
Andreas.Sommer@hs-furtwangen.de

Matlab Tutorial WS2016/17

2-Mar-18

• Saturday, September 24, 10.15 – 15.00, Computer Pool A3.14

• Saturday, October 8, 10.15 – 15.00, Computer Pool A3.14

• Saturday, October 22, 9.00 – 14.00, Computer Pool B2.02

• EXTRA: Saturday, November 12, 10.00 – 15.00, A3.14

• 1h extra time for practice after each lesson

• Please register to the FELIX group “Matlab Tutorium WS2016”
(and book the tutorial!)

• In case of questions: ALWAYS ASK! Use the FELIX group’s forum

• Download the slides as PDF from FELIX

• Maybe work in groups of 2 on one computer

Schedule

2

Start Matlab!

Desktop, Variables, Matrices

First Contact

3

The Matlab Desktop (Matlab 8, 2013a)

menu bar

current directory

files in
current
folder

description of
selected file

editor window

command window

workspace
variables

command
history

4

The Matlab Desktop
menu bar

current directory

files in
current
folder

description
of selected

file

editor window

command window

workspace
variables

command
history

• menu bar:
open and close files, print, etc.

• current directory:
commands will be invoked in this folder

• files in current folder:
list of all files present in current directory

• description of selected file
displays information about files (e.g. help)

• editor window
this is where you write/edit your programs

• workspace variables
 lists all variables in the current workspace
 shows information about memory usage
 edit variables by double-click

• command window
prompt for commands, displaying output

• command history
list of previously entered commands

Note:
• layout differs by matlab version
• layout may be customized to

fit your needs

5

The Matlab Desktop (Matlab 7, 2011b)

menu bar + current directory

files in
current
folder

description of
selected file

(editor window will pop up here)

command window

workspace
variables

command
history

6quick start button & status bar

• assignment of variables:
varname = expression

varname = expression;

(the semicolon suppresses the output of the result)

• Variable names:
– are case sensitive (i.e. a and A are different variables)
– consist of letters, numbers, and the underscore _
– may be up to 63 characters long
– must start with a letter

• Predefined variables:
– pi 3.141592653589793

– i, j imaginary unit, −1
– inf infinity, ∞
– NaN Not-a-Number (error value)
– eps machine precision

Matlab Basics

7

Exercises:
• Store the area of a circle with radius 2 in

the variable area
• Calculate 1/0 and 0/0. What do you see?
• Calculate the series 1 + 1/k

where k = 100, 1000, 10000, etc….
Up to which value of k is the result correct?
For the largest working k, calculate 1/k
and compare it to eps.

• basic datatype: matrix of double-floats
(vector: 1xn-matrix or nx1-matrix)

• enter matrix in square brackets [], row by row,
elements are separated by a space or comma ,
and rows are separated by semicolon ;

• enter a row vector (nx1-vector, entry of IRn)
in same way

Matlab Basics

8

Exercises: Enter the following matrices and vectors in Matlab

Calculate the matrix-vector products z1=A*y and z2=B*c and z3=B*d

𝐴 =
1 2 3
4 5 6
7 8 9

𝑦 =
2
4
7

𝐵 =
1 −2 5 3 9

99 2 2 24 8
𝑐 =

−22
−14

−1
7
3
2𝑑 = −1 −4 −7 −3 17

• Solve linear equations Ax = y using the backslash operator \
and assign the result to variable x:

x = A\y

Matlab Basics

Matlab issued a warning here!

1 2 3
4 5 6
7 8 9

𝑥 =
2
4
7

9

𝐴 𝑥 = 𝑦

Matlab Basics

• Problem here: matrix A is singular, i.e. not invertible.
Thus, the equation system Ax=y is not solvable.

But Matlab
calculated

the solution?!

• Matlab calculated something – but for sure not the
solution of our problem.

Obviously, the result is wrong!

• Let‘s check it by calculating A*x, which should equal y:

1 2 3
4 5 6
7 8 9

𝑥 =
2
4
7

10

NEVER!NEVER IGNORE WARNINGS!

• re-enter the matrix A , substitute entry 3 by a 2:

• you can walk through last commands using arrow keys ↑ and ↓
and delete the current line by pressing ESC

• recalculate x=A\y and make the check by comparing
A*x to y:

• variables get overwritten without notification!

• multiple commands can be written in a single line using comma ,
as separator. To suppress the output of intermediate results, use
the semicolon ; as separator.

Matlab Basics
1 2 2
4 5 6
7 8 9

𝑥 =
2
4
7

11

• Two possibilities to get help for a certrain command:

• A (rather) short help
can be displayed in
the command window
by calling:
help command

Example: help \

• The full documentation can be invoked in a new window
by calling: doc command

Matlab Basics: Asking for help

12

• Your current variables can be saved to file by typing

save myworkspacefile

• Clearing the workspace (deleting all variables) can
be done by invoking the command

clear

• On the next day, you can reload your workspace from file via

load myworkspacefile

Saving your Workspace

Exercise: Try that!

13

• The colon operator produces a row vector with identically spaced
entries:

a:s:b

row vector starting from a, every successive element is
increased by s up to a maximum value of b.

• An increment of 1 may be omitted: 2:1:7 or 2:7

The Colon Operator :

14

Matrix Assembly

15

• Using ordinary parenthesis (), we can directly access and
manipulate matrix entries:

A(2,3) referencing element at row 2 in column 3
A([1 3 5],:) referencing all elements in rows 1, 3, and 5
A(1:2:5,:) referencing all elements in rows 1, 3, and 5
A(:,[1 4]) referencing all elements in columns 1 and 4

• note: magic(n) computes a „magical“ square matrix with
integer entries from 1 to n² and identical row and column sums

Referencing matrix elements

16

• Using ordinary parenthesis (), we can directly access and
manipulate matrix entries:

A(2,3)=999 setting the value at row 2 in column 3 to 999

• A matrix can also be referenced elementwise by a single index.
This is called linear indexing. Matlab follows column-major-order:

A(14)=-111

setting the value at element 14 to -111
here, this is the element at row 3, column 4

Referencing matrix elements

17

Referencing matrix elements

Linear indexing in column-major-order:

18

𝐴 =

17 24 1 8 15
23 5 999 14 16
4 6 13 20 22

10 12 −111 21 3
11 18 25 2 9

row 1

row 2

row 3

row 4

row 5

col 1 col 2 col 3 col 4 col 5

In the computer’s memory, the matrix is stored columnwise,
entries of one column after the other:

17,23,4,10,11,24,5,6,12,18,1,999,13,-111,25,8,14,…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

From previous slide:
A(14)=-111

• Indexing always starts at 1 and runs until end:

A(3:end,:) retrieves all rows beginning with the 3rd row:

• The single colon : is a shortcut for all entries in the respective
dimension

• Reading an element outside the matrix, e.g. A(6,2),
Matlab throws an error:

Referencing matrix elements

19

• Writing to an index outside the matrix enlarges the matrix up to
this index and fills the new entries with 0:

A(7,7)=-1000

This technique is called „growing arrays“ and must be handled
with care, because internally the matrix is not enlarged but a
new bigger array is made and the matrix is copied into it.
This is a costly operation (consumes much time and memory)!

Referencing matrix elements

20

Exercise: Store in S the submatrix marked in light green.

• One can also use indicing with end+1, or similar:

x(end+4)=-2 enlarges x by 4 entries and sets the last to -2

• Using variables for indexing:

indices=[1:5 7] sets indices to the vector [1 2 3 4 5 7]
x(indices)=10 sets all specified elements of x to 10

Referencing matrix elements

21

• Logical indicing:

indices=A>10 generates logical matrix
A(indices)=10 sets the selected entries to 10

• equivalent call: A(A>10)=10
(may be read as „set A where A>10 to 10“)

Referencing matrix elements

22

• We may find the nonzero entries of the logical matrix indices
and use linear indexing to change the values of matrix A:

linidx=find(indices) generates linear indices
A(linidx)=-11 sets the selected entries to -11

• The command find retrieves the linear indices of nonzero entries

Referencing matrix elements

Exercise: Retrieve the indices of all positive elements of A

23

• Using [], we can assemble matrices from smaller ones:

A=magic(3) generates 3x3 magic matrix
N=zeros(3) generates 3x3 null matrix
Z=[N A N ; A A A ; N A N] assembles matrix Z

spy(Z) graphically display positions
of nonzero elements of Z

Assembling matrices

Exercise: Using A and N from above, assemble a matrix
with nonzero elements as depicted on the right.

∎
∎

∎
24

Matrix Operators, Comparators, Logical Connectives

Basic Operators

25

• Three types of matrix multiplication:
A*B standard matrix-matrix-multiplication
A.*B elementwise multiplication (multiplies each element of A

with the respective element of B)
3*A scalar times matrix (multiplies each element of A by 3)

Matrix multiplication and (elementwise) division

• elementwise matrix division:
A./B divides each element

of A by the respective
element of B

B/3 divides each element
of B by 3

26

• Matrix operators:
+ ordinary addition of matrices
- ordinary substraction of matrices
* standard matrix multiplication
/ right matrix divide: solves xTA=y
\ left matrix divide: solves Ax=y
^ matrix potentiation: A^4≙ A*A*A*A
.* elementwise multiplication
./ elementwise division
.\ array left divide
.^ elementwise potentiation

‘ hermite transposition (conjugate complex transposition)
.‘ transposition (swapping columns and rows)

Standard Operators

Exercise: - Generate a nonsquare matrix and calculate its transpose
- Compare hermite and ordinary transposition on H=[1 1+10i 2 3]

27

• Comparators work elementwise and return logical matrices

> truly greater than
>= greater than or equals
< truly smaller than
<= smaller than or equals
== equals
~= not equals

Comparators

Exercise: Make all 6 comparisons using:
A=[1 2 3; 4 5 6; 7 8 9];

B=[0 2 3; 3 5 6; 7 9 9];

Predict the outcome, before you actually enter the command!

28

• logical operators work elementwise on logical matrices

• in an ordinary matrix, every nonzero element is considered “true”,
and every zero element is considered “false”

• Operators:
& (ampersand) logical and note: A&B≙ and(A,B)
| (pipe) logical or note: A|B≙ or(A,B)
~ (tilde) logical not note: ~A≙ not(A)

Logical Operators

Exercise: In A=magic(5); determine the linear indexes (using find) of:
- elements that are greater than 5 and lesser than 10
- elements that are at most 5 or at least 20
- elements that are greater than 5 but not greater than 10
- elements that are greater than 15 but not equal to 20 or 21.
Only use the comparators and the logical operators &,|,~.
Check your results!

29

List of Frequently Used Functions

Function Reference

30

• zeros(m,n) creates an mxn-matrix consisting only of zeros
• ones(m,n) creates an mxn-matrix consisting only of ones
• eye(m,n) creates an mxn-matrix with 1s on main diagonal
• rand(m,n) mxn-matrix with U(0,1) distributed entries
• diag extracts diagonal elements from a matrix or

creates a diagonal matrix from a vector
• det calculates the determinant of a matrix
• size returns the dimension of a matrix
• length returns the length of a vector (1xn or nx1 matrix)
• numel returns the total number of elements of a matrix
• inv computes matrix inverse (AVOID THAT!)
• eig computes eigenvectors and eigenvalues
• rank calculates the rank of a matrix
• find finds the linear indices of nonzero elements

Basic Matrix Operations

31
Exercise: Test every command once (also the inv) .

• abs absolut value

• sin, asin sine and inverse sine (arcsin)

• cos, acos cosine and inverse cosine (arccos)

• tan, atan tangens and inverse tangens (arctan)

• sqrt square root

• exp exponential (base e, Euler’s number)

• log natural logarithm (base e)

• log10 common (decadic) logaritm (base 10)

• round rounding towards the nearest integer

• ceil,floor rounding towards +∞ or -∞

Elementary Math Functions (I)

32

Exercise: 1) Test round, floor, and ceil for 3.4 and -3.4

• real,imag real or imaginary parts of complex matrices

• sort sorting values

• sum, prod sum, product of matrix columns

• max, min maximum, minimum of matrix columns

• mean mean of matrix columns

• std, var standard deviation, variance of matrix columns

• mod, rem modulus and remainder

Elementary Math Functions (II)

33

Exercise: 1) Compare modulus and remainder of two numbera a and b,
- once with a and b having the same sign
- once with a and b having different signs

2) Generate A=magic(4) and test the functions
sum, mean, max, min, on that matrix

3) How would you find the maximum entry of a matrix?
Can you write the command in one row?
Also find an expression for the maximum absolute value

Basic Plotting in 2D

34

• Plotting x versus y values is especially easy:

x = 0:10;

y = sin(x);

plot(x,y);

• For a finer discretization, adjust the x-vector and recalculate:

x = 0:0.1:10;

y = sin(x);

plot(x,y);

Basic Plotting in 2D

35

• A subsequent plotting command deletes the previous one:

z = cos(x);

plot(x,z);

• We may plot multiple graphs by specifying both in a single
plot command:

plot(x,y,x,z);

Here, the colors are
chosen by Matlab.

Basic Plotting in 2D

36

• We may use the hold command to avoid plot deletion:

plot(x,y);

hold on

plot(x,z);

Basic Plotting in 2D

37

note: both plots
are now in blue,
because the coloring
starts separately
for each call to plot

• The hold state remains until we call hold off or close the
figure window

• The figure window may be cleared
by calling clf (clear figure):

clf;

• We can have multiple figure windows: A new figure window may
be created and activated by a call to figure():

figure();

plot(x,z);

• We can switch to a figure window with a certain number (handle)
by calling figure with that handle.

figure(1);

figure(137);

If the handle does not exist, a new figure with that handle will be
created and activated.

Basic Plotting in 2D

38

• The figure handle is the handle of a figure window.
The axis handle is the handle of a plotting area.
The current figure handle can be retrieved by gcf .
The current axis of the current figure can be retrieved by gca:

fh = gcf; ax = gca;

• Each plotting command (plot, clf, hold, etc…) accepts an
axes handle as first argument, so we can directly plot into them:

figure(1); ax1=gca;

figure(2); ax2=gca;

plot(ax1,x,sin(x));

plot(ax2,x,cos(x));

• More about plotting later!

Basic Plotting in 2D

39

Character Strings

40

• Character strings may be stored in variables by setting the
string in inverted commas:

textvar = 'This is a text'

• A string is (internally) also a matrix! We can access individual
characters by simple parentheses () like numerical matrices:

• We also can assemble text parts with []:

• And display text messages using disp

Character Strings

41

• Adding strings and numbers leads to unexpected results, as
Matlab interprets the characters by their ASCII codes:

• Convert a string into a number: str2num

• Convert a number into a string: num2str

• Using this, we can assemble messages:

Character Strings

42

Exercise:
Try what happens,
if we do not use
num2str here.

Reading from Keyboard

Human Input

43

• The input function displays an input prompt, reads an
expression from the keyboard and evaluates it:

• If we want to enter a text, we have to type it in inverted commas:

• Giving the additional argument ‘s‘ to input, Matlab returns
the entered text as a string without interpreting it:

Reading Input from Keyboard

44

Exercise: Try this and check the class of x after each input.

Script Files

45

• a script file contains a series of Matlab commands
that will be executed when the script is startet

• all Matlab files have the file suffix .m

• to begin writing a program called myprogram, just type
edit myprogram

at the Matlab prompt

• after the program has been saved, it can be startet by typing its
name at the Matlab prompt or by pressing F5 in the editor

• commands in a script file behave exactly as if they had been
entered at the Matlab prompt (i.e. they can access, modify,
delete the variables in the user workspace)

Writing Programs: Script Files

46

• toy example: A program that asks the user to enter a number,
and calculates the sine of this value

Writing Programs: Script Files

47

• start editing the program called mysine.m

• if Matlab cannot find a file with this name, it asks if you want to
create a new one. Yes!

• enter the program code, and run it with F5

• after you‘ve entered a number, the sine of that number is calc‘ed:

Writing Programs: Script Files

48

• note that the variables number and sine are now in the
workspace

• start the program again and now calculate the sine of pi:

But the
sine of π is 0 ?!

• right, the sine of π is zero, but we
calculated the sine of pi, which is an approximation of π.

• and the error is smaller than the machine precision eps:

Writing Programs: Script Files

49

Exercise:

Write a program (a Matlab script) called
make_2by2_matrix.m that demands 4 numbers from
the user and generates a 2-by-2 matrix from them.

𝑎 𝑏
𝑐 𝑑

Further, let the program calculate the determinant of this
matrix:

det
𝑎 𝑏
𝑐 𝑑

= 𝑎𝑑 − 𝑏𝑐

The program shall display both the matrix and the
determinant with an appropriate message.

Hint: Store the four matrix elements in variables a, b, c, d.

IF, SWITCH, FOR, WHILE

Control Structures

50

• The if statement allows conditional execution of commands:

if (logical expression)
statements

elseif (logical expression)
statements

else

statements
end

Control Structures: IF

51

Exercise:
Write a program (a Matlab script) that asks the user for a
number and then tells him whether it is an even number,
an odd number, or not an integer.
Hint: use the functions input and mod

• The switch statement allows to conditionally execute
statements choosen from several cases:

switch (expression)
case {expr1, expr2, …}

statements
...

otherwise

statements
end

Control Structures: SWITCH

52

cell array

• Every switch statement can be written as an if statement,
but the latter one is harder to read (for humans).

Exercise: Rewrite the example using only the if statement.

• The for statement runs through a series of things (e.g.
numbers in a vector) and executes statements for them

for var = expression
statements

end

• Typical usage: Let a variable i
run through the numbers 1 to 10:

for i = 1:10

disp(i)

end

Note: 1:10 expands into
the vector [1 2 3 … 10]

Control Structures: FOR

53

• The for statement may “run“ through arbitrary vectors:

• When given a matrix, for runs through its columns:

Control Structures: FOR

54

Exercise: In the 2nd example, compare the output of the three for statements
1) for k = A

2) for k = A(:) Explain your observations!
3) for k = A(1:end) Hint: See the help for the colon : operator

• The while statement loops specified commands as long as
condition (a logical expression) is fulfilled:

while (logical expr.)
statements

end

• With the command break, the while loop may be left at any
time:

Control Structures: WHILE

55

Exercise: Write a program (a Matlab script) that sums up numbers entered by a
user unless a 0 is entered. At the end, display the resulting sum.

• Both the for and the while loop may be left at any time using
the statement break

• Similarly, for both loops for and while, one can “jump” into
the next iteration using the command continue:

Control Structures: BREAK and CONTINUE

56

Cell Arrays and Structure Arrays

Additional Array Types

57

• Cell arrays are indexable lists that can store “everything”

• Their elements are accessed similarly to numeric arrays,
but by using curly brackets (braces) {}
c{1} = magic(3) stores a matrix
c{2} = 'some text' stores a string
c{3} = @sin stores a function handle (→later)

• Important for copying contents of cell array:
Indexing with {}→ accesses the object in the cell
Indexing with ()→ accesses the cell itself

• Like numerical array, cell arrays may be 1D, 2D, 3D, …

Cell Arrays

58

• with num2cell, a numeric matrix is transformed into a cell
array, such that every matrix element is placed in a separate cell

• to convert a cell array elementwise into a matrix, use cell2mat

• note: mat2cell is a more powerful variant of num2cell,
(allows splitting a matrix into a cell array of submatrices)

Cell Arrays: Conversion to/from Matrix

59

• building a cell array by individual elements is done row-wise,
like numerical arrays, by using ; as row delimiter:

• cell arrays may be assembled from smaller ones using []
in the same way as numerical arrays / matrices:

Cell Arrays: Assembly

60

Exercise:
Generate a 4x4 magic matrix A, and a 1x4-cell-vector header containing the text
header “This is a magic matrix” in the first cell (other cells shall be empty).
Assemble the cell array magictext by stacking both header and magic matrix A

• Structure arrays (“structs”) are similar to cell arrays, with the
difference that individual elements are not numbered, but named

• The elements are accessed by adding a dot and their name to the
variable name

ancientstruct.name = 'Wilhelm'

ancientstruct.age = 156;

ancientstruct.position = 'Emperor'

• A structure array may also be created using the Matlab function
struct (see help struct for details)

Structs

61

@nonymous functions

62

• Simple functions of several arguments may be implemented
as anonymous function using the function operator @:

cossin = @(x) cos(x)+sin(x);

This generates a function cossin(x) that accepts exactly one
input argument x and calculates the sum of its cosine and sine.

Anonymous Functions with @

63

argument list of
anonymous function

• Anonymous functions may have more than one argument,
or no argument at all:

cosxsiny = @(x,y) cos(x)+sin(y);

showerror = @() disp(‘Sorry, trouble ahead!‘);

code of the
function

• Anonymous functions may also deliver matrices as a result.
The following example function accepts five values and returns
the vector of their sum, their product, and their mean:

Anonymous Functions with @

64

sfun = @(a,b,c,d,e) [a+b+c+d+e ; a*b*c*d*e ; (a+b+c+d+e)/5];

sfun(5, 2, 7, 2, -6);

• Anonymous functions may access the value of
workspace variables at creation time.
Subsequent changes of the respective workspace
variable do not change the behaviour of the function!

Exercise: (i) Write an anonymous function mymult5 that takes an argument
and multiplies it with 5.

(ii) Write a program (a Matlab script) that asks the user for a number,
and generates an anonymous function of one argument, that
multiplies its argument with the user given value.
Store the anonymous function in the variable mymult and test it!

Functions

65

• control structures like IF, FOR, WHILE, etc., cannot be used
inside @nonymous functions(*)

• script files “work” inside the main work space and may interfere
with user variables

• Matlab functions have their own work space, so they do not
touch user variables, and they completely support all Matlab
commands and control structures

Functions

66

(*) using eval and alike, it is possible but (very) bad style.
Remember: eval is evil.

• basic principle: one function per m-file (well, nesting is possible)

• the first line in an m-file is the function header:
function [output-variables] = functionname(input-variables)

• the following lines are comments starting with %, explaining the
functions purpose, describing the input and output variables, etc.

• then follows the code of your program

• the last line finishes the m-file with an end
(may be omitted, but using it is good style)

• own functions are called in the same way as built-in functions:
[result-variables] = functionname(input-variables)

• if a function has no return value, a pair of empty brackets is used
in the declaration:
function [] = functionWithoutResult(input-variables)

Functions: Structure of m-Files

67

• first impression:
lots of comments

• function name gives hint on operation purpose

• output variables have meaningful names

• asking for help results in pure happiness and rapture:

Functions: Good Style Example

68

good style:
more than 50%
commentation!

input variablesoutput variables

Note: We shadow the
Matlab functions prod
and sum here. But that
shadowing is cleared
as soon as the function
finishes.

• what does that function do?

• no comments in the source code

• no explanation of the variables

• does this function want matrices, numbers, characters, or what?

• asking for help results in frustration:

Functions: Bad Style Example

69

worst style
of programming

• every function has its own work space

• functions cannot access variables from the main workspace,
neither read them nor write to them
(exception: evalin and assignin)

• the only accessible variables are the input variables

• intermediate variables that are created inside the function
vanish as soon as the function is left

• this ensures that functions do not interfere with other functions
or variables from the main or other functions’ workspaces

• exception: global variables and persistent variables

Functions: Local Workspace

70

Remember:
eval is evil.
assignin, too

• a variable may be marked as globally accessible by using the
declaration: global varname

• a global declaration should be done at the beginning of the
function

• this declaration has to be done in every function that wants to
access that global variable

• global variables are considered bad style, and are a frequent
source of error, especially in concurrent (parallel) programms

• avoid them!

• if you implement
global variables,
document them
whereever used

Functions: Global Variables

71

Matlab displays global
variables in a different color

• a function may be left at any time using the return statement:

• every output variable must have been set before!

Functions: Premature exit with return

72

• using varargin, a function may have a variable number of
input variables:

• the total number of input variables can be queried by nargin

• note: varargin is a cell array, and must be referenced by {}

• varargin is often used for optional arguments

Functions: Variable Number of Input Variables

73

• varargin{1} is the first additional input variable,
varargin{2} the second additional input variable, etc.

• note: nargin is the total number of input argument,
NOT the number of varargin arguments

Functions: Variable Number of Input Variables

74

• a similar mechanism is available for optional output variables:
varargout is the cell array of output arguments
nargout is the number of output args requested by the caller

• the 1st optional output variable is stored in varargout{1},
the 2nd optional output variable is stored in varargout{2},
etc.

Functions: Variable Number of Output Variables

75

The ~ marks that we
are not interested in

this return value

• Matlab follows the paradigm call-by-value, i.e. the function
receives a copy of its input variables, not the original:

• Note: Other programming languages like C use call-by-reference,
i.e. they would modifiy the original matrix.

Functions: General Remarks

76

Functions: Exercise

77

Exercise:

1) Write a function called axpy that calculates 𝑧 = 𝐴𝑥 + 𝑦, where A is a
matrix, and x and y are vectors.
Test your function with

AA = magic(3), xx=[1;2;3], yy=[0;-1;100]

axpy(AA,xx,yy)

2) Extend your function in the following way:
In this function, A and x should be required arguments, and y optional, i.e.
the call z = axpy(A,x)would calculate only the matrix-vector product
𝐴𝑥, and the call z = axpy(A,x,y)would return 𝐴𝑥 + 𝑦.

3) Write a second function allPowers𝐴𝑘 that calculates arbitrary many
potences of a given matrix A.
The first output argument shall be the 1st power of A,
the second output argument shall be the 2nd power of A (i.e. 𝐴2),
the k-th output argument shall be the k-th power of A.

Note: Only the requested powers shall be calculated! Not more, not less.

Breakpoints and Stepping

Debugging

78

• using breakpoints, we can interrupt the execution of programs
at (almost) any place

• when using the Matlab editor,
a breakpoint is set by clicking
at the dash next to line num-
bers of executable statements
(the dash becomes a red dot)

• we may have more than one
breakpoint in every function

• when the program/function is invoked, execution is interrupted
at the breakpoints and we can then look at variables, evaluate
expressions and even manipulate variables in the local work
space

Breakpoints and Debugging

79

• after invoking longfunction(1,2,3), the
execution is stopped at the first breakpoint and
Matlab enters the debugger (prompt: K>>)

• in the editor window, a
green arrow marks the
line of code that will be
executed next

• the workspace window
shows the current local
variables

• We can now run through the program step by step!

Breakpoints and Debugging

80

• Keyboard shortcuts:
– F10 execute the next line of code
– F11 run next line and step into the function therein (if any)
– Shift-F11 run until the current function returns
– F5 continue execution until the next breakpoint
– Shift-F5 stop program immediately

• We can also manipulate the variables in the current workspace
by typing expressions in the Matlab command window

Breakpoints and Debugging:

81

Exercise: Try this out!
Set breakpoints and step through the
program. Manipulate variables!

Nicer plotting, subplots, legends
and a bit of 3D

Plotting (continued)

82

• we have already seen how to plot x versus y:
x = 0:0.1:10;

y = sin(x);

plot(x,y);

• here, Matlab chooses the coloring and style

• We may provide an additional string argument choosing the style

plot(x,y,'r.:');

Plotting: Choosing the Style

83

Color
(here: r for red)

MarkerStyle
(here: . for dot)

LineStyle
(here: : for dotted)

• Plot command: plot(x,y,plotspec);
where plotspec is a string coding for color, marker style and
line style

• available colors:
b – blue g – green r – red c – cyan
m – magenta y – yellow w – white k – black

• some marker styles:
. – dot o – circle x – cross + – plus

• available line styles:
- – solid : – dotted -- – dashed -. – dashdot
if no line style is specified, no line is drawn

• more information: help plot

Plotting: Choosing the Style

84

Exercise: Make some colorful plots.

• Multiple plots can be displayed in one figure window using the
subplot command:

subplot(m,n,i)

where: m number of rows
n number of cols
i selection of current axes to plot in

Plotting: Subplots

85

Exercise:
Plot the functions

𝑓 𝑥 = 3𝑥2 − 4𝑥
𝑔 𝑥 = sin 𝑥

ℎ 𝑥 = cos 𝑓 𝑥

over the interval [0,10]
in one figure using
subplot.

Hint: Try using @nonymous
functions for f, g, h

• Three dimensional plots may be created using plot3:

plot3(x,y,z)

where: x vector of x-coordinates
y vector of y-coordinates
z values at the x-y-coordinates

• plot styles may be chosen
in the same way as for the
2D plot command

Plotting: 3D

86

• Matlab offers a lot of different plotting possibilities:
• plot standard plotting in 2D
• loglog 2D log-log plots
• plot3 standard plotting in 3D
• mesh 3D mesh plot
• surf 3D surface plot
• contour plot contour lines
• quiver plotting 2D velocity fields with arrows
• quiver3 plotting 3D velocity fields
• scatter 2D scatter plot (circles at specified position)
• comet 2D animated trajectory plotting (running in time)
• comet3 3D animated trajectory plotting
• hist histogram plots
• pie, rose pie / rose plots
• many many more…

Plotting: List of Plot Commands

87

Plotting: Overview

88

Source: Mathworks Matlab Documentation
http://de.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html, queried Nov 3, 2015

http://de.mathworks.com/help/matlab/creating_plots/types-of-matlab-plots.html

• title add a title to the current axes
• xlabel add a label to the x-axis
• ylabel add a label to the y-axis
• zlabel add a label to the z-axis (in 3D plots)
• grid on|off turn grid on or off
• legend add a legend to the axes

• and much more using
annotation

and axes properties

Plotting: Titles and Labels

89

RHS Function, Matlab Integrators

Solving
Ordinary Differential Equations

90

• we consider here only first order ODE IVP:

ሶ𝑥 = 𝑓 𝑡, 𝑥 𝑥 𝑡0 = 𝑥0

where 𝑡 ∈ 𝑡0, 𝑡𝑓 ⊂ ℝ denotes the time, and 𝑥 ∈ ℝ𝑑 the state.

• the function 𝑓(𝑡, 𝑥) is the right-hand-side (rhs) function

• in Matlab the rhs function 𝑓 is always a function of time and
state:

function dx = rhs(t,x)

dx = …… formula calculating the rhs 𝑓(𝑡, 𝑥)

end

• note: autonomous ODE, i.e. ODE that do not depend explicitly
on 𝑡 simply ignore the 𝑡 argument

Solving ODE: Initial Value Problem

91

• ODE IVP: ሶ𝑥 = 𝑓 𝑡, 𝑥 𝑥 𝑡0 = 𝑥0

• using a Matlab integrator like ode45, an ODE IVP can be
solved by one line of code:

[T,X] = ode45(@rhs, [t0 tf], x0);

where: @rhs right hand side function (handle)
t0 initial time point
tf final time point
x0 initial value 𝑥(𝑡0)

• the integrator ode45 returns a vector of times T (chosen by
Matlab) and a matrix of states X:

X(i,:) is the system’s state at time T(i)
X(:,j) is the trajectory for the j-th state (component) :

Solving ODE: Standard Integrator ode45

92

no @ if using
anonymous
functions

• second order differential equation:

ሷ𝑥 − 𝜇 1 − 𝑥2 ሶ𝑥 + 𝑥 = 0

• reformulated as system of 2 dimensions using 𝑥1 ≔ 𝑥, 𝑥2 ≔ ሶ𝑥 :

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝜇 1 − 𝑥1
2 𝑥2 − 𝑥1

• the right hand side function in Matlab thus looks as follows:

ODE Example: The van-der-Pol Oscillator

93

rhs function
ሶ𝑥 = 𝑓 𝑡, 𝑥

• initial time 𝑡0, final time 𝑡𝑓, and initial value 𝑥(𝑡0) = 𝑥0 are

t0 = 0, tf = 20, x0=[1;1]

• call the Matlab integrator ode45

[T,X] = ode45(@vdprhs,[t0 tf],x0);

• plot the result, add legend

plot(T,X); legend('x1','x2');

ODE Example: The van-der-Pol Oscillator

94

• modern call to Matlab integrator

sol = ode45(@vdprhs,[to tf],x0);

• returns an “ode-solution” object sol (a struct) with additional

information, e.g. number of function evaluations.

sol.x time points (T on previous slides)

sol.y system states (X on previous slides)

sol.stats some statistics

• the sol object may be re-used:

an existing solution may be extended in time by odextend

Solving ODE: Modern Interface (Matlab 2016a)

95

• there are different integrators available, most prominent:

ode45 all-purpose integrator

ode15s for stiff problems

• all Matlab ODE integrators support the same basic syntax

• one may specify explicit time points where the solution

shall be calculated by specifying them in the tspan vector:

tspan = [t0 t1 t2 …(vector of requested times)… tf];

[T,X] = ode45(@vdprhs,tspan,x0);

• vector T then contains only the

specified time points, and X the

respective states

Solving ODE: Generics

96

• the integrators may be configured by

giving name-value-pairs to odeset

• example:

set relative and absolute tolerances

(a measure for accuracy), to 10−6

and 10−8, respectively:

opts = odeset('RelTol',1e-6,'AbsTol',1e-8)

• the variable opts can be given to every Matlab integrator:

[T,X] = ode45(@vdprhs,[t0 tf],x0,opts);

• note: every integrator supports different options

Solving ODE: Generics

97

Solving ODE: FitzHugh-Nagumo Oscillator

98

Exercise:
The FitzHugh-Nagumo oscillator is a prototype of an excitable system,
mimicking the behavior of a firing neuron. It is given by the ODE:

ሶ𝑥1 = 𝑐 𝑥2 + 𝑥1 −
𝑥1

3

3
− 𝐼 , ሶ𝑥2 = −

𝑥1 − 𝑎 + 𝑏𝑥2

𝑐

where 𝑥1 denotes the excitability of the system (membrane voltage),
and 𝑥2 is the recover variable. 𝐼 is an external stimulus.

1) Write the according right-hand-side function FHNrhs
Choose a = 0.7; b = 0.6; c = 3.0; I = 0.3 as parameter values.

2) Integrate the ODE IVP over the time domain [0, 50].
Choose 𝑥1(0) = 0; 𝑥2(0) = 0 as initial value.

3) Make a plot of the solution

• Solving ODE is not as simple as it looks

• Try solving the ODE

with a value 𝜇 = 0,1,5,10,20,60.

• Note: The exact solution is

Solving ODE: Beware!

99

𝑥1 0 = 0
𝑥2 0 = 𝜋

ሶ𝑥1 = 𝑥2

ሶ𝑥2 = 𝜇2𝑥1 − 𝜇2 + 𝜋2 sin 𝜋𝑡

𝑥1 𝑡 = sin 𝜋𝑡
𝑥2 𝑡 = 𝜋 ⋅ cos 𝜋𝑡

Solving ODE: Beware!

100

• unfortunately, using higher precision is NOT a remedy
(ask a numerical mathematician)

• often, one needs to find the minimum (maximum) of a function
min

𝑥∈[𝑡0,𝑡𝑓]
𝑓(𝑥)

• quite simple for 1D, more complicated for nD:
min

𝑥⊂ℝ𝑛
𝑓(𝑥)

• even harder if additional constraints are given:

Optimization: Introduction

101

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

𝑐𝑒𝑞 𝑥 = 0

𝐴𝑥 ≤ 𝑏

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

𝑐 𝑥 ≤ 0

min
𝑥⊂ℝ𝑛

𝑓(𝑥)

𝑠. 𝑡. general nonlinear inequality constraints

general nonlinear equality constraints

linear inequality constraints

linear equality constraints

lower and upper bounds

objective

• Matlab offers diverse functions for constrained and unconstrained
optimization of functions of one variable ore multiple variables,
and both derivative-based and derivative-free methods

• for “real” problems the choice of the right method is cruical
(ask someone who knows about it)

• most optimizers find local minima, which is sufficient in most
cases

• finding the global minimum is often not possible in finite time,
unless the problem has some nice properties and structure

• we will have a short look on two Matlab minimizers:
fminsearch for unconstrained minimization
fmincon for constrained minimization

• all optimizers may be configured using optimset

Optimization: Introduction

102

• the Matlab optimizer fminsearchminimizes a function
of one or more variables

• derivative free, uses simplex search algorithm

• syntax: x = fminsearch(fun,x0)

x = fminsearch(fun,x0,opts)

[x,fval] = fminsearch(...)

[x,fval,exitflag] = fminsearch(...)

[x,fval,exitflag,output] = fminsearch(...)

• input: fun function to be minimized (handle)
x0 initial guess:
opts options generated with optimset

• output: x solution (or best point so far)
fval function value at x
exitflag status (solution successful, failed, etc.)
output additional information

Unconstrained Minimization with fminsearch

103

• the Matlab optimizer fminconminimizes a smooth function
of one or more variables, under some constraints

• many different algorithms behind that function:
interiour point, sqp, trust-region-reflective, active-set

• read the documentation, and ask a mathematician!

• syntax:

x = fmincon(fun,x0,A,b)

x = fmincon(fun,x0,A,b,Aeq,beq)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,opts)

[x,fval] = fmincon(...)

[x,fval,exitflag,output] = fmincon(...)

[x,fval,exitflag,output,lambda,grad,hessian]=fmincon(…)

Constrained Minimization with fmincon

104

[x,fval,exitflag,output,lambda,grad,hessian]

= fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

• input: fun function to be minimized (handle)
x0 initial guess:
A matrix of linear inequality constraints
b rhs vector of lin. inequality constraints
Aeq matrix of linear equality constraints
beq rhs vector of lin. equality constraints
lb lower bounds on variables
ub upper bounds on variables
nonlcon general nonlinear constraint function (next slide)
opts options generated with optimset

• output: x solution (or best point so far)
fval function value at x
exitflag status (solution successful, failed, etc.)
output additional information
lambda lagrangian multipliers at solution
grad gradient vector at solution
hessian hessian matrix at solution

Constrained Minimization with fmincon

105

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

𝑐𝑒𝑞 𝑥 = 0
𝐴𝑥 ≤ 𝑏

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

𝑐 𝑥 ≤ 0

min
𝑥⊂ℝ𝑛

𝑓(𝑥)

𝑠. 𝑡.

• the general nonlinear constraint function has to be of the form:

function [c,ceq] = nonlinconfun(x)

c = … (vector of nonlinear inequality constraints evaluated at x)

ceq = … (vector of nonlinear equality constraints evaluated at x)

end

• i.e., the nonlinear constraint function gets a point x,
and returns both the vector of nonlinear inequality constraints
and the vector of nonlinear equality constraints at that point x

• example: points lying within the unit disk:

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

end

Constrained Minimization with fmincon

106

• standard benchmark problem: minimize Rosenbrock’s function
𝑓 𝑥 = 100 𝑥2 − 𝑥1

2 2 + 1 − 𝑥1
2

• this function shows a banana-shaped valley, where gradients are
very small (a challenge for many classical textbook algorithms)

• the minimum is at 𝑥∗ = 1,1 𝑇 with 𝑓 𝑥∗ = 0

• traditionally, the initial guess is 𝑥0 = −1,2 𝑇

• the next two slides show a 3d surface plot on the left, rotated to
different angles, and the according contour lines on the right;
the minimum position is marked with a red dot

Unconstrained Minimization: Rosenbrock’s Banana

107

Unconstrained Minimization: Rosenbrock‘s Banana

108

Unconstrained Minimization: Rosenbrock‘s Banana

109

• we determine the unconstrained minimum using fminsearch

• set up the Rosenbrock function as @nonymous function:
banana = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2

• invoke fminsearch with standard settings, start at 𝑥0 = −1,2 𝑇

[x,fval,exitflag,output] = fminsearch(banana,[-1,2])

• if we want to see what the solver is doing, we might create the
right option using optimset and pass it to the solver:
opts = optimset('display','iter');

[x,fval,...] = fminsearch(banana,[-1,2],opts)

Unconstrained Minimization: Rosenbrock’s Banana

110

Unconstrained Minimization: Rosenbrock’s Banana

111

an exitflag 1 tells us that
Matlab is convinced to have
found a local solution

Unconstrained Minimization: Exercise

112

Exercise:

Find the unconstrained minimum the following function:

𝑓 𝑥 = −
1

𝑥 − 0.3 2 + 0.01
−

1

𝑥 − 0.9 2 + 0.04
+ 6

using fminsearch.

1) First, make an @nonymous function or a function file for that f

2) Plot the function over domain [-1, 2].

3) Find minima using fminsearch.
Choose as starting values: once 0 and once 2

• suppose, we want to find the minimum of Rosenbrock‘s function
within a certain area – let‘s say, inside the unit circle 𝑥 2 ≤ 1

• we can solve such a constrained optimization problem using the
Matlab optimizer fmincon

• as the constraint 𝑥 2 ≤ 1 is nonlinear, we first write the
nonlinear constraint function:

function [c,ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

end

and store it in the file unitdisk.m

Constrained Minimization: Rosenbrock’s Banana

113

no equality constrains

𝑐 𝑥 = 𝑥 ² − 1
= 𝑥1

2 + 𝑥2
2 − 1 ≤ 0

• set up the Rosenbrock function as @nonymous function:
banana = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2

• prepare the options using optimset and choose 𝑥0 = 0,0 𝑇

opts = optimset('display','iter'); x0=[0,0];

• invoke the solver fmincon:

[x,fval,exitflag] = ...

fminsearch(banana,x0,[],[],[],[],[],[],@unitdisk,opts)

Constrained Minimization: Rosenbrock’s Banana

114

fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,opts)

no linear
inequality
constraints

no linear
equality
constraints

no upper
and lower
bounds

function to
minimize
(handle)

initial
guess

handle to nonlinear
constraint function

options
structure

• some versions of Matlab issue a warning here:

Constrained Minimization: Rosenbrock’s Banana

115

I will never
ignore warnings!

• It tells us that the default algorithm of fmincon is not
capable to solve this type of problem and Matlab has
automatically chosen one that Matlab thinks it can do the work.

We should have chosen a suiting algorithm by ourselves
using optimset, e.g. the sqp algorithm:
opts = optimset('display','iter','Algorithm','sqp');

Constrained Minimization: Rosenbrock’s Banana

116

point on unit disk 𝒙 = 𝟏

function value on that point

exitflag 5 for interiour-point-method ???

• What does the exitflag value 5 mean?

• In Matlab documentation on fmincon, we read:

• That means, Matlab got stuck during solving the problem!
It cannot determine a direction to search in, and the current
point x is feasible.
It does NOT necessarily mean, it has found a solution!

• However, in this example, it indeed is a local solution.

Constrained Minimization: Rosenbrock’s Banana

117

point on unit disk 𝒙 = 𝟏

function value on that point

exitflag 5 for interiour-point-method ???

Constrained Minimization: Rosenbrock’s Banana

118

Constrained Minimization: Rosenbrock’s Banana

119

From and To Excel and Text Files

Export and Import

120

• the command xlswrite generates an Excel file from a Matlab
matrix or a cell array:

xlswrite(filename,variable,sheetname,rangestring)

filename name of the Excel file
variable matrix or cell array to be stored
sheetname string containing the name of the Excel sheet
rangestring starting cell or complete range where to put the variable,

e.g. 'C2' or 'B6:D9'

• Notes:
– On Windows machines with installed Excel, this uses Excel to generate

„true“ Excel files
– On machines without Excel, it generates CSV files (comma separated

values) that may be imported in many spreadsheets.

Export to Excel

121

Export to Excel

122

Exercise:
1) generate a 4x4 magic matrix A
2) generate a 1x4-cell-vector header containing the text header

“This is a magic matrix” in the first cell (other cells shall be empty)
3) assemble the cell array magictext by stacking both header

and magic matrix A
4) export the cell array magictext to an excel file named

magicmatrix.xls, into the sheet named “4x4-magic-matrix”,
starting at the Excel cell C6

5) open the file in Excel and check if it worked, close the Excel again.
6) generate a 5x5 magic matrix and export it to the same file, but

now into the sheet named “5x5-magic-matrix”, again at the Excel
cell C6

7) re-open the file in Excel and check if it worked

• using xlsread, data from Excel spreadsheets can be imported:

num = xlsread(filename,sheet,rangestring)

filename name of the Excel file
sheet number of the sheet or a string containing its name
rangestring area to read (e.g. 'B6:D9')

• This works best, if Excel is installed on the machine.
If Excel is not installed, xlsread runs in “basic-mode”
with limited capabilities.

Import from Excel

123

Exercise:
Re-import the Excel file from the previous exercise into Matlab. Read
from the sheet named “5x5-magic-matrix”, and import only the
range C6:G8, i.e. the first three rows of the magic square.

• the function dlmwrite (delimited write) generates ASCII files
from matlab matrices:

dlmwrite(filename, matrix, delimiter)

• cell arrays are not supported by dlmwrite

• one line per row, columns delimited by a character (default: ;)

• using dlmread, such a file is read:

Reading/Writing Text Files

124

Exercise: Export a matrix from matlab
into a text-file with dlmwrite.
Using a text-editor (e.g. notepad),
manually change the separators to &
and import that file into Matlab again.

Error, Try and Catch

Basics of Error Handling

125

• if Matlab cannot perform a statement, e.g. because dimensions
do not agree, an error is thrown, and the program is stopped

• let us “misuse” our axpy function from a previous exercise

Try and Catch

126

• obviously, we cannot add an 2x1 vector to an 3x1 vector

• Matlab also tells us the function and position (line number),
where the error occurred, and includes the call stack

This line is not
executed anymore!

• suppose this call to axpy has happened inside of a much larger
program

• then the whole program would have been stopped

• we can avoid that by encapsulating critical steps in
try-catch-end block, where we can recover from errors:

try

statements
catch exception

recover-statements
end

Try and Catch

127

• if we cannot recover
from the error, we can rethrow it
(maybe someone else can handle it)

• typical situations:
– when reading from a file, the file may be corrupt or non-existent;

we should tell the user that without crashing the whole program
– when writing to a file, the disk may be full; we should then ask

the user to clear some space and retry

• in general, it is considered bad style just to crash; many errors
can be easily recovered by telling the user to “try again!”

• try catch blocks may be nested

Try and Catch

128

Exercise:
Write a function sumfile that accepts a filename as parameter.
The function should try to read the content of that file using dlmread
and return the sum of all elements of the matrix read from that file.
If the reading fails, an informative message should be displayed and the
function shall return 0 as value.
Test your program with a magic matrix that has been written to a file using
dlmwrite before.

Things good to know

129

• Use tic and toc to determine how much time has passed:
- tic starts the timer
- toc returns the elapsed time

• Subsequent calls of toc return the time
elapsed since the last call of tic

Measuring Run-Time of Commands

130

• If we store the value 12345.6789012345 in the variable x,
Matlab seems to “cut off” the value:

• We can change the output by using the format statement

Adjusting the Output Format

format long shows full value in
scientific notation

format short shows 5 digits in
scientific notation

format short eng shows 5 digits in
„engineering“ format
(exponent is a multiple of 3)

format short g shows a 5 digit
„convenient“ representation

131

• We have seen, that matlab “miscalculates” the sine of pi:

This is due to limited machine precision and cannot be avoided
in floating point arithmetics

• Thus, if we test a variable or matrix entry for being zero with the
comparator == , we will most likely not succeed

• As a remedy, check whether the absolute value of the variable
or matrix entry is very small:

if x==0, disp('Zero!'), end

if abs(x)<=1e-15, disp('Zero'), end

Checking for Zero

132



✓

• We can change matrix dimensions while keeping the elements
using the function reshape:

B = reshape(A,rows,cols)

• The total number of elements of a matrix A,
i.e. numel(A), must not change while
reshapeing!

• The reshaped matrix has the same internal
linear representation as the original matrix.
Remember the linear memory model
(column-major-order)! This is not transposition!

• If we want to ensure that a vector is always an nx1 vector,
we may invoke:

x = reshape(x,length(x),1);

Reshape a Matrix

133

Sparse Matrices

134

• Matrices with lots of zeros inside may be stored efficiently as
sparse matrices, storing only the nonzero elements.

– spy displays the sparsity pattern
– nnz counts the nonzero elements
– dense converts a dense matrix with lots of zeros into a sparse matrix
– full converts a sparse matrix into a dense matrix

• The sparse matrix Zsparse needs much less memory than
the identical but dense matrix Z

• Note: rand generates a random matrix (→ later)

Sparse Matrices

135

• Multiplication of sparse matrices is much faster than of dense
matrices:

(remember: Z and Zsparse are mathematically identical!)

• If the matrix is not sparse „enough“, then sparse matrix
multiplication is very costly:

Sparse Matrices

Exercise: For which percentage of sparsity do the matrix-multiplications
Z*Z and Zsparse*Zsparse need the same time?

136

Exercises

138

• create vectors/matrices t =
2
4
6

, 𝑠 = 9 −1 6 , 𝑦 =
1 5 7
2 5 𝜋

• create a vector t1 with values from 0 to 1 increasing by 0.1
• extract the first row of y and store it in R1
• extract the third column of y and store it in C3
• extract first and third column of y and store it in ysmall
• extract all values from y that are larger than 3 and store them

in the vector ybig
• save all workspace variables to a file, clear the workspace with
clear all and reload the variables from the file

• calculate the solution of the linear equation system
𝑥1 + 2𝑥2 + 3𝑥3 = 402
4𝑥1 + 2𝑥2 + 𝑥3 = 521
7𝑥1 + 5𝑥2 + 9𝑥3 = 638

and store the solution in the variable sol
• calculate the sum and product of the elements in sol and print a

message that display it like „The sum of sol is …, the product is …“

Exercises: Basics

139

Write a matlab script file named matrixfun.m that performs the
following operations:
• ask the user to enter a number n
• create an n-by-n magic matrix and store it in the variable M

and display it on the screen
• store in colsum the sum of the elements of each column of M
• store in rowsum the sum of the elements of each row of M

(hint: use the matrix transposition operator .‘)
• store in mult the product of all matrix elements of M that are

greater than 20
• display the results in a single-line message like this:

The column sum is …, the row sum is …, and mult is … .

Test your program with n being 3, 5, 7, and 8.

Exercise: Matrix functions

140

Write a matlab script file named matstat that does the following
operations:
• ask the user to enter a number n, and create an n-by-n magic

matrix M
• using a while loop and a switch/case block, the program

shall ask the user what he wants to get:
– if he enters determinant, then display the determinant of the matix M
– if he enters matsum, then display the sum of all elements of matrix M
– if he enters diagonalproduct, then display the product of the diagonal

elements of matrix M
The program shall run unless the user enters stop!
If the user enters a command not listed above, the programm shall display
the message „Command not known“ and continue.

Rewrite the program and substitute the switch/case block by an
if/elseif/end block
Hint: Use the function strcmpi for case-insensitive comparison of strings

Exercise: Control Structures

141

• Plot the following functions over the interval [0, 10]

(a) sin 𝑥 (b) cos 𝑥2 (c) 0.016𝑥3 − 1.2𝑥 + sin 𝑥5

Use discretization steps of 1, 0.1, 0.01, and 0.001 and compare.

• Write a script that asks the user to enter interval bounds a and b.
The script shall then divide the interval [a,b] into 1000 points
and plot all the above functions on these points into a single
figure window.
Function (a) shall be displayed in red color and solid line
Function (b) shall be displayed in green color and dashed line
Function (c) shall be displayed in black color with dotted line
Label the x-axis with ‘x‘ and the y-axis with ‘f(x)‘ and add an
informative legend to the figure.

• Extend the script so that the user may only enter values for
a and b that fulfill 0 < a < b and test your program!

Exercise: Plotting

142

