Wahrscheinlichkeitstheorie 1 FSS 2022

Sheet 5

For the exercise class on the 21.03.2022.

Hand in your solutions at 10:15 in the exercise on Monday 21.03.2022.

Exercise 1 (Uniform Integrability). Show that the following families are uniformly integrable:

(i) (Prop. 6.3.14 (ii)⇒(i)) (X_α, α ∈ I) a family of random variables with sup_{α∈I} E[|X_α|] < ∞, i.e. bounded in L¹(Ω, F, P). Suppose that for every ε > 0, there exists δ > 0, such that for all A ∈ F with P(A) < δ, we have

$$\mathbb{E}[|X_{\alpha}|\mathbf{1}_{A}] < \epsilon, \qquad \forall \alpha \in I.$$

- (ii) a sequence of identically distributed random variables $\{X_i, i \in \mathbb{N}\}$ with $\mathbb{E}[|X_1|] < \infty$.
- (iii) Let $(X_i, i \in \mathbb{N})$ be a sequence of i.i.d. random variables with $\mathbb{E}[|X_1|] < \infty$. Let $S_n = \sum_{i=1}^n X_i$ for every $n \in \mathbb{N}$. Then the family $\{\frac{1}{n}S_n, n \in \mathbb{N}\}$ is uniformly integrable.

Exercise 2 (Not Uniformly Integrable). Let $(U_n, n \ge 1)$ be i.i.d. Bernoulli random variables with $\mathbb{P}(U_n = 1) = p \in (0, 1)$ and $\mathbb{P}(U_n = 0) = 1 - p$. Set $\tau := \inf\{n \ge 1 : U_n = 1\}$. Define $X_n := (1-p)^{-n} \mathbb{1}_{\tau > n}$.

- (i) Show that (X_n) is a martingale (choose a suitable filtration).
- (ii) Prove that $X_n \to 0$ almost surely
- (iii) Prove that $(X_n, n \ge 1)$ is not uniformly integrable.

Exercise 3 (Tail σ -Algebra).

(i) \mathcal{A} is trivial if an only if all $(\mathcal{A}, \mathcal{B}(\mathbb{R}^d))$ -measurable functions are constant

Let X_1, X_2, \ldots be a sequence of random variables with $\tau_n = \sigma(X_n, \ldots)$ and tail σ -algebra $\tau = \bigcap_n \tau_n$.

- (ii) Prove that $\liminf_n X_n$ and $\limsup_n X_n$ are τ measurable.
- (iii) Prove that

$$C := \{\omega \in \Omega : \lim_{n \to \infty} X_n \text{ exists}\} \in \tau$$

Exercise 4 (Gambler's ruin). Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. random variables with $\mathbb{P}(X_1 = 1) = 1 - \mathbb{P}(X_1 = -1) = p$ for some $p \in (0, 1)$, $p \neq 1/2$. Let $a, b \in \mathbb{N}$ with 0 < a < b. Define $S_0 \coloneqq a$ and for every $n \ge 1$, $S_n \coloneqq S_{n-1} + X_n$. Finally, define the following stopping time:

$$T \coloneqq \inf\{n \ge 0 : S_n = 0 \text{ or } S_n = b\}.$$

We consider the filtration generated by $(X_n)_{n\geq 1}$.

- (i) Show that $\mathbb{E}[T] < \infty$.
- (ii) Consider for every $n \ge 0$,

$$M_n \coloneqq \left(\frac{1-p}{p}\right)^{S_n}$$
 and $N_n \coloneqq S_n - n(2p-1).$

Prove that $(M_n)_{n\geq 0}$ and $(N_n)_{n\geq 0}$ are martingales.

- (iii) Deduce the values of $\mathbb{P}(S_T = 0)$ and $\mathbb{P}(S_T = b)$.
- (iv) Compute the value of $\mathbb{E}[T]$.
- (v) Let $\tau_0 \coloneqq \inf\{n \ge 0 : S_n = 0\}$ and $\tau_b \coloneqq \inf\{n \ge 0 : S_n = b\}$. Compute the value of $\mathbb{P}(\tau_0 < \infty)$.

Hint. Consider $\mathbb{P}(\tau_0 < \tau_b)$ and let $b \to \infty$.