Wahrscheinlichkeitstheorie 1 FSS 2021

Sheet 4

For the exercise class 12.04.2021. Hand in your solutions before 17:00 Saturday 10.04.2021.

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}_0}, \mathbb{P})$ for all the exercises. All the random variables are assumed to be real-valued.

Exercise 1 (Lemma 3.3.1 in Lecture Notes). Let (X_n) be an (F_n) -submartingale and S, T be bounded stopping times such that $S \leq T$ a.s.. Prove that, $\mathbb{E}[X_S] \leq \mathbb{E}[X_T]$.

Exercise 2 (Prop 3.4.4 in Lecture Notes). Let $(X_{\alpha}, \alpha \in I)$ be a family of random variables with $\sup_{\alpha \in I} \mathbb{E}[|X_{\alpha}|] < \infty$, i.e. bounded in $\mathcal{L}^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that for every $\epsilon > 0$, there exists $\delta > 0$, such that for all $A \in \mathcal{F}$ with $\mathbb{P}(A) < \delta$, we have

$$\mathbb{E}[|X_{\alpha}|\mathbf{1}_{A}] < \epsilon, \qquad \forall \alpha \in I.$$

Prove that $(X_{\alpha}, \alpha \in I)$ is uniformly integrable.

Exercise 3 (Theorem 3.4.6 in Lecture Notes: Scheffé's Lemma). Suppose that $X_n, n \ge 1$ is a sequences of random variables in $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $\lim_{n\to\infty} X_n = X_\infty$ in probability. Show that the following statements are equivalent:

- (ii) $X_n \to X_\infty$ in \mathcal{L}^1 , as $n \to \infty$;
- (iii) $\mathbb{E}[|X_n|] \to \mathbb{E}[|X_\infty|] < \infty$, as $n \to \infty$.

Hint: you may use the fact $|X_n - X_\infty| = |X_n| + |X_\infty| - 2|X_n \wedge X_\infty|$

Exercise 4 (Galton–Watson Process with finite second moment; c.f. Example 3.2.5 in lecture notes). Let $(X_n, n \in \mathbb{N}_0)$ be a branching process, starting from $X_0 = m \in \mathbb{N}_0$, with offspring distribution $(p_k, k \in \mathbb{N}_0)$. Recall that, with $(\xi_i^{(n)}, i \ge 1, n \ge 0)$ i.i.d. distributed according to the offspring distribution (i.e. $\mathbb{P}(\xi = k) = p_k$), we can define (X_n) by iteration:

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)}, \qquad n \ge 1.$$

Suppose that $\mu = \mathbb{E}[\xi_1^{(0)}] = \sum_{k=1}^{\infty} kp_k < \infty$ and $\eta := \mathbb{E}[(\xi_1^{(0)})^2] < \infty$ (the offspring distribution has finite second moment).

(i) Let $f(s) := \mathbb{E}[s^{\xi_1^{(0)}}] = \sum_{k=0}^{\infty} p_k s^k$, $|s| \le 1$ be the generating function of $\xi_1^{(0)}$. Show that, the generating function of X_n (i.e. $\mathbb{E}[s^{X_n}] = \sum_{k=0}^{\infty} \mathbb{P}(X_n = k)s^k$) is given by the iteration relation of function composition:

$$f_n(s) = f(f_{n-1}(s))$$

(ii) Using the fact that

$$f_{n+1}''(s) = f''(f_n(s))[f_n'(s)]^2 + f'(f_n(s))f_n''(s)$$

prove that

$$f_n''(1) = f''(1) \left(\mu^{2n-2} + \mu^{2n-1} + \dots + \mu^{n-1} \right)$$

(iii) Prove that

$$\mathbb{E}[X_n^2] = \frac{(\eta - \mu)\mu^{n-1}(\mu^n - 1)}{\mu - 1} + \mu^n, \text{ if } \mu \neq 1$$

and

$$\mathbb{E}[X_n^2] = n(\eta - 1) + 1$$
, if $\mu = 1$.

(iv) Recall that $M_n := \mu^{-n} X_n$ is a martingale and $M_n \to M_\infty$ a.s.. If $\mu > 1$, then show that $M_n \to M_\infty$ in \mathcal{L}^2 and $\mathbb{E}[M_\infty] = 1$.

Exercise 5. ABRACADABRA

At each of times 1, 2, ..., a monkey types a capital letter at random, the sequence of letters typed forming an i.i.d. sequence of random variables chosen uniformly amongst the 26 possible capital letters. Let T be the first time by which the monkey has produced the consecutive sequence ABRACADAB-RA. We prove that

$$\mathbb{E}[T] = 26^{11} + 26^4 + 26.$$

For this, imagine that just before **each** time $n \in \mathbb{N}$, a new gambler indexed by n arrives on the scene. He bets 1 euro that

If he loses, he loses all his money and leaves. If he wins, he receives 26 euros, all of which he bets on the event that

the
$$n + 1$$
-th letter will be B.

If he loses, he loses all his money and leaves. If he wins, he bets his whole current fortune of 26^2 that

the
$$n + 2$$
-th letter will be R.

and so on through the ABRACADABRA sequence. All gamblers come and play and leave independently of each other. Let $(X_i^k, i \ge 0)$ denote the fortune of the k-th gambler just after time i: in particular, $X_i^k = 1$ for all $i \le k - 1$.

- (i) Show that indeed, $\mathbb{E}[T] < \infty$. Hint: See exercise 2 in Sheet 3.
- (ii) For every $n \ge 1$, let M_n be the total net profit of all gamblers who have participated in the game just after time n, i.e.

$$M_n = \sum_{k=1}^n (X_n^k - 1),$$

and $M_0 \coloneqq 0$.

Show that $(M_n)_{n\geq 0}$ is a martingale.

(iii) Show that $T = \inf\{n \ge 0 : M_n + n \ge 26^{11} + 26^4 + 26\}$. Conclude that $\mathbb{E}[T] = 26^{11} + 26^4 + 26$.