 0y I o e
Lo B I an Y o Bo) B B
N P o R N B 0 R SN B
(Lo W I e o I W B e e T W Y
3 =] g] R]
Lo e I N Y R B
[R R e I Ve 0y I o e
Lo B I an Y o Bo) B B
.

oo
T

spy (Z) graphically display positions
of nonzero elements of Z

10
]

Exercise: Using A and N from above, assemble a matrix —
with nonzero elements as depicted on the right. :

24

Basic Operators

Matrix Operators, Comparators, Logical Connectives

Matrix multiplication and (elementwise) division

e Three types of matrix multiplication:
A*B standard matrix-matrix-multiplication

A.*B elementwise multiplication (multiplies each element of A

with the respective element of B)

3*A scalar times matrix (multiplies each element of 2 by 3)

== A = magic(3) == AYEB
A = ans =
8 1 6 91
3 5 7 67
4 9 2 67
== B = magic(3) == AL¥E
E = ans =
8 1 6 64
3 5 7 9
4 9 2 16
== VA

ans =

24

12

&7
a1
&7

25
Bl

1%
27

&7
&7
a1

36
49

15
21

e elementwise matrix division:

A./B

B/3

== A/ B

ans =

—

—

divides each element
of A by the respective
element of B

divides each element

of B by 3
== A3
ans =
1 2.6eEY 0.3333 2.0000
1 1.0000 1.6667 2.3335

1 1.3333 3.0000 O.EEET

26

Standard Operators

Matrix operators:

4

> 7 N *

> 7~ N *

ordinary addition of matrices

ordinary substraction of matrices
standard matrix multiplication

right matrix divide: solves xTA=y

left matrix divide: solves Ax=y
matrix potentiation: A%4 £ A*¥A*A*A
elementwise multiplication
elementwise division

array left divide

elementwise potentiation

hermite transposition (conjugate complex transposition)
transposition (swapping columns and rows)

Exercise: - Generate a nonsquare matrix and calculate its transpose

- Compare hermite and ordinary transpositionon H=[1 1+4+10i 2 3]

27

Comparators

e Comparators work elementwise and return logical matrices

> truly greater than

>= greater than or equals
< truly smaller than

<= smaller than or equals
== equals

~= notequals

Exercise: Make all 6 comparisons using:
A=[1 2 3; 4 5 6; 7 8 9];
B=[0 2 3; 35 6; 7 9 9];
Predict the outcome, before you actually enter the command!

28

Logical Operators

e |ogical operators work elementwise on logical matrices

e inan ordinary matrix, every nonzero element is considered “true”,
and every zero element is considered “false”

e Operators:
& (ampersand) logicaland note: A&B £ and (A, B)

| (pipe) logical or note: A|B2 or (A,B)
~ (tilde) logical not note: ~A 2 not(A)

Exercise: In A=magic (5) ; determine the linearindexes (using £ind) of:
- elements that are greater than 5 and lesser than 10
- elements that are at most 5 or at least 20
- elements that are greater than 5 but not greater than 10
- elements that are greater than 15 but not equal to 20 or 21.
Only use the comparators and the logical operators &, | ,~.
Check your results!

29

Function Reference
List of Frequently Used Functions

Basic Matrix Operations

e zeros (m,n) createsan mxn-matrix consisting only of zeros

e ones(m,n)
* eye(m,n)
e rand(m,n)

e diag

e det

® size

e length
e numel
e 1nv

* eig

e rank

e find

creates an mxn-matrix consisting only of ones
creates an mxn-matrix with 1s on main diagonal
mxn-matrix with U(o,1) distributed entries
extracts diagonal elements from a matrix or
creates a diagonal matrix from a vector
calculates the determinant of a matrix

returns the dimension of a matrix

returns the length of a vector (1xn or nxa matrix)
returns the total number of elements of a matrix
computes matrix inverse (AVOID THAT!)
computes eigenvectors and eigenvalues
calculates the rank of a matrix

finds the linear indices of nonzero elements

Exercise: Test every command once (also the inv).

31

Elementary Math Functions ()

e abs
e sin, asin
® COs, acos

e tan, atan

¢ sqgrt
* exp

* log

* loglO
e round

e ceil,floor

absolut value

sine and inverse sine (arcsin)

cosine and inverse cosine (arccos)
tangens and inverse tangens (arctan)
square root

exponential (base e, Euler’'s number)
natural logarithm (base e)

common (decadic) logaritm (base 10)
rounding towards the nearest integer
rounding towards +oo Or -oo

Exercise: 1) Test round, £loor,and ceil for3.4and -3.4

32

Elementary Math Functions (lI)

* real,imag
¢ sort

e sum, prod
* max, min
°* mean

e std, wvar

e mod, rem

real or imaginary parts of complex matrices
sorting values

sum, product of matrix columns
maximum, minimum of matrix columns

mean of matrix columns

standard deviation, variance of matrix columns
modulus and remainder

Exercise: 1) Compare modulus and remainder of two numbera a and b,

- once with a and b having the same sign
- once with a and b having different signs

2) Generate A=magic (4) and test the functions

sum, mean, max, min, on that matrix

3) How would you find the maximum entry of a matrix?

Can you write the command in one row?
Also find an expression for the maximum absolute value

33

Basic Plotting in 2D

Basic Plotting in 2D

x = 0:10;
y = sin(x);
plot(x,y) ;

P , | \ \ i \ 1
o 1 2 3 4 5 & 7

x =0:0.1:10;
y = sin(x);
plOt(XIY);

Basic Plotting in 2D

e A subsequent plotting command deletes the previous one:

Eile Edit Wiew Insert Tools Deskiop Window Help

Z = cos(x);
plot(x,z);

\\\\\\\\\\
000000000000

e We may plot multiple graphs by speofymg bothina smgle

plot command:

plot(x,y,x,z);

Here, the colors are
chosen by Matlab.

36

Basic Plotting in 2D

e We may use the hold command to avoid plot deletion:

Eile Edit Y¥iew Insert Tools Deskiop Window Help

plot(x,y) ;
hold on

plot(x,z); note: both plots
are now in blue,

because the coloring
starts separately
foreach calltoplot

e The hold state remains until we call hold off orclose the
figure window

File Edit Yiew Insert Tools Desktop Window Help

e The figure window may be cleared
by calling c¢1£ (clear figure):

clf;

Basic Plotting in 2D

e We can have multiple figure windows: A new figure window may
be created and activated by a caII to figure():

~ | Fle Edit View |nsert Tools Desktg

ert Hel Hel
\\W@/\\IE 0a \IW@/\\IE

figure() ;
plot(x,z);

e We can switch to a figure window with a certain number (handle)
by calling figure with that handle.

figure (1) ;
figure (137) ;

If the handle does not exist, a new figure with that handle will be
created and activated.

38

Basic Plotting in 2D

e The figure handle is the handle of a figure window.
The axis handle is the handle of a plotting area.
The current figure handle can be retrieved by gcf .
The current axis of the current figure can be retrieved by gca:

fh = gcf; ax = gca;

e Each plotting command (plot, c1£f, hold, etc...) accepts an
axes handle as first argument, so we can directly plot into them:

figure (1) ’ ax1=gca; e NGue i A%0B84a| 00/ a0
figure (2) ; ax2=gca;
plot(axl,x,sin(x));

plot (ax2,x,cos (x)) ;

e More about plotting later!

39

Character Strings

Character Strings

e Character strings may be stored in variables by setting the
string in inverted commas: ~» textvar = 'This is a text.’

textwvar =

textvar = 'This 1s a text' This 45 a text.

e Astringis (internally) also a matrix! We can access individual
characters by simple parentheses () like numerical matrices:

=» textvar(4) x> textvari4) = "X’

ans = textvar =

s Thi¥ 15 a text.

e We also can assemble text parts with []:

»x a='This';h="1s"jc="a textl';
= [a' " b "' "']

ans =

This 15 a text!

e And display text messages using disp

=» a='Mumber'; b='5tring'; nesgage = ['A4 ' a ' iz not a ' hkb];
== displmessage)
A Mumber is not a String

Character Strings

e Adding strings and numbers leads to unexpected results, as
Matlab interprets the characters by their ASCII codes:

== 2 + 'abhclZ3 = o2+ 123

ans = ans =

g9 100 101 =1 52 53 51 52 53

e Convert astring into a number: str2num

== 2 + strZnum 122"
ans =

125

e Convertanumberinto astring: num2str

== numZstril23) == class{numZstri{l231)
ans = ans =
123 char
Exercise:
Try what happens,

e Using this, we can assemble messages:

| if we do not use
== ®=3; message=['The sqguare of ' numZstrix) ' 1s ' nunZstrixA2)];
=» disp(message) num2str here.

The square of 2 15 9

Human Input
Reading from Keyboard

43

Reading Input from Keyboard

e The input function displays an input prompt, reads an
expression from the keyboard and evaluates it:

== % = input('Flease enter a Matlab expression: ')
Flease enter a Matlab expression: 2 + 2 ¥ &

o=

20

e |f we want to enter a text, we have to type it in inverted commas:

== ¥ = 1nput('Flease enter a Matlabh expression: ')
Flease enter a Matlah expression: '2 + 3 % &'

o=

2+ 3VE
e Giving the additional argument ‘s ' to input, Matlab returns
the entered text as a string without interpreting it:

=% ¥ = input('Flease enter a Matlah expression: ','s')
Fleaze enter a Matlab expression: 2 + 2 % &

o=

2+ 3 Y6

Exercise: Try this and check the c1lass of x after each input.

A

Script Files

Writing Programs: Script Files

e ascript file contains a series of Matlab commands
that will be executed when the script is startet

e all Matlab files have the file suffix .m

e to begin writing a program called myprogram, just type
edit myprogram
at the Matlab prompt

e afterthe program has been saved, it can be startet by typing its
name at the Matlab prompt or by pressing Fg in the editor

e commandsin a script file behave exactly as if they had been
entered at the Matlab prompt (i.e. they can access, modify,
delete the variables in the user workspace)

46

Writing Programs: Script Files

e toy example: A program that asksthe user to enter a number,
and calculates the sine of this value

e start editing the program called mysine.m

=» edit nysine

e if Matlab cannot find a file with this name, it asks if you want to
create a new one. Yes!

4 MATLAB Editor - + X

) File fhomefasommerfProjekiefSpiebwiese fmysine. m does not exist.
() Co wou want to create ity

[| Do not show this prompt again.

Tes [

e enterthe program code, and run it with Fg

" Editor - fhome/asommer/Projekte/Spielwiese/ mysine.m
| mysine. m x”

number = input{'Flease enter a numbher: 'J;
sine = sin{nunber);
disp('The sine of wour number is:')

1_
2_
3_
4 - disp(sine)

Writing Programs: Script Files

e afteryou've entered a number, the sine of that number is calc'ed:

== NYSine

Flease enter a number: 44

The sine of your nunber is:
00177

e note thatthe variables number and sine are now in the
Workspace Workspace =

Marme & |VaME |Emes |Mm |Max |
o number 44 8 44 44
1 sina 00177 & 00177 00177

e start the program again and now calculate the sine of pi:

=x MyS1ne
Flease enter a number: pi
The sine of wour number is: But the

1.2246e-16 ,)
sineof miso?!

e right, the sine of mis zero, but we
calculated the sine of pi, which is an approximation of m.

e andthe erroris smaller than the machine precision eps:

= BpS
ans =
2.220448049250313e-16

48

Writing Programs: Script Files

Exercise:

Write a program (a Matlab script) called
make 2by2 matrix.mthatdemands 4 numbersfrom

the user and generates a 2-by-2 matrix from them.

¢ a

Further, let the program calculate the determinant of this
matrix:

det [CCL Z] = ad — bc

The program shall display both the matrix and the
determinant with an appropriate message.

Hint: Store the four matrix elements in variables a, b, ¢, d.

49

Control Structures
IF, SWITCH, FOR, WHILE

Control Structures: IF

e The if statement allows conditional execution of commands:

if (logical expression)

" Editor - fhomej/asommer/Projekie/Spielwiese/ ifexample.m

statements | ifexample.m x|

elseif (|Oglca| eXpI’ESSIOn) ;: " giﬁg'a iz greater than b')
3 - elseif (a<zh)

Statements g: E_Isg'isp['a iz less than kb')
else F?— dd'isp['a might be equal to kb')

statements
end

Exercise:

Write a program (a Matlab script) that asks the user for a
number and then tells him whether it is an even number,

an odd number, or not an integer.
Hint: use the functions input and mod

51

Control Structures: SWITCH

e The switch statement allows to conditionally execute
statements choosen from several cases:

switch (expression)

" Editor - fhome/asommer/Projekte/Spielwiese/ switchexample.m

case {exprll exprzl } | switchexample.m x|
Ce” array 1- method = 'fast';
2 - switch method
statements | cace atcnrate!
4 - disp('choosing accurate technigue')
e o o 5 - case 'old’
. A - disp({'using antigue tools')
OtherWl Se 7 - case {'fast', 'fastest', 'superfast'}
g - disp('T will hurry, I promisel')
9 - otherwise
Statements 10 - disp({'no idea what to dol')
11 - end
end

e Every switch statement can be written as an i £ statement,
but the latter one is harder to read (for humans).

Exercise: Rewrite the example using only the i £ statement.

Control Structures: FOR

e The for statement runsthrough a series of things (e.qg.
numbers in a vector) and executes statements for them

for var=expression

statements
end

" Editor - fhome/asommer,Projekte/Spielwiese/forexample.m

e Typical usage: Let a variable i

| forexample.m x|

run through the numbers1to10: 37 ™35S
3= end
f Or i - 1 : 10 Command Window

== Torexample

disp (1)
end

Note: 1:10 expandsinto
thevector [1 2 3 .. 10]

L U R R e R 0y [OO U Y LN I

—

W
W

53

Control Structures: FOR

e The for statement may “run" through arbitrary vectors:

Command Window

l Editor - fhome/asommer/Projekte/Spielwiese/TorexampleZ.m

| forexample2.m x| == forexampleZ
1- [Cifor k=[15 -2 8] 1
2= disp(k] =
3= erd -2
4 | &

e When given a matrix, for runsthrough its columns:

l Editor - fhomejasommer/Projekte/Spielwiese/forexample3.m w= A= mag‘ic[B]l
| forexample3.m x| == forexamples b=
1- A = magic(3); =
2 - for k = A E; g 1
3 - displk) 4 3 5
4 - disp('====" ==== 4 9
5 - end 1
3 | 5

9

&

7

2

Exercise: Inthe 2nd example, compare the output of the three for statements
1) for k = A

2) for k = A(:) Explain your observations!

3) for k = A(l:end) Hint: See the help for the colon : operator

[-]

54

Control Structures:

WHILE

e The while statement loops specified commands as long as
condition (a logical expression) is fulfilled:

while (logical expr.)
statements
end

l Editor - fhome/asommer/whileexample.m

| whileexample.m x|

Command Window

- c=0;

- while (eAZ « 100007

- displ [nunZstric) 'A2 =
- cC=c+ 17;

= end

"numZstr{cAZ)])

== whileexanple
042 =0

17h2 = 2859

3482 = 1156
51A2 = 2601
BEAZ = 4624
85ﬁ|2 = 7225

e Withthe command break, the while loop may be left at any

time:

| breakexample.m x|

1

~ On N & o

- c=0;

- while (c<1007

- C=cC+ 1;

- 1f (cAZ=25), break, end
- disp(c)

Command Window

== hreakexample
1

2
3

4

5

Exercise: Write a program (a Matlab script) that sums up numbers entered by a

user unless a 0 is entered. At the end, display the resulting sum.

55

Control Structures: BREAK and CONTINUE

e Boththe for and the while loop may be left at any time using

the statementbreak

e Similarly, for both loops for and while, one can “jump” into
the next iteration using the command continue:

l Editor - fhome/asommer,continueexample.m

| continugexample.m x|

1 % Skipping every n-th entry:

2|= n=23; c©c=10;

3 - while (c = 10)

4 - c=0c+ 1;

5 - if (mod(c,n)==0%, continue, end
6 - displc)

7= end

Command Window

== COntinueexanple

56

Additional Array Types

Cell Arrays and Structure Arrays

57

Cell Arrays

Cell arrays are indexable lists that can store “everything”

Their elements are accessed similarly to numeric arrays,
but by using curly brackets (braces) { }

c{l} = magic(3) stores a matrix
c{2} = 'some text' storesa string
c{3} = @sin stores a function handle (—later)

Important for copying contents of cell array:
Indexing with { } = accesses the object in the cell
Indexing with () — accesses the cell itself

== class(c{31) == class(c(3)]
ans = ans =

function_handle cell

Like numerical array, cell arrays may be 1D, 2D, 3D, ...

58

Cell Arrays: Conversion to/from Matrix

e withnum2cell, a numeric matrix is transformed into a cell
array, such that every matrix element is placed in a separate cell

== A = magic(3) =x numZcel1(A]
A = ans =
(2] (1] (=]

8 1 &
3 5 7 [3] (5] [7]
4 9 2 [4] (=] 2]

e to convert a cell array elementwise into a matrix, use cell2mat

== L =41 232 ;45 &} == cellZmnat(C]
L= ans =

[1] [£] [=] 1
[4] (=] (] 4

L ra
L

e note: mat2cell isamore powerful variant of num2cell,
(allows splitting a matrix into a cell array of submatrices)

59

Cell Arrays: Assembly

e building a cell array by individual elements is done row-wise,
like numerical arrays, by using ; as row delimiter:

== C =41 2 3; '"text' @sin 3.2}
I:=

[1] [2] L 2]
"texT' rI=g Ny [Z. 2000]

e cell arrays may be assembled from smaller ones using []
in the same way as numerical arrays / matrices:

== L1 = {1 2 ;3 2 4%, C2 = {'one' ; '"two'l};
== 0 = [C1 C2]

O o=

[1] [2] "one'
[=] [4] "two!

Exercise:
Generate a 4x4 magic matrix A, and a 1x4-cell-vector header containing the text

header "This is a magic matrix” in the first cell (other cells shall be empty).
Assemble the cell array magictext by stacking both header and magic matrix A

60

Structs

e Structure arrays (“structs”) are similar to cell arrays, with the
difference that individual elements are not numbered, but named

e The elements are accessed by adding a dot and their name to the
variable name

ancientstruct.name = 'Wilhelm'
ancientstruct.age = 156;
ancientstruct.position = 'Emperor'

== ancientstruct.namne="kiTheln ' ;
= ancientstruct.age=156;
= ancientstruct.position='Enperor';
=> ancientstruct
ancientstruct =
nane: 'Wilhelm'
age: 156
position: 'Emperar’

e Astructure array may also be created using the Matlab function
struct (see help struct fordetails)

61

@nonymous functions

Anonymous Functions with @

e Simple functions of several arguments may be implemented
as anonymous function using the function operator @:

=x COS5IN = B{x) cosix)+sinix]);
== cos(z)

cossin = @ (x) cos(x)+sin(x); e =
V4 0 > sin(z)

argument list of code of the " 50016

anonymous function function 7 coseinta)

-0.9984

This generates a function cossin (x) that accepts exactly one
input argument x and calculates the sum of its cosine and sine.

e Anonymous functions may have more than one argument,
or no argument at all:

cosxsiny = @(x,y) cos(x)+sin(y)
showerror = @() disp(‘'Sorry, trouble ahead!});

63

Anonymous Functions with @

e Anonymous functions may also deliver matrices as a result.
The following example function accepts five values and returns

the vector of their sum, their product, and their mean:
sfun = @(a,b,c,d,e) [at+b+ct+d+te ; a*b*c*d*e ; (at+b+c+d+e)/5];
sfun(5, 2, 7, 2, -6);

== sfun = @{a,b,c,d,e) [atb+c+d+e ; a*b¥c¥d*e ; (arb+oc+oe)/S 1;
== sfun(%, 2, 7, 2, -&)
ans =
10
-540
2

e Anonymous functions may access the value of =2 e e
workspace variables at creation time. Zisaf:”m
Subsequent changes of the respective workspace n=Bi
variable do not change the behaviour of the function! ™7

Exercise: (i) Write an anonymous function mymul t5 that takes an argument
and multiplies it with 5.
(i) Write a program (a Matlab script) that asks the user for a number,
and generates an anonymous function of one argument, that
multiplies its argument with the user given value.

Store the anonymous function in the variable mymult and test it!
64

Functions

65

Functions

e control structures like IF, FOR, WHILE, etc., cannot be used

i nS|d e @ nonymOUS fU nCtionS(*) (*) using eval and alike, it is possible but (very) bad style.

Remember: evalis evil.

e script files “work” inside the main work space and may interfere
with user variables

== MYSCripT

Workspace :) Workspace
My Result 1s: nf
Mame &£ Yalle Brntes) Mame £ Yalue Bryies
l=oc| an s ‘char' a 2 1 a8
] matrix [1,2,5] 24 EEEGE ‘char' 8
1 myResult 47 a o b 3.1400 a
Jane| U serYar "User's variakle' 30 Jabe hulla' 10
- rmatrix [ErEE] 24
0 myResult Inf a
laec| Lisearfar ‘User's variakle' 30

e Matlab functions have their own work space, so they do not
touch user variables, and they completely support all Matlab
commands and control structures

66

Functions: Structure of m-Files

e basic principle: one function per m-file (well, nesting is possible)

e the first line in an m-file is the function header:
function [output-variables] = functionname (input-variables)

e the following lines are comments starting with %, explaining the
functions purpose, describing the input and output variables, etc.

e then follows the code of your program

e the last line finishes the m-file with an end
(may be omitted, but using it is good style)

e own functions are called in the same way as built-in functions:
[result-variables] = functionname (input-variables)

e if afunction has no return value, a pair of empty brackets is used

in the declaration:
function [] = functionWithoutResult (input-variables)

67

Functions: Good Style Example

output variables input variables

Y fl I’St ImpreSSIOn l Editor - fhomejasommer/triprosum.m
) Ctriprosum.m x| ”
1 function [prod, sum] = triprosumia, b, c)
|Ots Of CommentS 2 % TRIPROSUM: TRIpTe PROduct and SUM
3 % Calculates the product and the sum of three matrices.
4 %
5 % [prod, sum] = triprosuma, b, c)
gOOd Style: 6 % INFUT: a, b, © - matrices to be mnultiplied/summed
7 # OUTFUT : prod - the product of a*h*c
more than 50% g # sum - the sum atb+c
9 %
commentation! 10 % MOTE: matrices a, b, c must be of the same sizel
11 - sum = a + b + c;
- = * * -
s | Presat Rt Note: We shadow the

Matlab functions prod
e function name gives hint on operation purpose and sum here. But that
shadowing is cleared

as soon as the function

e output variables have meaningful names .
finishes.

e asking for help results in pure happiness and rapture:

== help triprosum
triprosum: TEIple FEOduct and SUM
Calculates the product and the sum of three matrices.

[prod, sum] = triprosumia, b, cl

IHFUT: a, b, c - matrices to be multipliedsummed
OUTFUT : prod - the product of a¥b*c
sum - the sum at+h+c

MOTE: matrices a, b, c must be of the same sizel!

68

Functions: Bad Style Example

e what does that function do?

l Editor - fhome/asommer; myfunction.m

| myfunction.m x|

1 function [x,v] = myfunction(a,b,c) worst StY|e

2 - w=a; y=hi y=x"y¥C; x=chxtb; .
37 Long of programming

e no comments in the source code
e no explanation of the variables
e does this function want matrices, numbers, characters, or what?

e asking for help results in frustration:

== help myfunction

Mo help found for myfunction.m.

69

Functions: Local Workspace

every function has its own work space

functions cannot access variables from the main workspace,

neither read them nor write to them Remember:

_ _ : : eval is evil.
(exception: evalin and assignin) \ o "~ @

the only accessible variables are the input variables O

intermediate variables that are created inside the function
vanish as soon as the function is left

this ensures that functions do not interfere with other functions
or variables from the main or other functions’ workspaces

exception: global variables and persistent variables

70

Functions: Global Variables

e avariable may be marked as globally accessible by using the
declaration: global varname

e aglobal declaration should be done at the beginning of the
function

e this declaration has to be done in every function that wants to
access that global variable

e global variables are considered bad style, and are a frequent
source of error, especially in concurrent (parallel) programmes

° aVO|d theml l Editor - fhome/asommerfProjektie/Spielwiese/ globalfun.m
) Cglobalfunm x| =» global A
. . 1 function globalfun() > A = 1000;
P 2| global A =» globalfuni)
IfyOU Implement 3 - displ'The value of A 9s:') The value of A is:
. 4 - displa); 1000
global variables, |s- T
6 - end => A

document them

whereever used Matlab displays global

variables in a different color 42

Functions: Premature exit with return

e afunction may be left at any time using the return statement:

l Editor - fhome/asommer/ mydivision.m

rylivision.m x|

1 ffunction result = mydivision(A,B)
2 % MYDIWISION - Diwides A by B

3 % INFUT: A - diwvidend

4 % E - diwvisor

5

4] % Check if diwisor is zero

7 - if any{any(B==07]

g - disp('Diwvisor must not he zerol')
o - result = 'error';

10 - return

11 - end

12

13 % Calculate the diwision

14 - result = A ./ B;

15 - end

16

== matl = magic(2); mat2 = [1 2 ; O 4];
== Mydivision{matl, mat2)

Diwvisor must not he zerol

ans =

error

e every output variable must have been set before!

72

Functions: Variable Number of Input Variables

e usingvarargin, afunction may have a variable number of

input variables:

e the total number of input variables can be queried by nargin

Command Window

l Editor - fhome/asommer;/ mysum.m

Cmiysumm k)

function [sum, n] = mysum(varargind
% MYSUM - sums an arbitrary nunber of wardiables|
n = hargin;
disp{['Sunning ' num2strin) ' numbers'])
sum = 0;
for i=1:Tength{wvarargind
sum = sum + warargin{i};
end
end

0 0 -1 0 o g =

=» [total, number] = mysum(l,2,3,7,3,9]
Summing & numbers
total =
30
numbher =
&

e note:varargin isa cell array, and must be referenced by { }

e varargin isoften used for optional arguments

73

Functions: Variable Number of Input Variables

e varargin{1l} isthe first additional input variable,
varargin{2} the second additional input variable, etc.

e note: nargin isthe total number of input argument,
NOT the number of varargin arguments

Command Window

l Editor - fhomejasommer/vararginexample.m

| vararginexample.m x| »» wararginexanple(2,3,4,5,6)

1 function [] = wararginexample(a,b,varargin) a==:2

2|= disp(['a = " num2str(al]l; b =3 .

3 - displ['b = ' num2stribl]); Total number of Tnput arguments: &
4 - n = nargin; ~ Mumber of additional arguments: 3
5 - m = length{varargind;

g - disp(['Total nunber of input arguments: ' numZstrin)]];

7 - dFsp[['Number of additional arguments: ' numZstrim)]);

g - end

74

Functions: Variable Number of Output Variables

e asimilar mechanism is available for optional output variables:
varargout is the cell array of output arguments
nargout isthe number of output args requested by the caller

e the 1st optional output variable is stored in varargout {1},
the 2nd optional output variable is stored in varargout {2},

etc.

l Editor - fhome/asommer/arthmipcm

| arithmiz.m x|

1 function varargout = arithmix{a,b)

2 % ARITHMIX - Calculates a wariety of arithmetic ops.
3

4 % 1f no output is reguested, return inmediately
5= 1t {nargout==03, return; end

]

7 % lst output argument: sum of a and b

g - 1t (nargouts=1), warargout{l} = a+h; end

=)

10 % 2nd output argument: difference of a and h

11 - 1t (nargouts=2), warargout{2} = a-h; end

12

13 % 2rd output argument: product of a and b

14 - 1t (nargout==3), warargout{3} = a.*h; end

15

16 % 4th output argument: ratio of a and b

17 - 1t (nargout==4), warargout{4} = a.s/h; end

18

19 - end

Command Window

== 5 = arithmix(2,5]
s =
7
== [=,d] = arithmix(2,5]
s =
7
d =
-3
== [5,d,p] = arithnix(2,5)
5 =
7
d =
-3
F:I =
10
== [5,d,~,r] = arithmi=(2,5]
5 =
7
d = The ~ marks that we
-3 are not interested in
r= this return value
0, 4000

75

Functions: General Remarks

e Matlab follows the paradigm call-by-value, i.e. the function
receives a copy of its input variables, not the original:

. Editor - fhome/asommer/incmat.m
|incrnatm x| == A = magic(Z)
1 function A = Tncmat(A) A=
P % IMCMAT - Increases every matrix element by 1 1 3
3 - A=A+ 1; 4 2
4 - end == newh = Tncmat{A)
newA =
2 4
5 3
== A
A =
1 3
4 2

Note: Other programming languages like C use call-by-reference,
i.e. they would modifiy the original matrix.

76

Functions: Exercise

Exercise:

1)

3)

Write a function called axpy that calculates z = Ax + y, where Ais a
matrix, and x and y are vectors.
Test your function with

AA = magic(3), xx=[1;2;3], yy=[0;-1,;100]

axpy (AA,xx,yy)

Extend your function in the following way:

In this function, 4 and x should be required arguments, and y optional, i.e.

thecallz = axpy (A, x) would calculate only the matrix-vector product
Ax,andthecallz = axpy (A, x,y) would return Ax + y.

Write a second function allPowers A* that calculates arbitrary many
potences of a given matrix A4.

The first output argument shall be the 1st power of 4,

the second output argument shall be the 2nd power of 4 (i.e. A42),

the k-th output argument shall be the k-th power of A.

Note: Only the requested powers shall be calculated! Not more, not less.

77

Debugging

Breakpoints and Stepping

78

Breakpoints and Debugging

e using breakpoints, we can interrupt the execution of programs
at (almost) any place

. Editor - fhome/asommer/Projekte/Spielwiese/ longfunction.m

| longfunction.m x|
function [result] = longfunctionia,b,c)

e when using the Matlab editor,
a breakpoint is set by clicking
at the dash next to line num-
bers of executable statements
(the dash becomes ared dot) |w

% LOMCFUMCTION - complicated Tong function example
%

% [result] = longfunction(a,b,c)

%

% Computes the fraction

% a? + sin(b3c)

B

* a® - cosi3c) - hE

o~ N = a2

fu]

11@ asquared = a.nZ;
12 - sintern E osin(h.A2 ¥ ci;
13 - costerm = cos(3Yo);
® We may have more than One 14 - numerator = asguared + sinterm;
. . . 15 - denominator = asquared - costerm - h.AZ;
16 - result = numerator / denominator;
breakpoint in every function |©-

e when the program/function is invoked, execution is interrupted
at the breakpoints and we can then look at variables, evaluate
expressions and even manipulate variables in the local work
space

79

Breakpoints and Debugging

® after |nVOk|ng lOngfunCtion (1 4 2 4 3) / the Command Window

== longfunction(l,2,3)

execution is stopped at the first breakpointand | 11 “iquared =302

Jx Ko

Matlab enters the debugger (prompt: K>>)

l Editor - fhome/asommer/Projekte/Spielwiese/ longfunction.m

e inthe editor window, a

| longfunction.m x|
1 function [result] = longfunction(a,hb,c)
green arrow marks the 2 % LONGFUNCTION - complicated Tong function example
. . 3 o
||ne Of COde that Wl” be 4 % [result] = longfunction(a,b,c)
5 %
executed next & % Computes the fraction
7 % a* + sin(hic)
= o -
. o % a* - cosi3c) - hbE
e the workspace window 10
11 @g asquared = a.nZ;
12 - i = ginfh.AZ2 ¥ :
shows the current local = sintern - sin(b;n2 " o)
. . 14 - numerator = asguared + sinterm;
Va r|ab|es Workspace 15 - denominatar = asquared - costerm - h.A3;
Mame £ YWalue 16 - result = numerator / denominator;

3 1 17 - end)|
s 2
s 3

e We can now run through the program step by step!

80

Breakpoints and Debugging:

e Keyboard shortcuts:

— Fa1o0 execute the next line of code

— Faa run next line and step into the function therein (if any)
— Shift-Faa run until the current function returns

— Fg continue execution until the next breakpoint

— Shift-F5 stop program immediately

e We can also manipulate the variables in the current workspace
by typing expressions in the Matlab command window

Command Window

l Editor - fhome/asommer/Projekte/Spielwiese/ longfunction.m

|I|:|ngfun|:ti|:|n_m x" == longfunction{l,2,3)
1 function [result] = Tongfunction{a,b,c) ans =
2 % LOMCFUMCTION - complicated Tong function example -0.0v61 , , ,
3 o == % Set br‘eelll-qpmnt in T1ine 11
4 % [result] = longfunctionia,hb,c) == longfunction(l,2,3)
5 o 11 asguared = a.nZ;
6 % Computes the fraction Kem a = 25 ,
7 % az + sin(h2c) K== % Continue by pressing FS
g % ans =
9 % a® - cos(3c) - h*® -1.1213 .
10 == longfunction(2,2,3)
11 @ asguared = a.hZ; ans =
1z - sinterm = sinfb.A2 % cl; -1.1213
13 - costerm = cos(3%¥c); . .
14 - numerator = asguared + sintern; Exercise: Try this out!
- ; = - - b.h3: - . .
15 denominator asquared cqsterm- b.Mh3; Set breakpoints and step through the
16 - result = numerator / denominator;) .
17 - end program. Manipulate variables!

Plotting (continued)

Nicer plotting, subplots, legends
and a bit of 3D

Plotting: Choosing the Style

e we have already seen how to plot x versus y:
x = 0:0.1:10;
y = sin(x);
plot(x,y);

e here, Matlab chooses the coloring and style

e We may provide an additional string argument choosing the style

-] Figure 1 -+ x

Eile Edit ¥iew Insert Tools Desktop Window Help

plOt (X,y, 'r.:!) ; NG K| NUDEL- |20 a0
Color MarkerStyle LineStyle

(here: r for red) (here: . for dot) (here: : for dotted)

||||||||||||
000000000000

Plotting: Choosing the Style

Plot command: plot (x,y,plotspec) ;

where plotspec is a string coding for color, marker style and

line style

available colors:
b —blue g —green r —red
m—magenta vy -—yellow w— white

some marker styles:
. —dot o —circle X — Cross

available line styles:
- —solid : —dotted — - —dashed

if no line style is specified, no line is drawn

more information: help plot

Exercise: Make some colorful plots.

c —cyan
k —black

+ —plus

— . —dashdot

84

Plotting: Subplots

e Multiple plots can be displayed in one figure window using the
subplot command:

subplot(m,n, i)

=
=
=
=
=

subplot(2,=,10;
subplot(2,=,20;
subplot(2,=,30;
subplot(Z,=,47;
subplot(2,s,67;

plotisx,
plotisx,
plotisx,
plotisx,
plotisx,

sini=Y,'r:')
cos(=l, 'kh."']
cosix.m2y,'g.--"]
sinx=.A30, 'nr: ')
sinf 2%, "kx')

where: mnumber of rows
n number of cols
i selection of current axes to plot in

-) | Figure 1
File Edit Yiew |Insert Tools Deskiop Window Help N

N de | AR LEL- 2| 0E| 0D

-+ x

Exercise:
Plot the functions

1 [4v 20403 g0 = sin(y/®)
- PERVIEERVE h(x) = cos(f (x))

over the interval [0,10]

L in one figure using
5 (A 6 . subplot.
0F . . L«
-0.5 f; 5 W
T Hint: Try using @nonymous
0 5 10

functions forf, g, h

85

Plotting: 3D

e Three dimensional plots may be created using plot3:

plot3(x,y, z)

where: x vector of x-coordinates

5 Command Window
y vector of y-coordlnates. Ty
z values at the x-y-coordinates 77 plersteinte), coste), ©;
)| Figure 1 - + X

e plotstyles may be chosen
in the same way as for the
2D plot command

NSl | | ARRODEL-|S|0E|aD

25
30
25
20
15

=Ly
W

86

Plotting: List of Plot Commands

e Matlab offers a lot of different plotting possibilities:

e plot

* loglog
* plot3

e mesh

e surf

e contour
* quiver
e quiver3
e scatter
e comet

e comet3
e hist

standard plotting in 2D

2D log-log plots

standard plotting in 3D

3D mesh plot

3D surface plot

plot contour lines

plotting 2D velocity fields with arrows
plotting 3D velocity fields

2D scatter plot (circles at specified position)
2D animated trajectory plotting (running in time)
3D animated trajectory plotting

histogram plots

e pie, rose pie/rose plots
®* many many more...

87

g: Overview

Pie Charts, Bar Plots,

Line Plots and . Discrete Data Plots | Polar Plots Contour Plots Vector Fields Surface and Mesh Plots Polygons Animation
plot area stairs polar contour quiver surf fill animatedline
L\ AL K S Wy e WA
L AAMAD :
plot3 pie stem rose contourf quiver3 surfc F1il1l13 comet
: W . : =, :
= 9 L 6 L/ e 2
: | | - 1 L :
: 0] : e S
loglog pie3 stem3 Compass contour3 feather surfl comet3
LMt .] B s ; -
semilogx bar scatter Ezpai!.ar contourslice streamslice ezsurf
n A - 5 I E
e . iyl :
e)] W o]
PR s g
semilogy barh streamline ezsurfc ezmesh
1 < ; -
; o
...................... ’ I g
errorbar bar3 spy streamribbon ribbon ezmeshc
% % R - 1. <>
................. = :
-""‘ﬁ--I'""-“
ezplot bar3h plotmatrix streamtube pcolor
E MR
-{-\J/\/ % L r l 3‘ "
LY EEANY i o
ezplotd histogram coneplot
= 1
1 = =
pareto
E E Source: Mathworks Matlab Documentation
http://de.mathworks.com/help/matlab/creating plots/types-of-matlab-plots.html, queried Nov 3, 2015

88

http://de.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html

Plotting: Titles and Labels

e title add a title to the current axes

e xlabel add a label to the x-axis

e ylabel add a label to the y-axis

e zlabel add a label to the z-axis (in 3D plots)

e grid on|off turngridon oroff
add a legend to the axes

* legend

l Editor - fhome/asommer/Projekte/Spielwiese/ plotexample.m

plotexample.m x|

1- w o= 0:0.1:2%n1;

plot(x,sin(x=), 'ro-',=,cos(x), 'h.-']
titlel'5ine and Cosine')

wlabel('x axis')

wlahel({ 'y axis')

grid on

Tegend{'5ine','Cosine')

bty O Iy [t Sy I L

e and much more using
annotation

and axes properties

Figure 1

File Edit ¥iew Insert Tools Deskiop Window Help

NEde| KRR TDEL- 2| 0EH e

1

0.8

0.6

Sine and Cozine

- + x

Dod ey

@

oo O
0.zt
0.4
0.5

-0.8r

0.2r

89

Solving

Ordinary Differential Equations
RHS Function, Matlab Integrators

Solving ODE: Initial Value Problem

e we consider here only first order ODE IVP:
x = f(t, x) x(ty) = xg
where t € [to, tf] c R denotes the time, and x € R® the state.

e the function f (¢, x) is the right-hand-side (rhs) function

e in Matlab the rhs function f is always a function of time and
state:

function dx rhs (t, x)
dx = ... formula calculating the rhs f (¢, x)
end

e note: autonomous ODE, i.e. ODE that do not depend explicitly
on t simply ignore the t argument

Solving ODE: Standard Integrator ode45

e ODEIVP: x=f(t x) x(ty) = xg

e using a Matlab integrator like ode45, an ODE IVP can be
solved by one line of code:

[T,X] = oded5(@rhs, [tO tf], xO0);
no @ if using
where: @rhs right hand side function (handle) anonymous

t0 initial time point functions
tf final time point
x0 initial value x(t,)

e theintegrator ode45 returns a vector of times T (chosen by
Matlab) and a matrix of states X:

X(i,:) isthesystem’sstateattime T (i)
X (:,73) isthetrajectoryforthe j-th state (component):

92

ODE Example: The van-der-Pol Oscillator

e second order differential equation:
¥—pu(l—xDx+x=0

e reformulated as system of 2 dimensions using x; = x, x,
X1 = X2 rhs function
Xz :‘U(l_x%)xz_xl x:f(t,X)

e the right hand side function in Matlab thus looks as follows:

l Editor - fhome/asommer/ Projekte/Spielwiese/vdprhs.m

| wdprhs.m x|

1 function dx = wdprhs{t,=)

2 % rhs of wan-der-Pol

3= mu = 1;

4 - o = [=02 3 omu ¥ (1-x(13.A20%=(20 - =(1)];
5|= end

= X

93

ODE Example: The van-der-Pol Oscillator
* initial time ty, final time t¢, and initial value x(t,) = x, are
t0 =0, tf = 20, x0=[1;1]

e call the Matlab integrator ode4s
[T,X] = oded5 (@vdprhs, [t0 tf],bx0);

e plotthe result, add legend
plot(T,X); legend('xl',6 'x2');

y - .
Command Window Figure 1
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

== t0 = 0; tfF = 207 =0 = [1;1]; ’“‘_J;"_H;| u{\ -:@*pé@_aﬂ@)m_@\n@
== [T,X] = oded5{@vdprhs, [0 tf] ,=07;

== plot(T,xX); legend('=1','=x2")

94

Solving ODE: Modern Interface (Matlab 2016a)

e modern call to Matlab integrator
sol = oded5 (@vdprhs, [to tf],hx0) ;

e returns an “ode-solution” object sol (a struct) with additional
information, e.g. number of function evaluations.
sol.x time points (T on previous slides)
sol.y system states (X on previous slides)
sol.stats some statistics

e the sol object may be re-used:
an existing solution may be extended in time by odextend

95

Solving ODE: Generics

e there are different integrators available, most prominent:
oded5 all-purpose integrator
odel5s forstiff problems

e all Matlab ODE integrators support the same basic syntax

e one may specify explicit time points where the solution
shall be calculated by specifying them in the tspan vector:
tspan = [t0 t1 t2 _(vectorofrequestedtimes).. tEf] ;
[T,X] = oded5 (Qvdprhs, tspan, x0);

) == [T,4] = Ddé45[@vdprh5,[ﬂ 1 4 107,=07
e vector T then containsonlythe 7~
specified time points, and X the

respective states 1.0000 1.0000

1,297 -0.3694
-1.7429 0.E570E
-2.01458 -0.0541

96

Solving ODE: Generics

e theintegrators may be configured by
giving name-value-pairs to odeset

e example:
set relative and absolute tolerances
(a measure for accuracy), to 1076
and 1078, respectively:

== opts = odeset('RelTol',le-&, "AbsTaol' ,1e-8)

opts =

AhsTol:

EDF :

Events:
InitialStep:
Jacobian:
JConstant:
JPattern:
Mass:
MassSingular:
MaxOrder:
MaxStep:
MonMegative:
NormContraol:
OutputFon:
Outputsel:
Fefine:
FelTol:
Stats:
Vectorized:
Mstatelependence:
MvPattern:
Initialslope:

opts = odeset('RelTol',1e—6,;AbsTol',1e—8)

1.0000e-08
(]

e the variable opts can be given to every Matlab integrator:
[T,X] = oded5 (@vdprhs, [t0 tf],x0,opts);

e note: every integrator supports different options

97

Solving ODE: FitzHugh-Nagumo Oscillator

Exercise:
The FitzHugh-Nagumo oscillator is a prototype of an excitable system,
mimicking the behavior of a firing neuron. It is given by the ODE:

3

x3 x, —a+ bx,
' c

5C1=C<x2+x1———1 X'z=_

where x; denotes the excitability of the system (membrane voltage),
and x, is the recover variable. I is an external stimulus.

1) Write the according right-hand-side function FHNrhs
Choose a=0.7; b=0.6; c=3.0; | =0.3 as parameter values.

2) Integrate the ODE IVP over the time domain [o, 50].
Choose x1(0) = 0; x,(0) = 0 as initial value.

3) Make a plot of the solution

98

Solving ODE: Beware!

e Solving ODE is not as simple as it looks

e Trysolving the ODE

X1 = X, x1(0)=0
2 _ 2 + 2 & t 0) =
Xy, = u°x; — (U +m*)sinnm x,(0)=m
. - l Editor - fhome/asommer/Projekte/Spielwiese/badtestm
with a valve u = 0,1,5,10,20,60. "
bactest.m x|
1 % Scriptfile testing the badrhs
2
1 0 3 # setup
® NOte The exaCt SO|UtIOn IS 4 - tspan = [0 1]; % time domain
5 - *0 = [0 pil; % initial walue
n 6
.Xl (t) = SIn T[t 7 % true solution:
g - g0l = @(t) [sinlpi*t) ; pi*cos{pi*tl];
— . 9 - TT = 0:0.01:1;
X2 (t) T - cosmt 10 - (= s01(TT);
11
12 % use odedt with default settings
13 - mu = 15;
l Editor - fhome/asommer/Projekte/Spielwiese/badrhs.m E : E??}E 5[33235??325%;;‘;#?“}15];
| badrhs.m x| 16
1 |'Fun|::1:'i|:|r'| dx=badrhs{t,x,nu) 17 # plot
2 - de = [=022 3 nuA2¥= (1) - (nuA2 + pid2i%sin(pi*t) 1; 18 - plot(T,x, ' r',TT,x,'b']
3 - end 19 - Tegend('=_1","'»x_2"', "true =_1"',"true =_2']
4 20 - Tegend('Location', 'best'])

99

Solving ODE: Beware!

4 T T T T T T T T T

3_ xz -
Ltrue xl
2

4 ®
0 1
o
-o5 true x
n“”‘h-d = true Xo
-30] | | | |] | | |
] 0,1 0,2 0,3 0,4 0.5 0.6 0,7 0.8 0.9 1

e unfortunately, using higher precision is NOT a remedy
(ask a numerical mathematician)

100

Optimization: Introduction

e often, one needs to find the minimum (maximum) of a function

min | f(x)

XE[to,tf

e quite simple for 2D, more complicated for nD:

min f(x)

xCRM

e even harder if additional constraints are given:

;TCI%RI}L f(X) objective
S.t. C(X) < O general nonlinear inequality constraints
c® (X) =0 general nonlinear equality constraints
Ax < b linear inequality constraints
Aeqx — beq linear equality constraints

lb S X S ub lower and upper bounds

101

Optimization: Introduction

Matlab offers diverse functions for constrained and unconstrained
optimization of functions of one variable ore multiple variables,
and both derivative-based and derivative-free methods

III

for “real” problems the choice of the right method is cruical
(ask someone who knows about it)

most optimizers find local minima, which is sufficient in most
cases

finding the global minimum is often not possible in finite time,
unless the problem has some nice properties and structure

we will have a short look on two Matlab minimizers:
fminsearch for unconstrained minimization
fmincon for constrained minimization

all optimizers may be configured using optimset

102

Unconstrained Minimization with fminsearch

e the Matlab optimizer fminsearch minimizes a function
of one or more variables

e derivative free, uses simplex search algorithm

* syntax: x = fminsearch (fun,x0)
x = fminsearch (fun,x0,opts)

[x,fval] = fminsearch(...)

[x,fval ,exitflag] = fminsearch(...)

[x,fval ,exitflag,output] = fminsearch(...)
* input: fun function to be minimized (handle)

x0 initial guess:

opts options generated with optimset

e output: =x solution (or best point so far)
fval function value at x
exitflag status (solution successful, failed, etc.)
output additional information

103

Constrained Minimization with fmincon

e the Matlab optimizer fmincon minimizes a smooth function
of one or more variables, under some constraints

e many different algorithms behind that function:
interiour point, sgp, trust-region-reflective, active-set

 read the documentation, and ask a mathematician!
* syntax:

x = fmincon (fun,x0,A,b)

fmincon (fun,x0,A,b,Aeq,beq)

fmincon (fun,x0,A,b,Aeq,beq, 1lb,ub)

= fmincon (fun,x0,A,b,Aeq,beq,1lb,ub,nonlcon)

= fmincon (fun,x0,A,b,Aeq,beq,1lb,ub,nonlcon,opts)
[x,fval] = fmincon(...)

[x,fval ,exitflag,output] = fmincon(...)

[x,fval ,exitflag,output,lambda,grad, hessian]=fmincon(...)

X X X N

104

Constrained Minimization with fmincon

[x,fval ,exitflag,output,lambda,grad, hessian]
= fmincon (fun,x0,A,b,Aeq,beq,1b,ub,nonlcon)

* input:

o output:

fun function to be minimized (handle)

x0 initial guess: m%R{l f(x)

. xCcR"
A matrix ofllnegr mequaht_y constraints s.t. c(x) <0
b rhs vector of lin. inequality constraints c€d(x) = 0
Aeqg matrix of linear equality constraints Ax < b
beqg rhsvector of lin. equality constraints Aeq _ pea

. X =

1b lower bounds on variables

ub upper bounds on variables b =x=ub

nonlcon general nonlinear constraint function (next slide)
opts options generated with optimset

X solution (or best point so far)

fval function value at x

exitflag status (solution successful, failed, etc.)
output additional information

lambda lagrangian multipliers at solution
grad gradient vector at solution

hessian hessian matrix at solution

105

Constrained Minimization with fmincon

e the general nonlinear constraint function has to be of the form:

function [c,ceq] = nonlinconfun (x)
C = ... (vectorof nonlinearinequality constraints evaluated at x)
ceqg = .. (vectorof nonlinear equality constraints evaluated at x)
end

e i.e., the nonlinear constraint function gets a point x,

and returns both the vector of nonlinear inequality constraints
and the vector of nonlinear equality constraints at that point x

e example: points lying within the unit disk:

function [c,ceq] = unitdisk (x)
c = x(1)*2 + x(2)*2 - 1;
ceq = [];

end

106

Unconstrained Minimization: Rosenbrock’s Banana

e standard benchmark problem: minimize Rosenbrock’s function
f(x) = 1000x; —x{)? + (1 — x1)*
e this function shows a banana-shaped valley, where gradients are
very small (a challenge for many classical textbook algorithms)

e the minimumisat x* = (1,1)T with f(x*) = 0
e traditionally, the initial guessis x, = (—1,2)7
e the nexttwo slides show a 3d surface plot on the left, rotated to

different angles, and the according contour lines on the right;
the minimum position is marked with a red dot

107

mained Minimization: Rosenbrock's Banana

P . 150

P o100

108

m;trained Minimization: Rosenbrock's Banana

Unconstrained Minimization: Rosenbrock’s Banana
e we determine the unconstrained minimum using fminsearch

e set up the Rosenbrock function as @nonymous function:
banana = Q(x) 100*(x(2)-x(1)*2)%2 + (1-x(1))*2

e invoke fminsearch with standard settings, start at x, = (—1,2)7
[x,fval ,exitflag,output] = fminsearch (banana,[-1,2])

e if we want to see what the solver is doing, we might create the

right option using optimset and pass it to the solver:
opts = optimset('display',6 'iter');
[x,fval,...] = fminsearch (banana,[-1,2],6 opts)

== hanana = @{x) 100% (w0 2-={1 1027102 + [(1-=(1))42
banana =
B 3L00% O (20— (L2024 (1= (17142

== OpTS = optimset('display', '1ter');
=» [, fwval,exitflag,message] = fminsearchibanana, [-1,2],o0pts)

110

Unconstrained Minimization: Rosenbrock’s Banana

== [x,Twal,exitflag,nessage] = fminsearch(banana,[-1,2],0pts)

Iteration Func-count min =)
] 1 104

1 = 247521

2 = 4L _H527%

= 7 12,1861

4 9 4.958422

5 11 4.,95422

& 13 4.,95422

7 15 4.,95422

B 17 4.,95422

5 19 4.,95422
10 21 4,95047
11 23 4,91E585
17 25 A QQ&E‘I
s 191 L.alyige-0o
104 19= 1.70617e-10
105 195 1.70617e-10

Optimization terminated:

the current x satisfies the termination criteria using OFTIONS.Tolx of 1.000000e-04
and F(X) satisfies the corwergence criteria using OPTIONS.TolFun of 1.000000e-04

1.706171071794760e-10

0, 99995272421 7811

o=
0,99999079=25829525
fwal =
exitflay =
1 <€
message =
iterations:
funcCount:
algorithm:
message:

105
195

Frocedure

initial simplex

expand

expand

reflect

contract outside
contract inside

contract inside

contract inside

contract outside
reflect

contract inside

iy =]

Contract 1nside
contract inside
contract inside

an exitflag 1 tells us that
Matlab is convinced to have

found a local solution

'"Melder-Mead simplex direct search’

[1x194 char]

111

Unconstrained Minimization: Exercise

Exercise:

Find the unconstrained minimum the following function:

1

== (r—03)2 1001 (x—09)2+004 ' °

using fminsearch.
1) First, make an @nonymous function or a function file for that f
2) Plot the function over domain [-1, 2].

3) Find minima using fminsearch.
Choose as starting values: once 0 and once 2

112

Constrained Minimization: Rosenbrock’s Banana

e suppose, we want to find the minimum of Rosenbrock's function
within a certain area — let's say, inside the unit circle ||x]|* < 1

e we can solve such a constrained optimization problem using the
Matlab optimizer fmincon

e asthe constraint ||x||? < 1 is nonlinear, we first write the
nonlinear constraint function:

function [c,ceq] = unitdisk (x)
— . c(x) = lIxlI* — 1
c = x(1)"2 + x(2)42 - 1; e— @ZlF-1
ceq = [],' € no equality constrains
end

and store itin the file unitdisk .m

REQUIRES OPTIMIZATION TOOLBOX

113

“onstrained Minimization: Rosenbrock’s Banana

e set upthe Rosenbrock function as @nonymous function:

banana = @(x) 100* (x(2)-x(1)22)22 + (1-x(1))*2

prepare the options using optimset and choose x0 = (0,0)”
opts = optimset('display','iter'); x0=[0,0];

invoke the solver £mincon;:
mincon (fun,x0,A,b,Aeq,beq,1b,ub,nonl

[x,fval,exitflag] = ..., ¢ © o

o

fminsearch(banana,xo,{],[]{J],[L,J],[L,Punitdiskhopts%

I | 1 I 1
functionto initial no linear no linear noupper handletononlinear options
minimize guess inequality equality and lower constraint function structure
(handle) constraints constraints bounds

== hanana = @(x) 100% (x(2)-x (1102002 + (1-x(17)A2
hanana =
A 100 (2= (1A IAZH (1 - (1002

== Opts = oprimset(' display', ' iter'); =x0=[0,0];
== [%,Tval,exitflag]=fuincon{banana,=0,[1,[1.[1,0],0[],[]1,8unitdisk,opts)

114

Constrained Minimization: Rosenbrock’s Banana

| will never

* some versions of Matlab issue a warning here:. ;.\ varninge

== [x,fwal,exitflag]l=fwinconibhanana,=0,[1,0].0]1,01.0].[],8unitdisk,opts)
Warning: The default trust-region-reflective algorithn does not solwve problems with tTHE —
constraints vou have specified. FMIMCON will use the actiwve-set algorithm instead. For
information on applicable algorithms, see Choosing the Algorithm in the documentation.

= In fmincon at 504

Warning: Your current settings will run a different algorithm {(interior-pointl) in a future
release.

= In fmincon at 509

e |ttells usthat the default algorithm of fmincon is not

capable to solve this type of problem and Matlab has
automatically chosen one that Matlab thinks it can do the work.

We should have chosen a suiting algorithm by ourselves
using optimset, e.g. the sqp algorithm:
opts = optimset('display', 'iter',6 'Algorithm', 'sqp'):

115

Constrained Minimization: Rosenbrock’s Banana

M Line search Directional First-order
Iter F-count f(x) constraint steplength deriwvative optimality Frocedure
] 2 1 -1
1 9 0.,952127 -0,9375 0.125% -2 12.5
2 1& 0.20544: -0.3:01 0.0625 -2.41 12.4
2 21 0.462247 -0.836 0,25 -12.5 .15
4 24 0. 240e77 -0, 7959 1 -4.07 0.511
5 27 0. 200277 -0.7149= 1 -0.,912 3.72
& 20 0.2619449 -0.67832 1 -1.07 3.02
7 33 0.164971 -0.4972 1 -0.,908 2.29
& 26 0.110766 -0.3427 1 -0.833 2
9 40 0.0750939 -0.1592 0.5 -0.5 2.41
10 43 0.0580974 -0.007e18 1 -0, 284 2.19
11 47 0.048247 -0.003788 0.5 -2.96 1.41
12 E1 0.0454223 -0.00159 0.5 -1.23 0.725
13 EL 0.0459218 -0.0009443 0.5 -0.e749 0.367
14 E9 0.0457652 -0, 0004719 0.5 0.4 0,131
15 3 0.0457117 -0, 0002359 0.5 -0.261 0.0905% Hessian modified
1& Er 0.0456912 -0.,0001179 0.5 -0.191 0.0452 Hessian modified
17 71 0.0456825 -5.897e-05% 0.5 -0.156 0.0226 Hessian modified
15 75 0.0456755 -2.948e-05 0.5 -0.139 0.0112 Hessian modified
149 749 0,045 706 -1.474e-05 0.5 -0.13 0.00566 Hessian modified
Local minimun possible. Constraints satisfied.
fmincon stopped hecause the predicted change in the objective function
15 less than the default walue of the function tolerance and constraints
are satisfied to within the default walue of the constraint tolerance.
<stopping criteria detailss
Active inegualities (to within options.TolCon = 1e-067:
Tower upper ineglin dnegnonlin
1
x = L] L] [
0.7864 0.6177 € pointon unitdisk (||x|| = 1)
fwal =
(0.0457 €—— function value on that point
exitflag =
5 € exitflag 5 for interiour-point-method ???

116

Constrained Minimization: Rosenbrock’s Banana

e What does the exitflag value 5§ mean?

o=

0.7364 0.6177 € pointonunitdisk (||x|| = 1)
fwal =

0.0457 €—— function value on that point

Emtf;ag) €—— exitflag 5 for interiour-point-method ???

e |n Matlab documentation on £mincon, we read:

Magnitude of directional derivative in search direction was less than 2*options . Tol1Fun and
maximum constraint violation was less than options.TolCon.

e That means, Matlab got stuck during solving the problem!
It cannot determine a direction to search in, and the current
point x is feasible.

It does NOT necessarily mean, it has found a solution!

e However, in this example, itindeed is a local solution.

117

m;ained Minimization: Rosenbrock’s Banana

mined Minimization: Rosenbrock’s Banana

Export and Import

From and To Excel and Text Files

Export to Excel

e the command x1swrite generates an Excel file from a Matlab
matrix or a cell array:

xlswrite(filename,variable, sheetname, rangestring)

filename name of the Excel file
variable matrix or cell array to be stored
sheetname string containing the name of the Excel sheet

rangestring starting cell or complete range where to put the variable,
e.g.'C2"'or 'B6:D9'

e Notes:

— On Windows machines with installed Excel, this uses Excel to generate
Jtrue" Excel files

— On machines without Excel, it generates CSV files (comma separated

values) that may be imported in many spreadsheets.

== A = magic(4);

== wlswrite('nagic.xls' A, "MyMagicsheet', 'D3')
Warning: Could not start Excel server for export.
XLSWRITE will attempt to write file in C5Y format.
= In xlswrite at 175

121

Export to Excel

Exercise:

1) generate a 4x4 magic matrix A

2) generate a 1x4-cell-vector header containing the text header
“This is a magic matrix” in the first cell (other cells shall be empty)

3) assemble the cell array magictext by stacking both header
and magic matrix A

4) export the cell array magictext to an excel file named
magicmatrix.xls, into the sheet named “4x4-magic-matrix”,
starting at the Excel cell C6

5) open the file in Excel and check if it worked, close the Excel again.

6) generate a 5x5 magic matrix and export it to the same file, but
now into the sheet named "5x5-magic-matrix”, again at the Excel
cell C6

7) re-open the file in Excel and check if it worked

122

Import from Excel

e using xlsread, data from Excel spreadsheets can be imported:
num = xlsread(filename,sheet,rangestring)

filename name of the Excel file
sheet number of the sheet or a string containing its name
rangestring areatoread (e.g. 'B6:D9"')

e This works best, if Excel is installed on the machine.
If Excel is not installed, xlsread runs in “basic-mode”
with limited capabilities.

Exercise:

Re-import the Excel file from the previous exercise into Matlab. Read
from the sheet named “5x5-magic-matrix”, and import only the
range C6:G8, i.e. the first three rows of the magic square.

123

Reading/Writing Text Files

e thefunctiondlmwrite (delimited write) generates ASClI files
from matlab matrices:

dlmwrite (filename, matrix, delimiter)
e cell arrays are not supported by dlmwrite

e one line per row, columns delimited by a character (default: ;)

l Editor - fhome/asommer,Projekte/Spielwiese,/ magicmatixt
== A = magic(4) | magicmat.txt x|
b= 1 1&,2,3,13
- 2 5,11,10,8

TR Rt] 5o
= 11 10 a c T
9 7 = 12
4 14 1L 1

== dlmwrite(' magicnat.t<t' A,',"'])

Exercise: Export a matrix from matlab
e usingdlmread, such afileisread: intoatext-filewithdlmwrite.

2> B = dlnread(nagicnat. ot , ', ') Using a text-editor (e.g. notepad),

T 2 3 13 manually change the separators to &
. o and import that file into Matlab again.
4 14 15 1

124

Basics of Error Handling
Error, Try and Catch

Try and

Catch

e if Matlab cannot perform a statement, e.qg. because dimensions
do not agree, an error is thrown, and the program is stopped

e |et us "misuse” our axpy function from a previous exercise

l Editor - fhomejasommer/Projekte/Spielwiese/ axpy.m

l Editor - fhome/asommer/Projekte/Spielwiese/ axpytestm

executed anymore!

[axpym x| | axpytestm |
1 function z = axpy(A,x,varargin) 1 % Small script to
2 #|OAFPY - Ax plus v - Calcoculates A%ty 2 % provoke an error
3 % v 1s optional. 3 % oAn axpy = EXpYTEST
4 4 - A = magic(3); ans =
5 % first calculate A¥*x 5 (= * = [1;1;17; 16
g - z = A%x; a - y = [1;2;2]; 17
7 7- wy = [1;2]; 15
8 % check if there s an v, then add it g - apy AL,y) Error using +
9 - 1f nargin==3 . gll= E%PFEJ?*,X,FF;' Matrix dimensions must agree.
10 - z = z + wvarargin{l}; 10 - disp('Donel ') Errar in axpy (line 107
E - end z = z + wvarargin{l};
S TR Error in axpytest (line 9
13- lend This line is not oy (A W':’IV ()

e obviously, we cannot add an 2xa vector to an 3xa vector

e Matlab also tells us the function and position (line number),
where the error occurred, and includes the call stack

126

Try and Catch

e suppose this call to axpy has happened inside of a much larger

program

e then the whole program would have been stopped

we can avoid that by encapsulating critical steps in
try-catch-end block, where we can recover from errors:

l Editor - fhome/asommer/Projekte/Spielwiese/ axpytest?.m

| axpytestz m o x|
try ; - A = magici3);
statements AR
. 5 - = [1:2];
catch exception S-Sy
N o
recover-statements |- . ZPHoew
end 12 : djsp[e.mgssgge]
1; : Endd15p['5k1pp1ng...']
if we cannot recover 14 - disp(’Donel ")

from the error, we can rethrow it
(maybe someone else can handle it)

% Small script with error handling

disp('Sorry, an error occured: ')

Command Window

== Ay TesTZ
ans =

1&

17

18
SOrry, an error occured:
Matrix dimensions must agree.
Skipping...
Done!

127

Try and Catch

e typical situations:
— when reading from afile, the file may be corrupt or non-existent;
we should tell the user that without crashing the whole program
— when writing to a file, the disk may be full; we should then ask
the user to clear some space and retry

e ingeneral, itis considered bad style just to crash; many errors
can be easily recovered by telling the user to “try again!”

e try catch blocks may be nested

Exercise:

Write a function sumfile that accepts a filename as parameter.

The function should try to read the content of that file using dlmread
and return the sum of all elements of the matrix read from that file.

If the reading fails, an informative message should be displayed and the
function shall return o as value.

Test your program with a magic matrix that has been written to a file using
dlmwrite before.

128

Things good to know

Measuring Run-Time of Commands

e Use ticand toc to determine how much time has passed:
- tic starts the timer
- tocreturns the elapsed time

=» tic, conplicatedFunction{100000,2), toc
ans =
2. 1622e+07

Elapsed time is 0.100374 seconds.

== tic
=» conplicatedFunction{100000,27
ans =

e Subsequent calls of toc return the time ™ 51623040

== toc
elapsed since the last call of tic Elapsed tins is 6.225089 ssconds.
== complicatedFunction{1000300,237
ans =
1.0005e+09
== toc
Elapsed time s 11.870225 seconds.
=» complicatedFunction(2200300,13)
ans =
3. 2638e+09
== toc
Elapsed time s 32.647957 seconds.
== toc
Elapsed time 1s 35.410789 seconds.

130

Adjusting the Output Format

If we store the value 12345.6789012345 in the variable x,
Matlab seems to “cut off” the value:

=xox o= 12345 .6753012345
o=

1.2346e+04

We can change the output by using the format statement

== format Tong; =

format long shows full value in
scientific notation

o=

1.224567830123450e+04

>> Toruat short; x format short shows 5 digits in

X = scientific notation
1.234ce+04

»» format short eng; x format short eng showsgdigitsin

x - ~engineering" format
12.3457e+003 (exponent is a multiple of 3)

== format short g; =

format short g shows a 5 digit
~convenient® representation

o=

12346

131

Checking for Zero

e We have seen, that matlab "miscalculates” the sine of pi.:

== sinlpl)
ans =

1.224Ee-16

This is due to limited machine precision and cannot be avoided
in floating point arithmetics

e Thus, if we test a variable or matrix entry for being zero with the
comparator ==, we will most likely not succeed

e Asaremedy, check whether the absolute value of the variable
or matrix entry is very small:

X if x——0 drspt-pescl), end

‘/if abs (x)<=le-15, disp('Zero'), end

132

Reshape a Matrix

e We can change matrix dimensions while keeping the elements
using the function reshape:

B = reshape (A, rows,cols)
== A =[12 32; 45 E&]
e The total number of elements of a matrix 2, A -
i.e. numel (A), must not change while 1oz 3
reShapelngl == reshape(h,>,2)

ans =

e The reshaped matrix has the same internal L
linear representation as the original matrix. '+ 2
Remember the linear memory model
(column-major-order)! This is not transposition!

e If we want to ensure that a vector is always an nxa vector,
we may invoke:

x = reshape (x,length(x),1);

133

Sparse Matrices

134

Sparse Matrices

e Matrices with lots of zeros inside may be stored efficiently as

sparse matrices, storing only the nonzero elements.
— spy displays the sparsity pattern
— nnz countsthe nonzero elements
— dense converts a dense matrix with lots of zeros into a sparse matrix
— full convertsasparse matrix into a dense matrix

Opr

=x f=rand(10007%; nnzi({) Workspace

ans = Mame £ |VaME Buwtes
mm [<1000 1000 douk,,, F000000
1000000 || Fsparse <1000 1000 spar... 166360

e LE=0.010=0; nnz ()
ans =

Q597

w o =1 fer} 5] s i o =

== sy (L)
=» Ffsparse = sparse(l); 10

0 200 400 (=] 800 1000
nz = 9305

e The sparse matrix Zsparse needs much less memory than
the identical but dense matrix Z

e Note: rand generates a random matrix (— later)
135

Sparse Matrices

e Multiplication of sparse matrices is much faster than of dense
matrices: - Tic, 773 Toc

Elapsed time s 0.121746 seconds.
=

== Tic, Zsparse¥Zsparse; toc
Elapsed time s 0.005463 seconds.

(remember: Z and Zsparse are mathematically identical!)

e |f the matrix is not sparse ,enough", then sparse matrix
multiplication is very costly:

== F=rand(10007: F{i=0.51=0: nnz(Z)
ans =
43909

== Zsparse = sparseiZ);

i

== tic, Z%7; toc

Elapsed time s 0.090085 seconds.
i

=» tic, Zsparse¥Zsparse; toc
Elapsed tine is 1.046136 seconds.

Exercise: For which percentage of sparsity do the matrix-multiplications
Z*7Z and Zsparse*Zsparse need the same time?

136

Exercises

138

* create vectors/matricest = | 4 -1 6],y= [1 > 7]
6 2 5 m
e create avector t1 with values from o to 1 increasing by 0.1
e extract the first row of y and store itin R1
e extract the third column of v and store itin C3
e extract first and third column of y and store it in ysmall
e extract all values from y that are larger than 3 and store them
in the vector ybig
e save all workspace variables to a file, clear the workspace with
clear all andreloadthe variables from the file
e calculate the solution of the linear equation system
X1+ 2x5 + 3x3 = 402
4x, + 2x, + x3 = 521
7x1 + 5x, + 9x3 = 638
and store the solution in the variable sol
e calculate the sum and product of the elements in sol and print a

message that display it like ,The sum of sol is ..., the product is ..."
139

Exercises: Basics (2)
,S =19

Exercise: Matrix functions

Write a matlab script file named matrixfun .mthat performs the

following operations:

* askthe userto entera numbern

* create an n-by-n magic matrix and store it in the variable M
and display it on the screen

* storein colsumthe sum of the elements of each column of M

* store in rowsum the sum of the elements of each row of M
(hint: use the matrix transposition operator . ')

* storeinmult the product of all matrix elements of M that are
greater than 20

 display the results in a single-line message like this:

The column sum is .., the row sum is .., and mult is .. .

Test your program with n being 3, 5, 7, and 8.

140

Exercise: Control Structures

Write a matlab script file named matstat that does the following

operations:

e askthe userto entera number n, and create an n-by-n magic
matrix M

e usingawhileloopandaswitch/case block, the program

shall ask the user what he wants to get:
— if he enters determinant, then display the determinant of the matix M
— if he enters matsum, then display the sum of all elements of matrix M
— if he enters diagonalproduct, then display the product of the diagonal
elements of matrix M
The program shall run unless the user enters stop!
If the user enters a command not listed above, the programm shall display
the message ,Command not known" and continue.

Rewrite the program and substitute the switch/case block by an

if/elseif/endblock
Hint: Use the function strcmpi for case-insensitive comparison of strings

141

Exercise: Plotting

e Plot the following functions over the interval [0, 10]
(a) sin(x) (b) cos(x?) (c) 0.016x3 — 1.2x + sin(Vx5)
Use discretization steps of 1, 0.1, 0.01, and 0.001 and compare.

e Write a script that asks the user to enter interval bounds a and b.
The script shall then divide the interval [a,b] into 1000 points
and plot all the above functions on these points into a single
figure window.

Function (a) shall be displayed in red color and solid line
Function (b) shall be displayed in green color and dashed line
Function (c) shall be displayed in black color with dotted line
Label the x-axis with 'x* and the y-axis with ‘f(x)' and add an
informative legend to the figure.

e Extend the script so that the user may only enter values for
aandbthatfulfill 0 < a < b andtest your program!

142

