

Prof. Dr. Leif Döring

Stochastik I

Leonardo Vela

8. Übung

1. Minkowski für Reihen.

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $(f_n)_{n \in \mathbb{N}}$ eine Folge in $\mathcal{L}^p(\Omega, \mathcal{A}, \mu)$ mit $p \geq 1$. Zeige, dass

$$\left(\int_{\Omega} \left| \sum_{n=1}^{\infty} f_n \right|^p d\mu \right)^{\frac{1}{p}} \leq \sum_{n=1}^{\infty} \left(\int_{\Omega} |f_n|^p d\mu \right)^{\frac{1}{p}}$$

gilt.

(6 Punkte)

2. Eindeutigkeit von Grenzwerten in L^p (nicht \mathcal{L}^p !).

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $(f_n)_{n \in \mathbb{N}}$ eine Folge in $\mathcal{L}^p(\Omega, \mathcal{A}, \mu)$ mit $p \geq 1$, sodass

$$\lim_{n \to \infty} \left(\int_{\Omega} |f_n - f|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} = 0 \quad \text{und} \quad \lim_{n \to \infty} \left(\int_{\Omega} |f_n - g|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} = 0$$

für Funktionen $f, g \in \mathcal{L}^p(\Omega, \mathcal{A}, \mu)$. Zeige, dass

$$f = g \quad \mu$$
-fast überall

gilt und folgere, dass Grenzwerte von Folgen in $L^p(\Omega, \mathcal{A}, \mu)$ eindeutig sind.

(7 Punkte)

3. Summen sind auch nur Integrale.

Sei $(a_{k,n})_{k,n\in\mathbb{N}}$ eine reellwertige Folge mit $a_{k,n}\geq 0$ für alle $k,n\in\mathbb{N}$. Zeige, dass

$$\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k,n} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{k,n}$$

gilt.

Hinweis: Fubini! (6 Punkte)

4. (Nicht-)Bedeutung von Nullmengen für Zufallsvariablen.

Sei $X_1 \sim \mathcal{U}((0,1))$ und $X_2 \sim \mathcal{U}([0,1])$ auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Das bedeutet.

$$X_1$$
 hat Dichte $f = \mathbb{1}_{(0,1)}$, es gilt also $\mathbb{P}(X_1 \in B) = \int_B \mathbb{1}_{(0,1)}(x) dx$, $B \in \mathcal{B}(\mathbb{R})$,

$$X_2$$
 hat Dichte $f = \mathbb{1}_{[0,1]}$, es gilt also $\mathbb{P}(X_2 \in B) = \int_B \mathbb{1}_{[0,1]}(x) dx$, $B \in \mathcal{B}(\mathbb{R})$,

a) Zeige, dass X_1 und X_2 identisch verteilt sind.

- (2 Punkte)
- b) Sei $\lambda > 0$ beliebig. Definiere $Y_1 = -\frac{1}{\lambda} \log(X_1)$ und $Y_2 = -\frac{1}{\lambda} \log(X_2)$, wobei ihr $\log(0)$ auf einen beliebigen reellen Wert setzt. Zeige, dass Y_1 und Y_2 identisch verteilt sind. Was ist ihre Verteilung?

 (3 Punkte)

Die Aufgabe zeigt euch, warum man sagt, dass Nullmengen bei Zufallsvariablen keine Rolle spielen.

5. Neue Schreibweise, altes Spiel.

Gegeben sei ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Die Zufallsvariable $X : \Omega \to \mathbb{R}$ soll die beobachtete Anzahl gefallener Tore in einem Fussballspiel modellieren. Die Verteilung der Zufallsvariable \mathbb{P}_X soll dabei die Poissonverteilung mit Parameter $\lambda = 3.2$ sein. Berechne die folgenden Wahrscheinlichkeiten:

 $\mathbb{P}(X=0)$ $\widehat{=}$ "Es fallen keine Tore", $\mathbb{P}(X\in(2,4])$ $\widehat{=}$ "Es fallen mehr als 2, aber weniger als oder genau 4 Tore", $\mathbb{P}(X>5)$ $\widehat{=}$ "Es fallen mehr als 5 Tore".

(6 Punkte)

Die Lösungen sind in Zweiergruppen bis Dienstag, den 24. November 2020, 10:00 Uhr, in Ilias hochzuladen.