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For the exercise class on the 7.03.2022.
Hand in your solutions at 13:30 in the exercise on Monday 7.03.2022.

Exercise 1 (Martingales Warm-up). Do enough of these exercises to feel comfortable with them.
(i) Assume that X, is an integrable (F,,) adapted stochastic process which is decreasing, i.e.
Xpt1 < X, as.

Prove that X, is a supermartingale.

Remark. Similarly an adapted increasing process is a submartingale.

(ii) Let (Xp)nens (Yn)nen be F,, (sub-)martingales, prove that

(@) (X, + Ya)nen is a (sub-)martingale.
(b) (X, V Yy )nen is a submartingale,

(iii) Let (X,)nen, be a (F,)-submartingale. Let T" be (F,,)-stopping time.

(a) Suppose that (X, )nen, is bounded and 7' is a.s. finite (the meaning is different from 7"
is a.s. bounded™!). Prove that E[X(] < E[X7| < occ.

(b) Suppose that there exists a constant /{ > 0 such that for P-a.e. w € €2,
| Xn(w) — Xp—1(w)| < K,Vn € N.
We also suppose that E[T'] < co. Show that E[X] < E[X7]| < oo.

Hint. Compare this with statements about martingales in the lectures and use the bounded
stopping time T' A M for some constant M € N and the dominated convergence theorem.

Exercise 2 (Conditional Expectation). Recall that a gamma distribution with parameter ¢ > 0 and
0 > 0 has density:

o° :Ccflefﬁxﬂ 0
F(C) x>0-

(1) Let X,Y be two independent exponential random variables with parameter § > 0 and Z =
X + Y. Determine the conditional distribution of X given Z = z (i.e. the Markov kernel
(A, 2) = P(X € A| Z =2)).

(ii) Conversely, let Z be a random variable with gamma distribution with parameter (2, #), and sup-
pose X is a random variable whose conditional distribution given Z = z is uniform on [0, z|, for
z > 0. Prove that X and Z — X are independent with exponential distribution Exponential(f).



Exercise 3 (Branching Process Tools). Assume X = (X,,), are identically distributed, independent
and integrable random variables. And assume N is an integrable Ny-valued random variable indepen-
dent of X and S, := )", _, X;.

(i) (Wald’s equation) Prove that
E[Sn] = E[N]E[X1]
Hint. Use indicators and Fubini.

(ii) (Blackwell-Girshick) Further assume that X,,, N € £2. Prove that
(@) E[S}] = E[N]Var[X,] + E[N2JE[X, ]’
(b) Var[Sy] = E[N]Var[X;] + Var[N]E[X]?
Hint. Same trick as with Wald’s equation.
Exercise 4 (Martingales). Let S,, := > ;Y; be a symmetric random walk, i.e. the jump sizes

(Y, n > 1) are a sequence of i.i.d. random variables with P(Y,, = 1) = 1/2and P(Y,, = —1) = 1/2.
Let G, := U(Yl, Yo, ... Yn> with Gy := {@, Q}

(i) Let A € R. Find a constant ¢ € R such that exp(AS,, — cn),en is a (G, )-martingale.
(ii) Prove that (S2 — n)y, is a (G, )-martingale.
(iii) Prove that (S3 — 3n.S,,)x, is a (G,,)-martingale.

(iv) Find a polynomial P(s,n) with degree 4 on s and degree 2 on n, such that (P (S, n))nen, is a
(G, )-martingale.

(v) Prove that, in general, for a polynomial P(z, y), the process (P(Sy, n))nen, is a (G, )-martingale,
if
P(s+1,n+1)+ P(s—1,n+1)=2P(s,n).

Exercise 5 (Poisson Process is Poisson). In this exercise we are going to assume that the Poisson
process (X¢);>o is defined as the number of events up to time ¢, where the waiting time between
events is always exponentially distributed, i.e.

k
X, = max{k: eNy: T} := ZY; < t} , Y; % Exp())
i=1
Show that X; is Poisson distributed for every ¢ > 0.

Hint. The exponential distribution is a special case of the Gamma distribution, i.e. Exp(A) = T'(1, 1 ).
And since the Gamma distribution is stable under summation of iid Gamma distributed random varia-
bles, we get Tj, ~ I'(k, 5). Using this fact you can either calculate P(X; < k) using the cumulative
distribution function of the Gamma distribution (which you might know or need to calculate), or you
could calculate P(X; = k) by conditioning on T} in this sense

P(A) = E[L4] = E[E[14 | T4])

This avoids the usage of the cdf of the Gamma distribution.



