Wahrscheinlichkeitstheorie 1 FSS 2022

Sheet 8

For the exercise class on the 25.04.2022.

Hand in your solutions by 10:15 in the exercise on Monday 25.04.2022.

Exercise 1 (Complex Integration). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, $f, g: \Omega \to \mathbb{C}$ an integrable function. Show that

- (i) $\int_{\Omega} af + g \, d\mu = a \int_{\Omega} f \, d\mu + \int_{\Omega} g \, d\mu$, for all $a \in \mathbb{C}$
- (ii) $\operatorname{Re}(\int_{\Omega} f \, \mathrm{d}\mu) = \int_{\Omega} \operatorname{Re}(f) \, \mathrm{d}\mu, \operatorname{Im}(\int_{\Omega} f \, \mathrm{d}\mu) = \int_{\Omega} \operatorname{Im}(f) \, \mathrm{d}\mu$

(iii)
$$\overline{\int_{\Omega} f \, \mathrm{d}\mu} = \int_{\Omega} \overline{f} \, \mathrm{d}\mu$$

Exercise 2 (Characteristic Functions).

- (i) Let X be a random variable on \mathbb{R}^d with characteristic function φ_X . For $a \in \mathbb{R}, b \in \mathbb{R}^d$, show that the characteristic function of aX + b is $\varphi_{aX+b}(t) = \varphi_X(at)e^{i\langle b,t \rangle}$.
- (ii) Let X be a random variable on \mathbb{R}^d and Y be a random variable on \mathbb{R}^k . Prove that, X is independent of Y, if

$$\mathbb{E}\left[\exp\left(i\left(\langle t, X \rangle + \langle s, Y \rangle\right)\right)\right] = \varphi_X(t)\varphi_Y(s), \qquad \forall t \in \mathbb{R}^d, s \in \mathbb{R}^k.$$

Hint. The characteristic function determines the distribution, uniquely! Pick a different random vector (\tilde{X}, \tilde{Y}) with $\tilde{X} \stackrel{(d)}{=} X$ and $\tilde{X} \stackrel{(d)}{=} X$ and assume independence.

Exercise 3 (One-Point Compactification). We consider the space $([0, \infty], d)$ with

$$d(x,y) := |e^{-x} - e^{-y}|.$$

Prove that

- (i) d is a metric
- (ii) and the space is compact.

Hint. Sequences.

Exercise 4 (Gaussian Vectors). For any $k \ge 1$, a random variable $Z := (Z_1, \ldots, Z_k)$ on \mathbb{R}^k is called a *centred Gaussian vector*, if every linear combination of Z_1, \ldots, Z_k is a centred Gaussian random variable on \mathbb{R} .

(i) Prove that, Z is a centred Gaussian vector, if and only if

$$\mathbb{E}\left[\exp(i\langle t, Z\rangle)\right] = \exp\left(-\frac{1}{2}t^T M t\right), \qquad \forall t \in \mathbb{R}^k,$$

where M is a $k \times k$ matrix, with $M_{ij} = \text{Cov}(Z_i, Z_j)$.

Hint. recall that the characteristic function of $\mathcal{N}(0, \sigma^2)$ is $\varphi(t) = \exp(-\frac{1}{2}\sigma^2 t^2)$

(ii) Let (X, Y) be a centred Gaussian vector. Prove that, X is independent of Y, if and only if Cov(X, Y) = 0.

Exercise 5 (Complex Analysis). (Optional Difficult Easter Challenge)

Read about path integrals in Complex Analysis (Funktionentheorie). In particular Cauchy's Integral Theorem.

(i) To calculate an integral over the path γ₁ : [0, 1] → C, s → −(n+it) + 2sn you could therefore find a path γ₂ which connects n − it to −n − it. Because connecting both paths together results in a closed loop, we get by Cauchy's integral theorem

$$\int_{-n}^{n} f(y-it) dy \stackrel{x=\underline{y}-it}{=} \int_{\gamma_1} f(x) dx = -\int_{\gamma_2} f(x) dx.$$

Use this insight to calculate the characteristic function of the standard normal distribution.

Hint. *Draw boxes in* \mathbb{C} *considering*

$$\varphi_X(t) = \frac{1}{\sqrt{2\pi}} \int e^{itx} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int e^{-\frac{(x-it)^2}{2}} e^{-\frac{t^2}{2}} dx$$
$$= e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-n}^n e^{-\frac{(x-it)^2}{2}} dx.$$

(ii) Use a similar approach to prove that $\varphi_X(t) = \frac{1}{1-it}$ for $X \sim \text{Exp}(1)$.

Hint. *Here simple boxes will not be enough. A particularly interesting path is the linear path connecting* (1 - it)a *to* (1 - it)b*. Mind the derivative when substituting!*